Retrofitting Purity with Comonads

Neel Krishnaswami June 25, 2018

University of Cambridge

Once Upon a Time

1

• There was a PhD student

- \cdot There was a PhD student
- who finished her dissertation...

• Her advisor said, "It's time for you to go out into the wide world!"

- Her advisor said, "It's time for you to go out into the wide world!"
- So she did, and she designed a programming language

data List a = [] | a :: (List a)

A Functional Language

data List a = [] | a :: (List a)
len : List a -> Integer
len [] = 0
len (x :: xs) = 1 + len xs

data List a = [] | a :: (List a)
len : List a -> Integer
len [] = 0
len (x :: xs) = 1 + len xs
map : (a -> b) -> List a -> List b
map f [] = []
map f (x :: xs) = f x :: map f xs

• While implementing it, she added one primitive:

• While implementing it, she added one primitive: print : String -> Unit print = Runtime.Primitive.Magic.__printf

- While implementing it, she added one primitive: print : String -> Unit print = Runtime.Primitive.Magic.__printf
- Nothing bad happened...

- While implementing it, she added one primitive: print : String -> Unit print = Runtime.Primitive.Magic.__printf
- Nothing bad happened...yet!

• Naturally, this language was wildly successful

- Naturally, this language was wildly successful
- Our protagonist achieved fame and fortune

- Naturally, this language was wildly successful
- $\cdot\,$ Our protagonist achieved fame and fortune
- ...and feature requests and bug reports

• A user wrote the following code:

map f (map g reallyBigList)

• and complained that it allocated a really big intermediate list

Feature Request: List Fusion

• Our protagonist wrote a compiler pass to turn this: map f (map g reallyBigList)

- Our protagonist wrote a compiler pass to turn this:
 map f (map g reallyBigList)
- into this:

map (f o g) reallyBigList

- Our protagonist wrote a compiler pass to turn this:
 map f (map g reallyBigList)
- into this:

map (f o g) reallyBigList

• Much RAM was saved!

- Our protagonist wrote a compiler pass to turn this:
 map f (map g reallyBigList)
- into this:

map (f o g) reallyBigList

- Much RAM was saved!
- Benchmarks improved!

• This code

f : Int -> Int
f n = print "a"; n + 1
g : Int -> Int

printList (map f (map g [1, 2, 3]))

 \cdot This code

f : Int -> Int
f n = print "a"; n + 1
g : Int -> Int
g n = print "b"; n + 1

printList (map f (map g [1, 2, 3]))
• In the old version, it printed:

bbbaaa[3, 4, 5]

 \cdot This code

f : Int -> Int
f n = print "a"; n + 1
g : Int -> Int
g n = print "b"; n + 1

printList (map f (map g [1, 2, 3]))
• In the old version, it printed:

bbbaaa[3, 4, 5]

• In the "optimized" version, it printed:

bababa[3, 4, 5]

Narrative Tension!

• Our protagonist was worried:

- Our protagonist was worried:
- She wanted purity for optimization purposes

- Our protagonist was worried:
- She wanted purity for optimization purposes
- But her language was already impure

- Our protagonist was worried:
- She wanted purity for optimization purposes
- But her language was already impure
- Was she out of luck?

Types	Α	::=	File char $A \rightarrow B$
Terms	е	::=	$x \mid c \mid e.print(e') \mid \lambda x.e \mid ee'$
Contexts	Г	::=	· Γ, x : A
Judgements			$\Gamma \vdash e : A$

Types	Α	::=	File char $A \rightarrow B$ Pure A
Terms	е	::=	$x \mid c \mid e.print(e') \mid \lambda x.e \mid ee'$
			<pre>pure(e) let pure(x) = e in e'</pre>
Contexts	Г	::=	$\cdot \mid \Gamma, x : A \mid \Gamma, x :: A$
Judgements			$\Gamma \vdash e : A$

