
Retrofitting Purity with Comonads

Neel Krishnaswami
June 25, 2018

University of Cambridge

Once Upon a Time

• There was a PhD student
• who finished her dissertation…

1

Once Upon a Time

• There was a PhD student

• who finished her dissertation…

1

Once Upon a Time

• There was a PhD student
• who finished her dissertation…

1

Once Upon a Time

• Her advisor said, “It’s time for you to go out into the wide
world!”

• So she did, and she designed a programming language

2

Once Upon a Time

• Her advisor said, “It’s time for you to go out into the wide
world!”

• So she did, and she designed a programming language

2

Once Upon a Time

• Her advisor said, “It’s time for you to go out into the wide
world!”

• So she did, and she designed a programming language

2

A Functional Language

data List a = [] | a :: (List a)

len : List a -> Integer
len [] = 0
len (x :: xs) = 1 + len xs

map : (a -> b) -> List a -> List b
map f [] = []
map f (x :: xs) = f x :: map f xs

3

A Functional Language

data List a = [] | a :: (List a)

len : List a -> Integer
len [] = 0
len (x :: xs) = 1 + len xs

map : (a -> b) -> List a -> List b
map f [] = []
map f (x :: xs) = f x :: map f xs

3

A Functional Language

data List a = [] | a :: (List a)

len : List a -> Integer
len [] = 0
len (x :: xs) = 1 + len xs

map : (a -> b) -> List a -> List b
map f [] = []
map f (x :: xs) = f x :: map f xs

3

Once Upon a Time

• While implementing it, she added one primitive:
print : String -> Unit
print = Runtime.Primitive.Magic.__printf

• Nothing bad happened…yet!

4

Once Upon a Time

• While implementing it, she added one primitive:

print : String -> Unit
print = Runtime.Primitive.Magic.__printf

• Nothing bad happened…yet!

4

Once Upon a Time

• While implementing it, she added one primitive:
print : String -> Unit
print = Runtime.Primitive.Magic.__printf

• Nothing bad happened…yet!

4

Once Upon a Time

• While implementing it, she added one primitive:
print : String -> Unit
print = Runtime.Primitive.Magic.__printf

• Nothing bad happened…

yet!

4

Once Upon a Time

• While implementing it, she added one primitive:
print : String -> Unit
print = Runtime.Primitive.Magic.__printf

• Nothing bad happened…yet!

4

Once Upon a Time

• Naturally, this language was wildly successful
• Our protagonist achieved fame and fortune
• …and feature requests and bug reports

5

Once Upon a Time

• Naturally, this language was wildly successful

• Our protagonist achieved fame and fortune
• …and feature requests and bug reports

5

Once Upon a Time

• Naturally, this language was wildly successful
• Our protagonist achieved fame and fortune

• …and feature requests and bug reports

5

Once Upon a Time

• Naturally, this language was wildly successful
• Our protagonist achieved fame and fortune
• …and feature requests and bug reports

5

Feature Request: List Fusion

• A user wrote the following code:
map f (map g reallyBigList)

• and complained that it allocated a really big intermediate
list

6

Feature Request: List Fusion

• Our protagonist wrote a compiler pass to turn this:
map f (map g reallyBigList)

• into this:
map (f o g) reallyBigList

• Much RAM was saved!
• Benchmarks improved!

7

Feature Request: List Fusion

• Our protagonist wrote a compiler pass to turn this:
map f (map g reallyBigList)

• into this:
map (f o g) reallyBigList

• Much RAM was saved!
• Benchmarks improved!

7

Feature Request: List Fusion

• Our protagonist wrote a compiler pass to turn this:
map f (map g reallyBigList)

• into this:
map (f o g) reallyBigList

• Much RAM was saved!
• Benchmarks improved!

7

Feature Request: List Fusion

• Our protagonist wrote a compiler pass to turn this:
map f (map g reallyBigList)

• into this:
map (f o g) reallyBigList

• Much RAM was saved!

• Benchmarks improved!

