Handling Recursion in Generic Programming
Using Closed Type Families

Anna Bolotina! and Artem Pelenitsyn?

1 Southern Federal University, Russia
bolotina@sfedu.ru

2 Czech Technical University in Prague, Czech Republic
pelenart@fit.cvut.cz

June 12, 2018

The 19th International Symposium on Trends in Functional Programming (2018)
TFP 2018

1/26

Contents

@ Problem with Handling Recursive Datatypes
© Handling Recursion with Closed Type Families

© Evaluating the Approach: The Generic Zipper

2/26

Problem with Handling Recursive Datatypes

Handling Recursion in Generic Programming (GP)

Many generic functions consider information on the recursion points
when traversing the structure of datatypes.

Examples: maps [5] and folds [7]. More advanced one: a zipper [4].
How to obtain that information?

© Solution I: A GP framework should be explicit about the
recursion encoding in the datatype representation.

Examples: The libraries regular [8], multirec [9] use fixed points to
capture recursion.

Downside

This may complicate the whole GP framework significantly.

@ Solution II: Using global or local overlapping instances.

Downside

This complicates the semantics of code, makes that unstable.

17%

Case Study: The True Sums of Products (SOP) Framework

The SOP [1] approach to datatype-generic programming is
implemented in the generics-sop library.
@ This does not reflect recursive positions in the generic representation
of a datatype.
@ Datatypes are expressed as n-ary sums of n-ary products of types.

An n-ary product example (heterogeneous list)
I5 :%ITrue :* I 'x'" :% Nil :: NP I '[Int, Bool, Charl] J

An n-ary sum example (choice)
S (8 (Z (I 5))) :: NS I '[Char, Bool, Int, Bool] J

Example of a datatype representation

data Tree a type RepTree a = NS (NP I) (
= Leaf a '['[al
| Node (Tree a) (Tree a) , '[Tree a, Tree a]
D

5/26

Problem with Handling Recursive Datatypes

Example: The Generic Function subterms

The function subterms takes a term and obtains a list of all its
immediate subterms that are of the same type as the given term.

Implementation of subterms using the SOP view

subterms :: Generic a => a -> [a]
subterms t = subtermsNS (unSOP $ from t)

subtermsNS :: NS (NP I) xss -> [al
subtermsNS (S ns) = subtermsNS ns
subtermsNS (Z np) = subtermsNP np

subtermsNP ::Va xs. NP I xs -> [a]

subtermsNP p (I y :* ys)
| typeOf Ga y = witnessEq y : subtermsNP ys
| otherwise = subtermsNP ys

subtermsNP _ Nil = []

6/26

(Bad) Solution with Overlapping Instances

We need a way to check type equality and witness the coercion
between equal types.

Implementation of subtermsNP using overlapping instances

class Subterms a (xs :: [*]) where
subtermsNP :: NP I xs -> [a]

instance Subterms a xs => Subterms a (x ': xs) where
subtermsNP (_ :* xs) = subtermsNP xs
instance {-# OVERLAPS #-} Subterms a xs
=> Subterms a (a ': xs) where
subtermsNP (I x :* xs) = x : subtermsNP xs
instance Subterms a '[] where
subtermsNP _ = []

Although the approach works, we feel this unsatisfactory, and go to a
revised solution free of overlap.

7/26

Proof for Type-Level Equality

Closed type families [2] were introduced in Haskell to solve the
overlap problem.

Type equality
type family Equal a x :: Bool where

Equal a a = 'True
Equal a x 'False

Witnessing the coercion

class Proof (eq :: Bool) (a :: *) (b :: *) where
witnessEq :: b -> Maybe a

instance Proof 'False a b where
witnessEq = Nothing

instance Proof 'True a a where
witnessEq = Just

9/26

Handling Recursion with Closed Type Families

Solution to subtermsNP revised

Abbreviation for Proof

class Proof (Equal a b) a b => ProofEq a b
instance Proof (Equal a b) a b => ProofEq a b

A11 applies a particular constraint to each member of a list of types. J

Implementation of subtermsNP using Proof of type equality

subtermsNP :: Va xs. All (ProofEq a) xs => NP I xs -> [al
subtermsNP (I (y :: x) :* ys)
= case witnessEq @(Equal a x) y of
Just t -> t : subtermsNP ys
Nothing -> subtermsNP ys
subtermsNP Nil = []

10/26

=]
Generic Zipper Interface

The Zipper [3] represents a current location in a datatype structure,
storing a tree node, a focus, along with its context.

