Retrofitting Purity with Comonads

Neel Krishnaswami
June 25, 2018

University of Cambridge

Once Upon a Time

Once Upon a Time

- There was a PhD student

Once Upon a Time

- There was a PhD student
- who finished her dissertation...

Once Upon a Time

Once Upon a Time

- Her advisor said, “It's time for you to go out into the wide
world!”

Once Upon a Time

- Her advisor said, “It's time for you to go out into the wide
world!”

- So she did, and she designed a programming language

A Functional Language

data List a = [] | a :: (List a)

A Functional Language

data List a = [] | a :: (List a)

len : List a -> Integer
len [] =0
len (x :: xs) = 1 + len xs

A Functional Language

data List a = [] | a :: (List a)

len : List a -> Integer
len [] =0
len (x :: xs) = 1 + len xs

map : (a -> b) -> List a -> List b
map f [] =[]
map f (x :: xs) = f x :: map f xs

Once Upon a Time

Once Upon a Time

- While implementing it, she added one primitive:

Once Upon a Time

- While implementing it, she added one primitive:
print : String -> Unit
print = Runtime.Primitive.Magic.__printf

Once Upon a Time

- While implementing it, she added one primitive:
print : String -> Unit
print = Runtime.Primitive.Magic.__printf
- Nothing bad happened...

Once Upon a Time

- While implementing it, she added one primitive:
print : String -> Unit
print = Runtime.Primitive.Magic.__printf
- Nothing bad happened...yet!

Once Upon a Time

Once Upon a Time

- Naturally, this language was wildly successful

Once Upon a Time

- Naturally, this language was wildly successful

- Our protagonist achieved fame and fortune

Once Upon a Time

- Naturally, this language was wildly successful
- Our protagonist achieved fame and fortune

- ..and feature requests and bug reports

Feature Request: List Fusion

- A user wrote the following code:
map f (map g reallyBiglList)

- and complained that it allocated a really big intermediate
list

Feature Request: List Fusion

Feature Request: List Fusion

- Our protagonist wrote a compiler pass to turn this:
map f (map g reallyBiglList)

Feature Request: List Fusion

- Our protagonist wrote a compiler pass to turn this:
map f (map g reallyBiglList)
- into this:

map (f o g) reallyBiglList

Feature Request: List Fusion

- Our protagonist wrote a compiler pass to turn this:
map f (map g reallyBiglList)

- into this:
map (f o g) reallyBiglList

- Much RAM was saved!

Feature Request: List Fusion

- Our protagonist wrote a compiler pass to turn this:
map f (map g reallyBiglList)

- into this:
map (f o g) reallyBiglList

- Much RAM was saved!

- Benchmarks improved!

Bug Reports

Bug Reports

- This code
f : Int -> Int

f n = print "a"; n + 1

g : Int -> Int
g n = print "b"; n + 1

printList (map f (map g [1, 2, 3]))

Bug Reports

- This code
f : Int -> Int

f n = print "a"; n + 1

g : Int -> Int
g n = print "b"; n + 1

printList (map f (map g [1, 2, 3]1))
- In the old version, it printed:
bbbaaal[3, 4, 5]

Bug Reports

- This code
f : Int -> Int

f n = print "a"; n + 1

g : Int -> Int
g n = print "b"; n + 1

printList (map f (map g [1, 2, 3]1))
- In the old version, it printed:

bbbaaal[3, 4, 5]
- In the “optimized” version, it printed:

bababal3, 4, 5]

Narrative Tension!

Narrative Tension!

- Our protagonist was worried:

Narrative Tension!

- Our protagonist was worried:
- She wanted purity for optimization purposes

Narrative Tension!

- Our protagonist was worried:
- She wanted purity for optimization purposes

- But her language was already impure

Narrative Tension!

- Our protagonist was worried:
- She wanted purity for optimization purposes
- But her language was already impure

- Was she out of luck?

Types A == File | char | A—B
Terms e == x| c| eprint(e) | e | e€
Contexts r o= - | Ix:A

Judgements N-e:A

10

Types A == File | char | A— B | PureA

Terms e x| ¢ | eprint(e) | e | e€
pure(e) | let pure(x) =ein ¢

| Tyx:A | Tx:A

Contexts I

Judgements N-e:A

10

Typing Rules

x:Aerl [+e:File I~eé :char
FEx:A M+ e.print(e’) : 1
Nx:Ake:B lFe:A—B r-e:A

N-Xxe:A—B F-ee:B

n

Typing Rules

x:AelTvx:Aerl [+e:File I~eé :char
FEx:A M+ e.print(e’) : 1
Nx:Ake:B lFe:A—B r-e:A

N-Xxe:A—B F-ee:B

n

Typing Rules

x:AelTvx:Aerl [+e:File I~eé :char
FEx:A M+ e.print(e’) : 1
Nx:Ake:B lFe:A—B r-e:A
N Xxe:A—B l-ee:B
[PUe e A

I+ pure(e) : Pure(A)