7

Feature Request: List Fusion

• Our protagonist wrote a compiler pass to turn this:
map f (map g reallyBigList)

• into this:
map (f o g) reallyBigList

• Much RAM was saved!
• Benchmarks improved!

7

Bug Reports

• This code
f : Int -> Int
f n = print "a"; n + 1

g : Int -> Int
g n = print "b"; n + 1

printList (map f (map g [1, 2, 3]))
• In the old version, it printed:

bbbaaa[3, 4, 5]
• In the “optimized” version, it printed:

bababa[3, 4, 5]

8

Bug Reports

• This code
f : Int -> Int
f n = print "a"; n + 1

g : Int -> Int
g n = print "b"; n + 1

printList (map f (map g [1, 2, 3]))

• In the old version, it printed:
bbbaaa[3, 4, 5]

• In the “optimized” version, it printed:
bababa[3, 4, 5]

8

Bug Reports

• This code
f : Int -> Int
f n = print "a"; n + 1

g : Int -> Int
g n = print "b"; n + 1

printList (map f (map g [1, 2, 3]))
• In the old version, it printed:

bbbaaa[3, 4, 5]

• In the “optimized” version, it printed:
bababa[3, 4, 5]

8

Bug Reports

• This code
f : Int -> Int
f n = print "a"; n + 1

g : Int -> Int
g n = print "b"; n + 1

printList (map f (map g [1, 2, 3]))
• In the old version, it printed:

bbbaaa[3, 4, 5]
• In the “optimized” version, it printed:

bababa[3, 4, 5]

8

Narrative Tension!

• Our protagonist was worried:
• She wanted purity for optimization purposes
• But her language was already impure
• Was she out of luck?

9

Narrative Tension!

• Our protagonist was worried:

• She wanted purity for optimization purposes
• But her language was already impure
• Was she out of luck?

9

Narrative Tension!

• Our protagonist was worried:
• She wanted purity for optimization purposes

• But her language was already impure
• Was she out of luck?

9

Narrative Tension!

• Our protagonist was worried:
• She wanted purity for optimization purposes
• But her language was already impure

• Was she out of luck?

9

Narrative Tension!

• Our protagonist was worried:
• She wanted purity for optimization purposes
• But her language was already impure
• Was she out of luck?

9

Syntax

Types A ::= File | char | A→ B

| PureA

Terms e ::= x | c | e.print(e′) | λx.e | e e′

| pure(e) | let pure(x) = e in e′

Contexts Γ ::= · | Γ, x : A

| Γ, x :: A

Judgements Γ ⊢ e : A

10

Syntax

Types A ::= File | char | A→ B | PureA
Terms e ::= x | c | e.print(e′) | λx.e | e e′

| pure(e) | let pure(x) = e in e′

Contexts Γ ::= · | Γ, x : A | Γ, x :: A

Judgements Γ ⊢ e : A

10

Typing Rules

x : A ∈ Γ

∨ x :: A ∈ Γ

Γ ⊢ x : A
Γ ⊢ e : File Γ ⊢ e′ : char

Γ ⊢ e.print(e′) : 1

Γ, x : A ⊢ e : B
Γ ⊢ λx.e : A→ B

Γ ⊢ e : A→ B Γ ⊢ e′ : A
Γ ⊢ e e′ : B

Γpure ⊢ e : A
Γ ⊢ pure(e) : Pure(A)

Γ ⊢ e : Pure(A) Γ, x :: A ⊢ e′ : C
Γ ⊢ let pure(x) = e in e′ : C

(·)pure = ·
(Γ, x : A)pure = Γpure

(Γ, x :: A)pure = Γpure, x :: A

11

Typing Rules

x : A ∈ Γ ∨ x :: A ∈ Γ

Γ ⊢ x : A
Γ ⊢ e : File Γ ⊢ e′ : char

Γ ⊢ e.print(e′) : 1

Γ, x : A ⊢ e : B
Γ ⊢ λx.e : A→ B

Γ ⊢ e : A→ B Γ ⊢ e′ : A
Γ ⊢ e e′ : B

Γpure ⊢ e : A
Γ ⊢ pure(e) : Pure(A)