$x : A \in \Gamma$	$\Gamma \vdash e$: File	Γ⊢e′: char
$\Gamma \vdash x : A$	Γ⊢e.pri	nt(e') : 1
$\Gamma, x : A \vdash e : B$	$\Gamma \vdash e : A \rightarrow B$	$\Gamma \vdash e' : A$
$\overline{\Gamma \vdash \lambda x.e : A \rightarrow B}$	Г⊢ее	' : B

Typing Rules

$x:A\in \Gamma \lor x::A\in \Gamma$	$\Gamma \vdash e$: File	$\Gamma \vdash e'$: char
$\Gamma \vdash x : A$	Γ⊢ e.pri	nt(e') : 1
$\Gamma, x : A \vdash e : B$	$\Gamma \vdash e : A \rightarrow B$	$\Gamma \vdash e' : A$
$\Gamma \vdash \lambda x.e : A \to B$	Г⊢ее	′:B

Typing Rules

$x : A \in \Gamma \lor x :: A \in \Gamma$	Γ⊢e:File	Γ⊢e′: char
$\Gamma \vdash x : A$	Γ⊢ e.pri	nt(<i>e'</i>) : 1
$\Gamma, x : A \vdash e : B$	$\Gamma \vdash e : A \rightarrow B$	$\Gamma \vdash e' : A$
$\Gamma \vdash \lambda x.e : A \to B$	$\Gamma \vdash e e$	' : B
$\Gamma^{pure} \vdash e : A$		

 $\Gamma \vdash pure(e) : Pure(A)$

$x : A \in \Gamma \lor x :: A \in \Gamma$	$\Gamma \vdash e$: File $\Gamma \vdash e'$: char
$\Gamma \vdash x : A$	$\Gamma \vdash e.print(e'): 1$
$\Gamma, x : A \vdash e : B$	$\Gamma \vdash e : A \to B \qquad \Gamma \vdash e' : A$
$\Gamma \vdash \lambda x.e : A \rightarrow B$	$\Gamma \vdash e e' : B$
$\Gamma^{pure} \vdash e : A$	$\Gamma \vdash e : Pure(A)$ $\Gamma, x :: A \vdash e' : C$
$\Gamma \vdash pure(e) : Pure(A)$	$\Gamma \vdash \text{let pure}(x) = e \text{ in } e' : C$
	$ = \cdot $ $ = \Gamma^{pure} $ $ ure = \Gamma^{pure}, x :: A $

data List a = [] | a :: (List a)

data List a = [] | a :: (List a) map : Pure(a -> b) -> List a -> List b map (pure f) [] = [] map (pure f) (x :: xs) = f x :: map (pure f) xs

Principles of Retrofitted Purity

• We have ordinary and pure variables

- \cdot We have ordinary and pure variables
- $\cdot\,$ We add a type for "pure values"

- \cdot We have ordinary and pure variables
- We add a type for "pure values"
- Pure values can only refer to pure variables

- \cdot We have ordinary and pure variables
- We add a type for "pure values"
- Pure values can only refer to pure variables
- Imperative functions like **print** are bound to ordinary variables

- \cdot We have ordinary and pure variables
- We add a type for "pure values"
- Pure values can only refer to pure variables
- Imperative functions like **print** are bound to ordinary variables
- But does this work?

• Let C be a set of capabilities

- Let C be a set of capabilities
 - In our example, C is the set of file handles

- Let C be a set of capabilities
 - In our example, C is the set of file handles
- A capability space (X, w) is a set X and a weight function $w: X \to \mathcal{P}(C)$

- Let C be a set of capabilities
 - In our example, C is the set of file handles
- A capability space (X, w) is a set X and a weight function $w : X \to \mathcal{P}(C)$
 - Elements of X are values

- Let C be a set of capabilities
 - In our example, C is the set of file handles
- A capability space (X, w) is a set X and a weight function $w : X \to \mathcal{P}(C)$
 - Elements of *X* are values
 - Given a value x, the weight w(x) is the set of capabilities it owns