Movement functions

goUp :: Loc a fam ¢ -> Maybe (Loc a fam c)
goDown :: Loc a fam c¢ -> Maybe (Loc a fam c)
goLeft :: Loc a fam c -> Maybe (Loc a fam c)
goRight :: Loc a fam c -> Maybe (Loc a fam c)

Starting navigation

enter ::Vfam ¢ a. (Generic a, In a fam, Zipper a fam c)
=> a -> Loc a fam ¢

Ending navigation

leave :: Loc a fam ¢ -> a)
Updating
update :: (Vb. ¢ b =>Db ->b) -> Loc a fam ¢ -> Loc a fam ¢

4
13/°20

Evaluating the Approach: The Generic Zipper EGIENGEIELERIEEES
Usage |

Example of mutually recursive datatypes

data RoseTree a = RTree a (Forest a)

data Forest a = Empty | Forest (RoseTree a) (Forest a)

Class for updating trees

class UpdateTree a b where
replaceBy :: RoseTree a -> b -> b
replaceBy = id

instance UpdateTree a (RoseTree a) where
replaceBy t = t
instance UpdateTree a (Forest a)

14/26

Evaluating the Approach: The Generic Zipper EGIENGEIELERIEEES
Usage Il

Chaining moves and edits

(>>>) :: (a2 ->b) > (b ->c) -> (a ->c)
(>=>) :: Monad m => (a ->mb) -> (b ->mc) -> (a ->m c)

Example of usage
type TreeFam a = '[RoseTree a, Forest a]
*Main> let forest

= Forest (RTree 'a' $ Forest (RTree 'b' Empty) Empty)
(Forest (RTree 'x' Empty) Empty)

*Main> let t = RoseTree 'c' Empty
*Main> enter 0(TreeFam Char) @(UpdateTree Char)
>>> goDown >=> goRight >=> goDown

>=> update (replaceBy t)
>>> leave >>> return $ forest

Forest (RTree 'a' $ Forest (RTree 'b' Empty) Empty)
(Forest (RTree 'c' Empty) Empty) J

15 /26

Lo
Datatype of Locations

Datatype of locations

data Loc (r :: *) (fam :: [*]) (c :: * -> Constraint) where
Loc :: Focus r a fam c
-> Contexts r a fam c
-> Loc r fam c

Meanings of the type parameters

@ r — the root type of the tree;

@ fam — the list of types of nodes to visit (family);

@ ¢ — constraint imposing restrictions on the types in the list;
@ a — a type of the focus' parent.

17/26

Evaluating the Approach: The Generic Zipper Locations

Focus
Focus
data Focus (r :: %) (a :: *) (fam :: [*])
(c :: * -> Constraint) where
Focus :: (Generic b, In b fam, ZipperI r a b fam c)
=> b -> Focus r a fam c
type In a fam = InFam a fam ~ 'True J

18/26

Evaluating the Approach: The Generic Zipper Locations

Proof for Focus

This proof generalizes the proof of type equality.

class ProofFocus (inFam :: Bool) (r :: %) (a :: *) (b :: *)
(fam :: [*]) (c :: * -> Constraint) where
witness :: b -> Maybe (Focus r a fam c)

instance ProofFocus 'False r a b fam ¢ where
witness = Nothing
instance (Generic b, In b fam, ZipperI r a b fam c)
=> ProofFocus 'True r a b fam c where
witness = Just . Focus

class ProofFocus (InFam b fam) r a b fam c
=> ProofIn r a b fam ¢

instance ProofFocus (InFam b fam) r a b fam c
=> ProofIn r a b fam ¢

19/26

Evaluating the Approach: The Generic Zipper Locations

Contexts

@ The context can be expressed as a stack, called Contexts;

@ Each frame, Context, corresponds to the particular node with a hole.