Γ ⊢ e : Pure(A) Γ, x :: A ⊢ e′ : C
Γ ⊢ let pure(x) = e in e′ : C

(·)pure = ·
(Γ, x : A)pure = Γpure

(Γ, x :: A)pure = Γpure, x :: A

11

Typing Rules

x : A ∈ Γ ∨ x :: A ∈ Γ

Γ ⊢ x : A
Γ ⊢ e : File Γ ⊢ e′ : char

Γ ⊢ e.print(e′) : 1

Γ, x : A ⊢ e : B
Γ ⊢ λx.e : A→ B

Γ ⊢ e : A→ B Γ ⊢ e′ : A
Γ ⊢ e e′ : B

Γpure ⊢ e : A
Γ ⊢ pure(e) : Pure(A)

Γ ⊢ e : Pure(A) Γ, x :: A ⊢ e′ : C
Γ ⊢ let pure(x) = e in e′ : C

(·)pure = ·
(Γ, x : A)pure = Γpure

(Γ, x :: A)pure = Γpure, x :: A

11

Typing Rules

x : A ∈ Γ ∨ x :: A ∈ Γ

Γ ⊢ x : A
Γ ⊢ e : File Γ ⊢ e′ : char

Γ ⊢ e.print(e′) : 1

Γ, x : A ⊢ e : B
Γ ⊢ λx.e : A→ B

Γ ⊢ e : A→ B Γ ⊢ e′ : A
Γ ⊢ e e′ : B

Γpure ⊢ e : A
Γ ⊢ pure(e) : Pure(A)

Γ ⊢ e : Pure(A) Γ, x :: A ⊢ e′ : C
Γ ⊢ let pure(x) = e in e′ : C

(·)pure = ·
(Γ, x : A)pure = Γpure

(Γ, x :: A)pure = Γpure, x :: A

11

A Pure Map Function

data List a = [] | a :: (List a)

map : Pure(a -> b) -> List a -> List b
map (pure f) [] = []
map (pure f) (x :: xs) = f x :: map (pure f) xs

12

A Pure Map Function

data List a = [] | a :: (List a)

map : Pure(a -> b) -> List a -> List b
map (pure f) [] = []
map (pure f) (x :: xs) = f x :: map (pure f) xs

12

Principles of Retrofitted Purity

• We have ordinary and pure variables
• We add a type for “pure values”
• Pure values can only refer to pure variables
• Imperative functions like print are bound to ordinary
variables

• But does this work?

13

Principles of Retrofitted Purity

• We have ordinary and pure variables

• We add a type for “pure values”
• Pure values can only refer to pure variables
• Imperative functions like print are bound to ordinary
variables

• But does this work?

13

Principles of Retrofitted Purity

• We have ordinary and pure variables
• We add a type for “pure values”

• Pure values can only refer to pure variables
• Imperative functions like print are bound to ordinary
variables

• But does this work?

13

Principles of Retrofitted Purity

• We have ordinary and pure variables
• We add a type for “pure values”
• Pure values can only refer to pure variables

• Imperative functions like print are bound to ordinary
variables

• But does this work?

13

Principles of Retrofitted Purity

• We have ordinary and pure variables
• We add a type for “pure values”
• Pure values can only refer to pure variables
• Imperative functions like print are bound to ordinary
variables

• But does this work?

13

Principles of Retrofitted Purity

• We have ordinary and pure variables
• We add a type for “pure values”
• Pure values can only refer to pure variables
• Imperative functions like print are bound to ordinary
variables

• But does this work?

13

Semantics

• Let C be a set of capabilities
• In our example, C is the set of file handles

• A capability space (X,w) is a set X and a weight function
w : X→ P(C)

• Elements of X are values
• Given a value x, the weight w(x) is the set of capabilities it
owns

• Given capability spaces (X,wX) and (Y,wY), a function
f : X→ Y is capability-respecting when

wY(f(x)) ⊆ wX(x)

• Cap is the the category of capability spaces and
capability-respecting functions.