- Let C be a set of capabilities
 - In our example, C is the set of file handles
- A capability space (X, w) is a set X and a weight function $w : X \to \mathcal{P}(C)$
 - Elements of *X* are values
 - Given a value *x*, the weight *w*(*x*) is the set of capabilities it owns
- Given capability spaces (X, w_X) and (Y, w_Y) , a function $f: X \rightarrow Y$ is capability-respecting when

 $W_Y(f(x)) \subseteq W_X(x)$

- Let C be a set of capabilities
 - In our example, C is the set of file handles
- A capability space (X, w) is a set X and a weight function $w : X \to \mathcal{P}(C)$
 - Elements of *X* are values
 - Given a value *x*, the weight *w*(*x*) is the set of capabilities it owns
- Given capability spaces (X, w_X) and (Y, w_Y) , a function $f: X \rightarrow Y$ is capability-respecting when

 $W_Y(f(x)) \subseteq W_X(x)$

• Cap is the the category of capability spaces and capability-respecting functions.

Products in Cap

Given capability spaces (X, w_X) and (Y, w_Y) :

• Define $(X, w_X) \times (Y, w_Y) = (X \times Y, w_{X \times Y})$ where

 $W_{X\times Y}(X, y) = W_X(X) \cup W_Y(y)$

Products in Cap

Given capability spaces (X, w_X) and (Y, w_Y) :

• Define $(X, w_X) \times (Y, w_Y) = (X \times Y, w_{X \times Y})$ where

$$W_{X\times Y}(x,y) = W_X(x) \cup W_Y(y)$$

 \cdot Define the projections

fst :
$$X \times Y \rightarrow X$$

fst (x, y) = x
snd : $X \times Y \rightarrow Y$
snd (x, y) = y

•
$$(X, w_X) \rightarrow (Y, w_Y) = (Z, w_{X \rightarrow Y})$$
 where

•
$$(X, w_X) \rightarrow (Y, w_Y) = (Z, w_{X \rightarrow Y})$$
 where

 $Z = \{f \in X \to Y \mid \exists c \subseteq C. \forall x \in X. w_Y(f(x)) \subseteq w_X(x) \cup c\}$

•
$$(X, w_X) \rightarrow (Y, w_Y) = (Z, w_{X \rightarrow Y})$$
 where

 $Z = \{f \in X \to Y \mid \exists c \subseteq C. \ \forall x \in X. \ w_Y(f(x)) \subseteq w_X(x) \cup c\}$

 $W_{X \to Y}(f) = \min \{ c \in \mathcal{P}(C) \mid \forall x \in X. \ W_Y(f(x)) \subseteq W_X(x) \cup c \}$

•
$$(X, w_X) \rightarrow (Y, w_Y) = (Z, w_{X \rightarrow Y})$$
 where

 $Z = \{f \in X \to Y \mid \exists c \subseteq C. \forall x \in X. w_Y(f(x)) \subseteq w_X(x) \cup c\}$

 $W_{X \to Y}(f) = \min \{ c \in \mathcal{P}(C) \mid \forall x \in X. \ W_Y(f(x)) \subseteq W_X(x) \cup c \}$

• Intuition: weight of a function value comes from the weight of the captured variables of its closure

A Writer Monad

We can define a monad on Cap as follows.

• $T(X, w_X) = (Z, w_Z)$ where

 $Z \triangleq X \times (C \to \text{String})$ $w_Z(x, o) = w_X(x) \cup \{c \in C \mid o(c) \neq ""\}$

• We can define the unit $\eta_X : X \to T(X)$ as

$$\eta_X(x) = (x, \lambda c."")$$

• We can define the multiplication $\mu_X : T(T(X)) \to T(X)$ as

$$\mu_X((X,O),O') = (X,\lambda C.O'(C) \cdot O(C))$$

A Purity Comonad

• $\Box(X, w_X) = (Z, w_Z)$ where

$$Z = \{x \in X \mid w_X(x) = \emptyset\}$$
$$w_Z(x) = w_X(x) = \emptyset$$

• We can define $\epsilon_X : \Box(X) \to X$ as

$$\epsilon_X(X) = X$$

• We can define $\delta_X : \Box(X) \to \Box(\Box X)$ as

$$\delta_X(x) = x$$

There is a capability-respecting function $\pi_X : \Box(TX) \to \Box X$:

 $\pi_X(X,O) = X$

There is a *capability-respecting* function $\pi_X : \Box(TX) \to \Box X$:

 $\pi_X(X,O) = X$

This looks trivial, but recall that

$$W_{T(X)}(X, O) = W_X(X) \cup \{c \in C \mid O(c) \neq ""\}$$

There is a *capability-respecting* function $\pi_X : \Box(TX) \to \Box X$:

 $\pi_X(X,O)=X$

This looks trivial, but recall that

$$W_{T(X)}(x, o) = W_X(x) \cup \{c \in C \mid o(c) \neq ""\}$$

The comonadic denial of capability ownership lets us escape!

We can interpret our programming language using the standard call-by-value interpretation of effectful functions:

$$\begin{bmatrix} File \end{bmatrix} = C \\ \begin{bmatrix} char \end{bmatrix} = \{0 \dots 255\} \\ \begin{bmatrix} A \to B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \to T \begin{bmatrix} B \end{bmatrix} \\ \begin{bmatrix} Pure(A) \end{bmatrix} = \Box \begin{bmatrix} A \end{bmatrix}$$

We can interpret our programming language using the standard call-by-value interpretation of effectful functions:

[[File]]	=	С
[[char]]	=	$\{0255\}$
$[\![A \to B]\!]$	=	$\llbracket A \rrbracket \to T \llbracket B \rrbracket$
[[Pure(A)]]	=	□[[A]]
$\llbracket \cdot \rrbracket$	=	1
$\llbracket \Gamma, x : A \rrbracket$	=	$\llbracket \Gamma \rrbracket \times \llbracket A \rrbracket$
$[\![\Gamma, x :: A]\!]$	=	$\llbracket \Gamma \rrbracket \times \Box \llbracket A \rrbracket$

We can interpret our programming language using the standard call-by-value interpretation of effectful functions:

[[File]]	=	С
[[char]]	=	$\{0255\}$
$[\![A \to B]\!]$	=	$\llbracket A \rrbracket \to T \llbracket B \rrbracket$
[[Pure(A)]]	=	$\Box\llbracket A\rrbracket$
пп		4
$\llbracket \cdot \rrbracket$	=	1
[[·]] [[Γ, x : A]]	=	
2 2		[[Γ]] × [[Α]]

$\llbracket \Gamma \vdash e : A \rrbracket \qquad \in \quad \llbracket \Gamma \rrbracket \to T \llbracket A \rrbracket$

 $\llbracket \Gamma \vdash e : A \rrbracket$ $\llbracket X \rrbracket \gamma$

$$\in [[\Gamma]] \to T[[A]]$$

= return $\gamma(x)$

 $\begin{bmatrix} \Gamma \vdash e : A \end{bmatrix}$ $\begin{bmatrix} x \end{bmatrix} \gamma$ $\begin{bmatrix} \lambda x.e \end{bmatrix} \gamma$

- $\in \quad \llbracket \Gamma \rrbracket \to T\llbracket A \rrbracket$
- = return $\gamma(x)$
- = return $(\lambda v. [e](\gamma, v/x))$

 $\begin{bmatrix} \Gamma \vdash e : A \end{bmatrix}$ $\begin{bmatrix} x \end{bmatrix} \gamma$ $\begin{bmatrix} \lambda x.e \end{bmatrix} \gamma$

 $\llbracket e_1 \ e_2 \rrbracket \gamma$

- $\in \quad [\![\Gamma]\!] \to T[\![A]\!]$
- = return $\gamma(x)$
- $= \operatorname{return} (\lambda v. \llbracket e \rrbracket (\gamma, v/x))$ do $f \leftarrow \llbracket e_1 \rrbracket \gamma$
- $= \qquad \mathsf{v} \leftarrow \llbracket e_2 \rrbracket \gamma \\ f(\mathsf{v})$