Datatype of contexts

data Contexts (r :: *) (a :: *) (fam :: [*])
(c :: * -> Constraint) where
CNil :: Contexts a a fam c
Ctxs :: (Generic a, In a fam, ZipperI r x a fam c)

=> Context fam a -> Contexts r x fam c
-> Contexts r a fam c

20/26

Lo
Type-level Differentiation

“The derivative of a regular type is its type of one-hole contexts.”
(McBride) [6]

Defining type-level algebraic operations
@ Sum of products (SOP) + (.+) — appends two type-level lists
of lists;

@ SOP-by-product x (.*) — appends the list to the head of each
inner product of the sum.

21/26

Evaluating the Approach: The Generic Zipper Locations

Context Frame

Differentiation of a product of type

type family DiffProd (fam :: [*]) (xs :: [*¥]) :: [[*]] where
DiffProd fam '[] "[]
DiffProd fam '[x] If (InFam x fam) '['[]1] '[]
DiffProd fam (x ': xs)
= xs .* DiffProd fam '[x] .++ '[x] .* DiffProd fam xs

Computation of the context type

type family ToContext (fam :: [*¥]) (code :: [[*1]1) :: [[*]] where
ToContext fam '[] = '[]
ToContext fam (xs ': xss)
= DiffProd fam xs .++ ToContext fam xss

newtype Context fam a = Ctx {ctx :: SOP I (CtxCode fam a)})

22/26

[SVEITELTI =08 { SWANCToTZCE TS H N WSS AT VAT Il Implementing the interface

Function goDown

Definition of goDown

goDown :: Loc a fam c -> Maybe (Loc a fam c)
goDown (Loc (Focus t) cs)

= case toFirst t of
Just t' -> Just $ Loc t' (Ctxs (toFirstCtx t) cs)

-> Nothing

This uses two auxiliary functions:

@ toFirst — analyzes the focal subtree’s representation to

find its first immediate child;

@ toFirstCtx — computes its respective context.

24 /26

LR 2
Implementation of toFirst

toFirst ::Vfam ¢ r a. (Generic a, ToFirst r a fam c)
=> a -> Maybe (Focus r a fam c)
toFirst t = appToNP QAl1Proof toFirstNP $ unSOP $ from t

Proof

class A1l (ProofIn r a fam c) xs => AllProof r a fam c xs
instance All (ProofIn r a fam c) xs => AllProof r a fam c xs

type ToFirst r a fam ¢ = All (AllProof r a fam c) (Code a)

Processing products

toFirstNP ::Vfam ¢ r a xs. All (ProofIn r a fam c) xs
=> NP I xs -> Maybe (Focus r a fam c)
toFirstNP (I (x :: b) :* xs)
= witness @(InFam b fam) x “mplus” toFirstNP xs
toFirstNP Nil = Nothing

The full implementation of the zipper interface is available at
https://github.com/Maryann13/Zipper.

25 /26

https://github.com/Maryann13/Zipper

References

References

(1]
(2]

(3]
(4]
(5]

(6]

E. De Vries and A. L&h. True sums of products. WGP '14.

R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich. Closed type families with
overlapping equations. POPL '14.

G. Huet. The zipper. JFP, 1997.
A. Loh and J. P. Magalh3es. Generic programming with indexed functors. WGP '11.

J. P. Magalh&es, A. Dijkstra, J. Jeuring, and A. Loh. A generic deriving mechanism for
haskell. Haskell '10.

C. McBride. The derivative of a regular type is its type of one-hole contexts. Unpublished
manuscript, 2001.

E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses,
envelopes and barbed wire. FPLCA '91. Berlin Heidelberg.

T. Van Noort, A. Rodriguez, S. Holdermans, J. Jeuring, and B. Heeren. A lightweight
approach to datatype-generic rewriting. WGP '08.

A. R. Yakushev, S. Holdermans, A. Léh, and J. Jeuring. Generic programming with fixed
points for mutually recursive datatypes. ICFP '09.

26 /26

	Problem with Handling Recursive Datatypes
	Handling Recursion with Closed Type Families
	Evaluating the Approach: The Generic Zipper
	Interface and usage
	Locations
	Implementing the interface