14

Semantics

• Let C be a set of capabilities

• In our example, C is the set of file handles
• A capability space (X,w) is a set X and a weight function
w : X→ P(C)

• Elements of X are values
• Given a value x, the weight w(x) is the set of capabilities it
owns

• Given capability spaces (X,wX) and (Y,wY), a function
f : X→ Y is capability-respecting when

wY(f(x)) ⊆ wX(x)

• Cap is the the category of capability spaces and
capability-respecting functions.

14

Semantics

• Let C be a set of capabilities
• In our example, C is the set of file handles

• A capability space (X,w) is a set X and a weight function
w : X→ P(C)

• Elements of X are values
• Given a value x, the weight w(x) is the set of capabilities it
owns

• Given capability spaces (X,wX) and (Y,wY), a function
f : X→ Y is capability-respecting when

wY(f(x)) ⊆ wX(x)

• Cap is the the category of capability spaces and
capability-respecting functions.

14

Semantics

• Let C be a set of capabilities
• In our example, C is the set of file handles

• A capability space (X,w) is a set X and a weight function
w : X→ P(C)

• Elements of X are values
• Given a value x, the weight w(x) is the set of capabilities it
owns

• Given capability spaces (X,wX) and (Y,wY), a function
f : X→ Y is capability-respecting when

wY(f(x)) ⊆ wX(x)

• Cap is the the category of capability spaces and
capability-respecting functions.

14

Semantics

• Let C be a set of capabilities
• In our example, C is the set of file handles

• A capability space (X,w) is a set X and a weight function
w : X→ P(C)

• Elements of X are values

• Given a value x, the weight w(x) is the set of capabilities it
owns

• Given capability spaces (X,wX) and (Y,wY), a function
f : X→ Y is capability-respecting when

wY(f(x)) ⊆ wX(x)

• Cap is the the category of capability spaces and
capability-respecting functions.

14

Semantics

• Let C be a set of capabilities
• In our example, C is the set of file handles

• A capability space (X,w) is a set X and a weight function
w : X→ P(C)

• Elements of X are values
• Given a value x, the weight w(x) is the set of capabilities it
owns

• Given capability spaces (X,wX) and (Y,wY), a function
f : X→ Y is capability-respecting when

wY(f(x)) ⊆ wX(x)

• Cap is the the category of capability spaces and
capability-respecting functions.

14

Semantics

• Let C be a set of capabilities
• In our example, C is the set of file handles

• A capability space (X,w) is a set X and a weight function
w : X→ P(C)

• Elements of X are values
• Given a value x, the weight w(x) is the set of capabilities it
owns

• Given capability spaces (X,wX) and (Y,wY), a function
f : X→ Y is capability-respecting when

wY(f(x)) ⊆ wX(x)

• Cap is the the category of capability spaces and
capability-respecting functions.

14

Semantics

• Let C be a set of capabilities
• In our example, C is the set of file handles

• A capability space (X,w) is a set X and a weight function
w : X→ P(C)

• Elements of X are values
• Given a value x, the weight w(x) is the set of capabilities it
owns

• Given capability spaces (X,wX) and (Y,wY), a function
f : X→ Y is capability-respecting when

wY(f(x)) ⊆ wX(x)

• Cap is the the category of capability spaces and
capability-respecting functions.

14

Products in Cap

Given capability spaces (X,wX) and (Y,wY):

• Define (X,wX)× (Y,wY) = (X× Y,wX×Y) where

wX×Y(x, y) = wX(x) ∪ wY(y)

• Define the projections

fst : X× Y→ X
fst(x, y) = x

snd : X× Y→ Y
snd(x, y) = y

15

Products in Cap

Given capability spaces (X,wX) and (Y,wY):

• Define (X,wX)× (Y,wY) = (X× Y,wX×Y) where

wX×Y(x, y) = wX(x) ∪ wY(y)

• Define the projections

fst : X× Y→ X
fst(x, y) = x

snd : X× Y→ Y
snd(x, y) = y

15

Cartesian Closure of Cap

Given capability spaces (X,wX) and (Y,wY):

