
Active-Code Reloading in the
OODIDA Platform 

12 June 2018

Gregor Ulm, Emil Gustavsson, Mats Jirstrand  
Fraunhofer-Chalmers Research Centre 

for Industrial Mathematics, Gothenburg, Sweden

 1

OODIDA

 2

Paper:

 3

Overview
• OODIDA: Context
• OODIDA: System Details
• OODIDA: Sample Use Cases
• Limitations (Problem)
• Active-Code Reloading (Solution)

 4

The OODIDA Platform in
Context

 5

Context
• Big Data in the automotive industry
• Currently ~50 GB/hour generated per car
• Can be easily increased (more sensors, higher sampling rate)

• Large commercial fleets
• Current main paradigm, data is processed as a batch after-the-

fact
• Real-time capabilities lacking
• Goal: Platform for (pseudo) real-time analytics
• This is the OODIDA platform

 6

Problem
• Quintessential big data problem
• Volume: dozens of gigabytes/hour per car

• Transfer to central server infeasible

• Velocity: we want timely insights
• Storage-and-process paradigm unsuitable

• Variety: myriad of signals and sensors to observe
• One-size-fits-all approach won’t work

• Privacy: very detailed profiling possible with big data
• Not possible if most data never leaves the client
• GDPR may apply

 7

OODIDA Overview
• Data analysis platform written in Erlang and Python
• Interaction with hardware -> cyber-physical system
• On-board unit on clients (c_i)

• o: OODIDA platform
• a: analyst (one for illustration)
• OODIDA is both a simulator and 

a real-world system

 8

Problem: Usability
• Different skills in big data analytics
• Analyst/Data Scientist: working with data, applying algorithms,

maybe implementing algorithms
• Python (libraries!)

• Software Engineer: creating and maintaining the platform
• Erlang, some Python

• Thus, different levels of access to OODIDA

 9

Role of the Analyst
• Defining an assignment for clients

• Data collection
• Result can be final data or the input for further local processing

• Example assignment:

(In comparison, the Software Engineer ensures that the Analyst can do
their work.) 

 10

System Details

 11

OODIDA in Context
• Analyst
• OODIDA
• Clients

 12

Modularity of the System

Analyst:
oodida.py
user.erl

Server/Cloud:
bridge.erl

Each client:
client.erl
edge.py

edge.py is a placeholder
e.g.
edge_volvo_cars.py,
with parameter for
particular car
Client can run arbitrary code!
(e.g. edge.java, edge.r)

OODIDA in Detail

 14

- Analyst (u)
- Cloud (c)
- Clients (k, l, m)

- Red nodes: permanent
- Blue nodes: temporary

(so-called assignment
handlers/task handlers)

Workflow (single-round assignment):
 . u waits for assignment file
 . if file received: u sends data to c
 . c spawns assignment handler c’ (top)
 . c’ (top) connects to clients k, l
 . Clients k, l spawn their own (task)
handler
 . handler on clients write assignment
 as JSON, await completion
 . external process takes over, does
 assigned task
 . when completed, task handler on client
 reads results file, forwards to c’
 . after all results have been received,
 c’ sends aggregate to c
 . c forwards results to u, writes to file

A Sample Assignment in Detail

 15

import lib_user.oodida as o
o.createAssignment(spec)

(That’s it!)

Goal: make the job of the user
easy

Notes:
- The OODIDA library verifies that the

provided specification is correct
(structure, data types, range of values)

- priority not yet implemented

Grammar of an Assignment

 16

Flexibility of Assignments
• Select all vehicles, or a subset thereof
• Each client executes 0 to n tasks concurrently (no clear upper

bound)
• Tasks can have finite duration or be indefinitely long
• Tasks have an arbitrary starting time
• Tasks can consist of 1 to m iterations
• Results of iteration i can be used as input for iteration i + 1,

e.g. result of i of f(x, d) is x’, iteration i + 1 is performed as
f(x’, d’) – new data and updated model x’

 17

Sample Use Cases

 18

Monitoring
• "Monitor status of sensor X, inform user if threshold exceeded"
• Specify sensor and threshold in assignment
• Client: collects values, sends values that exceed threshold to

cloud (runs indefinitely long)

 19

Sampling
• "Create representative sample of data produced by sensor X"
• Specify sensor and sample rate in assignment

 20

Can also run concurrently with other task
(each assignment executed on two clients):

Batch Processing
• "Process data generated by sensor X, using algorithm A"
• Specify amount of data points etc. in assignment
• Results are sent to cloud and processed further, maybe just

collected

 21

Stream Processing
• "Process data generated by sensor X, using algorithm A"
• Specify amount of data points etc. in assignment
• Specify number of iterations and send update to cloud

after each iteration
• Stream is modeled as a sequence of batches
• The shorter the interval, the closer 

you get to real-time stream processing 
(of course this is not real stream processing)

 22

MapReduce
• (I assume you all know MapReduce)
• Let's look at the basic word count example:
• client: map (word, 1) and reduce (word, count)
• server: aggregates all (word, count) pairs to (word, total

count)

 23

Distributed Machine Learning
• "Federated Learning" (misnomer because members of a

federation are independent; clients in FL are not)
• initialize global model, send to clients
• clients train their copy of the global model with local data and

send local model to server
• server produces new global model
• continues until stopping criterion is met

 24

Limitations (Problem)

Limitations of the Platform
• No easy way to update client code
• Have to redeploy on client devices
• Shut down client, deploy, restart
• This terminates ongoing analytics tasks!

• Also: deployment is semi-permanent
• Removing code likewise requires redeployment
• Thus, experimentation discouraged

Workaround
• Use the Erlang core of OODIDA to send client code as data
• Client (Erlang) reads data, saves it
• Afterwards, client process (Python) treats it as executable

code

Active-Code Reloading
(Solution)

How it works (for the user)
• Define a Python function
• In principle arbitrary, but right now, almost all our operations

on the client are performed on lists of floating-point numbers
• Function call to update “custom function”, e.g. 

import lib_user.code_update as c  
f = "custom_code.py“ 
c.code_update(f)
• Right now, user has to ensure that his code is syntactically

correct; will be automated

How it works (for the user)
• Afterwards, user can specify custom code in assignments

Replace with “custom”!

How it works (under the hood)
• Library lib_user.code_update treats Python code as data (string)
• Creates JSON file, which is picked up by OODIDA user process
• User process sends update to cloud, cloud disseminates custom code to

all clients
• Custom code written to file on each client
• With a new assignment/task, external client process (py) responds to

specification of “onboard” computation
• If “custom”, client process reads custom code and executes it with

provided input
• Limitation: Code reloading in Python doesn’t play nicely with

global state; thankfully, that doesn’t affect us

What you can do
• Experiment:
• Execute experimental algorithms on client, without

committing
• A/B Testing in parallel:
• ½ of clients receive custom code A, other ½ custom code B
• (Instead of sequential testing)

• All, while keeping ongoing tasks alive

What you (deliberately) can’t do
• Trivial to add support for multiple custom code functions
• Simple approach: small number of slots, e.g. custom_1 to

custom_n
• Problem: don’t want users to rely too much on custom code
• Should be uses temporarily, not as a workaround for the

proper deployment process

Acknowledgments
• Vinnova
• Volvo Cars Corporation
• Volvo Group Trucks Technology
• Chalmers University of Technology
• Alkit Communications