(.)pure — .
(T,x: A)pure — pure
(F,x s A)PUrE = [PUTE x o A

n

Typing Rules

X:Aelvx:Aerl I+e:File [+e :char
FEx:A M+ e.print(e’) : 1
Nx:Ake:B lFe:A—B r-e:A

N~ xe:A—B M-ee:B
rPu€e: A [+ e: Pure(A) Mx:Ake:C
I+ pure(e) : Pure(A) [+ let pure(x)=eine : C
(-)pure - .
(r’X:A)pure — [pure

(F,x s A)PUrE = [PUTE x o A

n

A Pure Map Function

data List a = [] | a :: (List a)

12

A Pure Map Function

data List a = [] | a :: (List a)

map : Pure(a -> b) -> List a -> List b
map (pure f) [] []
map (pure f) (x :: Xs) f x :: map (pure f) xs

12

Principles of Retrofitted Purity

13

Principles of Retrofitted Purity

- We have ordinary and pure variables

13

Principles of Retrofitted Purity

- We have ordinary and pure variables

- We add a type for “pure values”

13

Principles of Retrofitted Purity

- We have ordinary and pure variables
- We add a type for “pure values”

- Pure values can only refer to pure variables

13

Principles of Retrofitted Purity

- We have ordinary and pure variables
- We add a type for “pure values”
- Pure values can only refer to pure variables

- Imperative functions like print are bound to ordinary
variables

13

Principles of Retrofitted Purity

- We have ordinary and pure variables
- We add a type for “pure values”
- Pure values can only refer to pure variables

- Imperative functions like print are bound to ordinary
variables

- But does this work?

13

Semantics

14

Semantics

- Let C be a set of capabilities

14

Semantics

- Let C be a set of capabilities
- In our example, C is the set of file handles

14

Semantics

- Let C be a set of capabilities
- In our example, C is the set of file handles
- A capability space (X,w) is a set X and a weight function
w: X — P(C)

14

Semantics

- Let C be a set of capabilities
- In our example, C is the set of file handles
- A capability space (X,w) is a set X and a weight function
w: X — P(C)
- Elements of X are values

14

Semantics

- Let C be a set of capabilities
- In our example, C is the set of file handles
- A capability space (X,w) is a set X and a weight function
w: X — P(C)
- Elements of X are values
- Given a value x, the weight w(x) is the set of capabilities it
owns

14

Semantics

- Let C be a set of capabilities
- In our example, C is the set of file handles
- A capability space (X,w) is a set X and a weight function
w: X — P(C)
- Elements of X are values
- Given a value x, the weight w(x) is the set of capabilities it
owns
- Given capability spaces (X, wx) and (Y, wy), a function
f: X — Yis capability-respecting when

wy(f(x)) € wx(x)

14

Semantics

- Let C be a set of capabilities
- In our example, C is the set of file handles
- A capability space (X,w) is a set X and a weight function
w: X — P(C)
- Elements of X are values
- Given a value x, the weight w(x) is the set of capabilities it
owns

- Given capability spaces (X, wx) and (Y, wy), a function
f: X — Yis capability-respecting when

wy(f(x)) € wx(x)

- Cap is the the category of capability spaces and
capability-respecting functions.

14

Products in Cap

Given capability spaces (X, wx) and (Y, wy):

- Define (X, wx) x (Y, wy) = (X x Y, wxxy) where

Wxxv(X,) = wx(x) U wy(y)

15

Products in Cap

Given capability spaces (X, wx) and (Y, wy):

- Define (X, wx) x (Y, wy) = (X x Y, wxxy) where

Wxxv(X,) = wx(x) U wy(y)

- Define the projections

fst D XxY =X
fst(x,y) = x
snd D XXY =Y

snd(x,y) = vy

15

Cartesian Closure of Cap

Given capability spaces (X, wx) and (Y, wy):

Cartesian Closure of Cap

Given capability spaces (X, wx) and (Y, wy):

- (X, wx) = (Y, wy) = (Z,wx—y) Where

Cartesian Closure of Cap

Given capability spaces (X, wx) and (Y, wy):
- (X, wx) = (Y, wy) = (Z,wx—y) Where

Z={feX—=Y]|3cCC WxeX wfl(x) Cwx(x)Uc}

Cartesian Closure of Cap

Given capability spaces (X, wx) and (Y, wy):
- (X, wx) = (Y, wy) = (Z,wx—y) Where

Z={feX—=Y]|3cCC WxeX wfl(x) Cwx(x)Uc}

Wx—y(f) = min {c € P(C) | ¥x € X. wy(f(x)) C wx(x) Uc}

Cartesian Closure of Cap

Given capability spaces (X, wx) and (Y, wy):
- (X, wx) = (Y, wy) = (Z,wx—y) Where

Z={feX—=Y]|3cCC WxeX wfl(x) Cwx(x)Uc}
Wx—y(f) = min {c € P(C) | ¥x € X. wy(f(x)) C wx(x) Uc}

- Intuition: weight of a function value comes from the
weight of the captured variables of its closure

A Writer Monad

We can define a monad on Cap as follows.
- T(X,wx) = (Z,wz) where
Z £ X x (C — String)
wz(x,0) = wx(x) U{c e C|o(c) #""}
- We can define the unit nx : X — T(X) as
x(x) = (x, Ac."")