• (X,wX)→ (Y,wY) = (Z,wX→Y) where

Z = {f ∈ X→ Y | ∃c ⊆ C. ∀x ∈ X. wY(f(x)) ⊆ wX(x) ∪ c}

wX→Y(f) = min {c ∈ P(C) | ∀x ∈ X. wY(f(x)) ⊆ wX(x) ∪ c}

• Intuition: weight of a function value comes from the
weight of the captured variables of its closure

16

Cartesian Closure of Cap

Given capability spaces (X,wX) and (Y,wY):

• (X,wX)→ (Y,wY) = (Z,wX→Y) where

Z = {f ∈ X→ Y | ∃c ⊆ C. ∀x ∈ X. wY(f(x)) ⊆ wX(x) ∪ c}

wX→Y(f) = min {c ∈ P(C) | ∀x ∈ X. wY(f(x)) ⊆ wX(x) ∪ c}

• Intuition: weight of a function value comes from the
weight of the captured variables of its closure

16

Cartesian Closure of Cap

Given capability spaces (X,wX) and (Y,wY):

• (X,wX)→ (Y,wY) = (Z,wX→Y) where

Z = {f ∈ X→ Y | ∃c ⊆ C. ∀x ∈ X. wY(f(x)) ⊆ wX(x) ∪ c}

wX→Y(f) = min {c ∈ P(C) | ∀x ∈ X. wY(f(x)) ⊆ wX(x) ∪ c}

• Intuition: weight of a function value comes from the
weight of the captured variables of its closure

16

Cartesian Closure of Cap

Given capability spaces (X,wX) and (Y,wY):

• (X,wX)→ (Y,wY) = (Z,wX→Y) where

Z = {f ∈ X→ Y | ∃c ⊆ C. ∀x ∈ X. wY(f(x)) ⊆ wX(x) ∪ c}

wX→Y(f) = min {c ∈ P(C) | ∀x ∈ X. wY(f(x)) ⊆ wX(x) ∪ c}

• Intuition: weight of a function value comes from the
weight of the captured variables of its closure

16

Cartesian Closure of Cap

Given capability spaces (X,wX) and (Y,wY):

• (X,wX)→ (Y,wY) = (Z,wX→Y) where

Z = {f ∈ X→ Y | ∃c ⊆ C. ∀x ∈ X. wY(f(x)) ⊆ wX(x) ∪ c}

wX→Y(f) = min {c ∈ P(C) | ∀x ∈ X. wY(f(x)) ⊆ wX(x) ∪ c}

• Intuition: weight of a function value comes from the
weight of the captured variables of its closure

16

A Writer Monad

We can define a monad on Cap as follows.

• T(X,wX) = (Z,wZ) where

Z ≜ X× (C→ String)

wZ(x,o) = wX(x) ∪ {c ∈ C | o(c) ̸= ””}

• We can define the unit ηX : X→ T(X) as

ηX(x) = (x, λc.””)

• We can define the multiplication µX : T(T(X))→ T(X) as

µX((x,o),o′) = (x, λc.o′(c) · o(c))

17

A Purity Comonad

• □(X,wX) = (Z,wZ) where

Z = {x ∈ X | wX(x) = ∅}

wZ(x) = wX(x) = ∅

• We can define ϵX : □(X)→ X as

ϵX(x) = x

• We can define δX : □(X)→ □(□X) as

δX(x) = x

18

Escaping the Monad!

There is a capability-respecting function πX : □(T X)→ □X:

πX(x,o) = x

This looks trivial, but recall that

wT(X)(x,o) = wX(x) ∪ {c ∈ C | o(c) ̸= ””}

The comonadic denial of capability ownership lets us escape!

19

Escaping the Monad!

There is a capability-respecting function πX : □(T X)→ □X:

πX(x,o) = x

This looks trivial, but recall that

wT(X)(x,o) = wX(x) ∪ {c ∈ C | o(c) ̸= ””}

The comonadic denial of capability ownership lets us escape!