 $\begin{bmatrix} \Gamma \vdash e : A \end{bmatrix}$ $\begin{bmatrix} x \end{bmatrix} \gamma$ $\begin{bmatrix} \lambda x.e \end{bmatrix} \gamma$

 $[\![e_1 \ e_2]\!] \ \gamma$

 $[[pure(e)]] \gamma$

- $\in \quad \llbracket \Gamma \rrbracket \to T \llbracket A \rrbracket$
- = return $\gamma(x)$
- $\begin{array}{rl} = & \operatorname{return} \left(\lambda v.\llbracket e \rrbracket (\gamma, v/x) \right) \\ & \operatorname{do} & f \leftarrow \llbracket e_1 \rrbracket & \gamma \end{array}$
- = return ($\pi(\llbracket e \rrbracket \gamma^{Pure})$)

$\llbracket \Gamma \vdash e : A \rrbracket$	\in	$\llbracket \Gamma \rrbracket \to T\llbracket A \rrbracket$
$[\![X]\!] \ \gamma$	=	return $\gamma(x)$
$[\![\lambda x.e]\!] \gamma$	=	return $(\lambda v. \llbracket e \rrbracket (\gamma, v/x))$
		do $f \leftarrow \llbracket e_1 \rrbracket \gamma$
$\llbracket e_1 \ e_2 \rrbracket \gamma$	=	$v \gets \llbracket e_2 \rrbracket \gamma$
		f(v)
[[pure(e)]] γ	=	return ($\pi(\llbracket e \rrbracket \gamma^{Pure}))$
$\llbracket \text{let pure}(x) = e \text{ in } e' \rrbracket \gamma$	_	do $v \leftarrow \llbracket e \rrbracket \gamma$
$\left[\operatorname{let} hule(x) - e \operatorname{II} e \right] \right)$	_	$\llbracket e' \rrbracket (\gamma, v/x)$

 $\llbracket \Gamma \vdash e : A \rrbracket$ $\in [\Gamma] \to T[A]$ = return $\gamma(x)$ $[x] \gamma$ $[\lambda x.e] \gamma$ = return $(\lambda v. [e](\gamma, v/x))$ do $f \leftarrow \llbracket e_1 \rrbracket \gamma$ $V \leftarrow \llbracket e_2 \rrbracket \gamma$ $\llbracket e_1 \ e_2 \rrbracket \gamma$ = f(v)= return $(\pi(\llbracket e \rrbracket \gamma^{Pure}))$ [[pure(e)]] γ do $v \leftarrow \llbracket e \rrbracket \gamma$ $\llbracket \text{let pure}(x) = e \text{ in } e' \rrbracket \gamma =$ $\llbracket e' \rrbracket (\gamma, v/x)$ let $(f, o_1) = [e_1] \gamma$ in let $(c, o_2) = [e_2] \gamma$ in $[e_1.print(e_2)]$ γ = let $o_3 = \lambda n \cdot o_2(n) \cdot o_1(n)$ in $(*, [O_3|f: O_3(f) \cdot c])$

 \cdot She had a sound semantics and a clean type theory

- $\cdot\,$ She had a sound semantics and a clean type theory
- \cdot Fusion worked for pure functions

- $\cdot\,$ She had a sound semantics and a clean type theory
- Fusion worked for pure functions
- Backwards compatibility was retained for effectful code

- $\cdot\,$ She had a sound semantics and a clean type theory
- Fusion worked for pure functions
- · Backwards compatibility was retained for effectful code
- Her systems programmer friends were happy she had a capability-safe language

- She had a sound semantics and a clean type theory
- Fusion worked for pure functions
- Backwards compatibility was retained for effectful code
- Her systems programmer friends were happy she had a capability-safe language
- And she grew up to be a dinosaur pirate witch PL designer.