- We can define the multiplication uy : T(T(X)) — T(X) as

i((x,0),0) = (x, Ac.0'(C) - 0(¢))

A Purity Comonad

- O(X, wx) = (Z,wz) where
7= {xeX|wx(x) =0}
wz(x) = wx(x) =0
- We can define e : O(X) — X as
ex(x) = x
- We can define déx : O(X) — O(OX) as

Ix(x) =x

Escaping the Monad!

There is a capability-respecting function my : O(T X) — OX:

mx(x,0) =X

19

Escaping the Monad!

There is a capability-respecting function my : O(T X) — OX:
mx(x,0) =X
This looks trivial, but recall that

wr (,0) = Wx(x) U {c € C | o(c) # "}

19

Escaping the Monad!

There is a capability-respecting function my : O(T X) — OX:
mx(X,0) = X
This looks trivial, but recall that
wr (x,0) = wy(x) U {c € C| o(c) # "}

The comonadic denial of capability ownership lets us escape!

19

Interpreting Types

We can interpret our programming language using the
standard call-by-value interpretation of effectful functions:

[File] = C
[char] = {0...255}
[A—B] = [A]— T[B]

[Pure(d)] = O[A]

20

Interpreting Types

We can interpret our programming language using the
standard call-by-value interpretation of effectful functions:

[File] = C

[char] = {0...255}
[A—B] = [A]— T[B]
[Pure(A)] = O[A]

[1 = 1

[IFx:Al = [r] x[A]
[Fx=A] = [=x0O[A]

20

Interpreting Types

We can interpret our programming language using the
standard call-by-value interpretation of effectful functions:

[File] = C

[char] = {0...255}
[A—B] = [A]— T[B]
[Pure(A)] = O[A]

[1 = 1

[IFx:Al = [r] x[A]
[Fx=A] = [=x0O[A]

[FFe:A] € [I]— T[A]

20

Semantics of Terms

[F'=e:A] e [r] — TA]

21

Semantics of Terms

[F'=e:A] e [— T[A]
X~ = return y(x)

21

Semantics of Terms

[F1 — TIAl
return ~(x)
return (Av.[e](vy, v/x))

IFte:A]
IX] ~
[Ax.e] ~

1 m

21

Semantics of Terms

[F+e:A] e [r] — T[A]

Ix] ~ = return y(x)

[Ax.e] ~ = return (Av.[e](~, /X))
do f« [ei]~

[e1 ex] v = v+ [er] v

fv)

21

Semantics of Terms

[F'=e:A]
X ~
[Ax.e] ~

[er e2] v

[pure(e)] ~

1 m

[F] — T[Al
return ~(x)
return (Av.[e](vy, v/x))
do f« [ei]~
v« [e] v
flv)
return (m([e] v™U"))

21

Semantics of Terms

[F'=e:A]
X ~
[Ax.e] ~

[er e2] v

[pure(e)] ~

[let pure(x) =eine]y =

1 m

[F] — T[Al
return ~(x)
return (Av.[e](vy, v/x))
do f« [ei]~

v« [e] v

flv)
return (m([e] v™U"))
do v« [e]~

[e] (v, v/x)

21

Semantics of Terms

[F'=e:A]
X ~
[Ax.e] ~

[er e2] v

[pure(e)] v
[let pure(x) =ein €] v

[er.print(ez)] ~

1 m

[F] — T[Al
return ~(x)
return (Av.[e](vy, v/x))
do f« [ei]~
v« [e] v
flv)
return (m([e] v™U"))
do v« [e]~
[e'] (v, v/X)
let (f,01) = [ea] v In
let (c,07) = [e2] v in
let 03 = An.oy(n) - 04(n) in
(%, [osf : 03(f) -)

21

Conclusion

Our heroine added comonadic purity to her programming
language:

22

Conclusion

Our heroine added comonadic purity to her programming
language:

- She had a sound semantics and a clean type theory

22

Conclusion

Our heroine added comonadic purity to her programming
language:

- She had a sound semantics and a clean type theory

- Fusion worked for pure functions

22

Conclusion

Our heroine added comonadic purity to her programming
language:

- She had a sound semantics and a clean type theory
- Fusion worked for pure functions

- Backwards compatibility was retained for effectful code

22

Conclusion

Our heroine added comonadic purity to her programming
language:

- She had a sound semantics and a clean type theory
- Fusion worked for pure functions
- Backwards compatibility was retained for effectful code

- Her systems programmer friends were happy she had a
capability-safe language

22

Conclusion

Our heroine added comonadic purity to her programming
language:

- She had a sound semantics and a clean type theory

- Fusion worked for pure functions

- Backwards compatibility was retained for effectful code

- Her systems programmer friends were happy she had a
capability-safe language

- And she grew up to be a dinosaur pirate witch PL designer.

22