19

Escaping the Monad!

There is a capability-respecting function πX : □(T X)→ □X:

πX(x,o) = x

This looks trivial, but recall that

wT(X)(x,o) = wX(x) ∪ {c ∈ C | o(c) ̸= ””}

The comonadic denial of capability ownership lets us escape!

19

Interpreting Types

We can interpret our programming language using the
standard call-by-value interpretation of effectful functions:

JFileK = CJcharK = {0 . . . 255}JA→ BK = JAK→ TJBKJPure(A)K = □JAK

J·K = 1JΓ, x : AK = JΓK× JAKJΓ, x :: AK = JΓK×□JAK
JΓ ⊢ e : AK ∈ JΓK→ TJAK

20

Interpreting Types

We can interpret our programming language using the
standard call-by-value interpretation of effectful functions:

JFileK = CJcharK = {0 . . . 255}JA→ BK = JAK→ TJBKJPure(A)K = □JAK
J·K = 1JΓ, x : AK = JΓK× JAKJΓ, x :: AK = JΓK×□JAK

JΓ ⊢ e : AK ∈ JΓK→ TJAK

20

Interpreting Types

We can interpret our programming language using the
standard call-by-value interpretation of effectful functions:

JFileK = CJcharK = {0 . . . 255}JA→ BK = JAK→ TJBKJPure(A)K = □JAK
J·K = 1JΓ, x : AK = JΓK× JAKJΓ, x :: AK = JΓK×□JAK
JΓ ⊢ e : AK ∈ JΓK→ TJAK

20

Semantics of Terms

JΓ ⊢ e : AK ∈ JΓK→ TJAK

JxK γ = return γ(x)Jλx.eK γ = return (λv.JeK(γ, v/x))
Je1 e2K γ =

do f← Je1K γ
v← Je2K γ
f(v)Jpure(e)K γ = return (π(JeK γPure))

Jlet pure(x) = e in e′K γ =
do v← JeK γJe′K (γ, v/x)

Je1.print(e2)K γ =

let (f,o1) = Je1K γ in
let (c,o2) = Je2K γ in
let o3 = λn.o2(n) · o1(n) in
(∗, [o3|f : o3(f) · c])

21

Semantics of Terms

JΓ ⊢ e : AK ∈ JΓK→ TJAKJxK γ = return γ(x)

Jλx.eK γ = return (λv.JeK(γ, v/x))
Je1 e2K γ =

do f← Je1K γ
v← Je2K γ
f(v)Jpure(e)K γ = return (π(JeK γPure))

Jlet pure(x) = e in e′K γ =
do v← JeK γJe′K (γ, v/x)

Je1.print(e2)K γ =

let (f,o1) = Je1K γ in
let (c,o2) = Je2K γ in
let o3 = λn.o2(n) · o1(n) in
(∗, [o3|f : o3(f) · c])

21

Semantics of Terms

JΓ ⊢ e : AK ∈ JΓK→ TJAKJxK γ = return γ(x)Jλx.eK γ = return (λv.JeK(γ, v/x))

Je1 e2K γ =

do f← Je1K γ
v← Je2K γ
f(v)Jpure(e)K γ = return (π(JeK γPure))

Jlet pure(x) = e in e′K γ =
do v← JeK γJe′K (γ, v/x)

Je1.print(e2)K γ =

let (f,o1) = Je1K γ in
let (c,o2) = Je2K γ in
let o3 = λn.o2(n) · o1(n) in
(∗, [o3|f : o3(f) · c])

21

Semantics of Terms

JΓ ⊢ e : AK ∈ JΓK→ TJAKJxK γ = return γ(x)Jλx.eK γ = return (λv.JeK(γ, v/x))
Je1 e2K γ =

do f← Je1K γ
v← Je2K γ
f(v)

Jpure(e)K γ = return (π(JeK γPure))
Jlet pure(x) = e in e′K γ =

do v← JeK γJe′K (γ, v/x)
Je1.print(e2)K γ =

let (f,o1) = Je1K γ in
let (c,o2) = Je2K γ in
let o3 = λn.o2(n) · o1(n) in
(∗, [o3|f : o3(f) · c])

21

Semantics of Terms

JΓ ⊢ e : AK ∈ JΓK→ TJAKJxK γ = return γ(x)Jλx.eK γ = return (λv.JeK(γ, v/x))
Je1 e2K γ =

do f← Je1K γ
v← Je2K γ
f(v)Jpure(e)K γ = return (π(JeK γPure))

Jlet pure(x) = e in e′K γ =
do v← JeK γJe′K (γ, v/x)

Je1.print(e2)K γ =

let (f,o1) = Je1K γ in
let (c,o2) = Je2K γ in
let o3 = λn.o2(n) · o1(n) in
(∗, [o3|f : o3(f) · c])

21

Semantics of Terms

JΓ ⊢ e : AK ∈ JΓK→ TJAKJxK γ = return γ(x)Jλx.eK γ = return (λv.JeK(γ, v/x))
Je1 e2K γ =

do f← Je1K γ
v← Je2K γ
f(v)Jpure(e)K γ = return (π(JeK γPure))

Jlet pure(x) = e in e′K γ =
do v← JeK γJe′K (γ, v/x)

Je1.print(e2)K γ =

let (f,o1) = Je1K γ in
let (c,o2) = Je2K γ in
let o3 = λn.o2(n) · o1(n) in
(∗, [o3|f : o3(f) · c])

21

Semantics of Terms

JΓ ⊢ e : AK ∈ JΓK→ TJAKJxK γ = return γ(x)Jλx.eK γ = return (λv.JeK(γ, v/x))
Je1 e2K γ =

do f← Je1K γ
v← Je2K γ
f(v)Jpure(e)K γ = return (π(JeK γPure))

Jlet pure(x) = e in e′K γ =
do v← JeK γJe′K (γ, v/x)

Je1.print(e2)K γ =

let (f,o1) = Je1K γ in
let (c,o2) = Je2K γ in
let o3 = λn.o2(n) · o1(n) in
(∗, [o3|f : o3(f) · c])

21

Conclusion

Our heroine added comonadic purity to her programming
language:

• She had a sound semantics and a clean type theory
• Fusion worked for pure functions
• Backwards compatibility was retained for effectful code
• Her systems programmer friends were happy she had a
capability-safe language

• And she grew up to be a dinosaur pirate witch PL designer.

22

Conclusion

Our heroine added comonadic purity to her programming
language:

• She had a sound semantics and a clean type theory

• Fusion worked for pure functions
• Backwards compatibility was retained for effectful code
• Her systems programmer friends were happy she had a
capability-safe language

• And she grew up to be a dinosaur pirate witch PL designer.

22

Conclusion

Our heroine added comonadic purity to her programming
language:

• She had a sound semantics and a clean type theory
• Fusion worked for pure functions

• Backwards compatibility was retained for effectful code
• Her systems programmer friends were happy she had a
capability-safe language

• And she grew up to be a dinosaur pirate witch PL designer.

22

Conclusion

Our heroine added comonadic purity to her programming
language:

• She had a sound semantics and a clean type theory
• Fusion worked for pure functions
• Backwards compatibility was retained for effectful code

• Her systems programmer friends were happy she had a
capability-safe language

• And she grew up to be a dinosaur pirate witch PL designer.

22

Conclusion

Our heroine added comonadic purity to her programming
language:

• She had a sound semantics and a clean type theory
• Fusion worked for pure functions
• Backwards compatibility was retained for effectful code
• Her systems programmer friends were happy she had a
capability-safe language

• And she grew up to be a dinosaur pirate witch PL designer.

22

Conclusion

Our heroine added comonadic purity to her programming
language:

• She had a sound semantics and a clean type theory
• Fusion worked for pure functions
• Backwards compatibility was retained for effectful code
• Her systems programmer friends were happy she had a
capability-safe language

• And she grew up to be a dinosaur pirate witch PL designer.

22

