
Handling Recursion in Generic Programming
Using Closed Type Families

Anna Bolotina1 and Artem Pelenitsyn2

1 Southern Federal University, Russia
bolotina@sfedu.ru

2 Czech Technical University in Prague, Czech Republic
pelenart@fit.cvut.cz

June 12, 2018
The 19th International Symposium on Trends in Functional Programming (2018)

TFP 2018

1 / 26

Contents

1 Problem with Handling Recursive Datatypes

2 Handling Recursion with Closed Type Families

3 Evaluating the Approach: The Generic Zipper

2 / 26

Problem with Handling Recursive Datatypes

Handling Recursion in Generic Programming (GP)

Many generic functions consider information on the recursion points
when traversing the structure of datatypes.
Examples: maps [5] and folds [7]. More advanced one: a zipper [4].

How to obtain that information?
1 Solution I: A GP framework should be explicit about the

recursion encoding in the datatype representation.
Examples: The libraries regular [8], multirec [9] use fixed points to
capture recursion.

Downside
This may complicate the whole GP framework significantly.

2 Solution II: Using global or local overlapping instances.

Downside
This complicates the semantics of code, makes that unstable.

4 / 26

Problem with Handling Recursive Datatypes

Case Study: The True Sums of Products (SOP) Framework

The SOP [1] approach to datatype-generic programming is
implemented in the generics-sop library.

This does not reflect recursive positions in the generic representation
of a datatype.
Datatypes are expressed as n-ary sums of n-ary products of types.

An n-ary product example (heterogeneous list)
I 5 :* I True :* I 'x' :* Nil :: NP I '[Int, Bool, Char]

An n-ary sum example (choice)
S (S (Z (I 5))) :: NS I '[Char, Bool, Int, Bool]

Example of a datatype representation

data Tree a
= Leaf a
| Node (Tree a) (Tree a)

type RepTree a = NS (NP I) (
'['[a]
, '[Tree a, Tree a]
])

5 / 26

Problem with Handling Recursive Datatypes

Example: The Generic Function subterms

The function subterms takes a term and obtains a list of all its
immediate subterms that are of the same type as the given term.

Implementation of subterms using the SOP view
subterms :: Generic a => a -> [a]
subterms t = subtermsNS (unSOP $ from t)

subtermsNS :: NS (NP I) xss -> [a]
subtermsNS (S ns) = subtermsNS ns
subtermsNS (Z np) = subtermsNP np

subtermsNP :: ∀ a xs. NP I xs -> [a]
subtermsNP p (I y :* ys)

| typeOf @a y = witnessEq y : subtermsNP ys
| otherwise = subtermsNP ys

subtermsNP _ Nil = []

6 / 26

Problem with Handling Recursive Datatypes

(Bad) Solution with Overlapping Instances

We need a way to check type equality and witness the coercion
between equal types.

Implementation of subtermsNP using overlapping instances
class Subterms a (xs :: [*]) where

subtermsNP :: NP I xs -> [a]

instance Subterms a xs => Subterms a (x ': xs) where
subtermsNP (_ :* xs) = subtermsNP xs

instance {-# OVERLAPS #-} Subterms a xs
=> Subterms a (a ': xs) where

subtermsNP (I x :* xs) = x : subtermsNP xs
instance Subterms a '[] where

subtermsNP _ = []

Although the approach works, we feel this unsatisfactory, and go to a
revised solution free of overlap.

7 / 26

Handling Recursion with Closed Type Families

Proof for Type-Level Equality

Closed type families [2] were introduced in Haskell to solve the
overlap problem.

Type equality
type family Equal a x :: Bool where

Equal a a = 'True
Equal a x = 'False

Witnessing the coercion
class Proof (eq :: Bool) (a :: *) (b :: *) where

witnessEq :: b -> Maybe a

instance Proof 'False a b where
witnessEq = Nothing

instance Proof 'True a a where
witnessEq = Just

9 / 26

Handling Recursion with Closed Type Families

Solution to subtermsNP revised

Abbreviation for Proof
class Proof (Equal a b) a b => ProofEq a b
instance Proof (Equal a b) a b => ProofEq a b

All applies a particular constraint to each member of a list of types.

Implementation of subtermsNP using Proof of type equality
subtermsNP :: ∀ a xs. All (ProofEq a) xs => NP I xs -> [a]
subtermsNP (I (y :: x) :* ys)

= case witnessEq @(Equal a x) y of
Just t -> t : subtermsNP ys
Nothing -> subtermsNP ys

subtermsNP Nil = []

10 / 26

Evaluating the Approach: The Generic Zipper Interface and usage

Generic Zipper Interface
The Zipper [3] represents a current location in a datatype structure,
storing a tree node, a focus, along with its context.

Movement functions
goUp :: Loc a fam c -> Maybe (Loc a fam c)
goDown :: Loc a fam c -> Maybe (Loc a fam c)
goLeft :: Loc a fam c -> Maybe (Loc a fam c)
goRight :: Loc a fam c -> Maybe (Loc a fam c)

Starting navigation
enter :: ∀ fam c a. (Generic a, In a fam, Zipper a fam c)

=> a -> Loc a fam c

Ending navigation
leave :: Loc a fam c -> a

Updating
update :: (∀ b. c b => b -> b) -> Loc a fam c -> Loc a fam c

13 / 26

Evaluating the Approach: The Generic Zipper Interface and usage

Usage I

Example of mutually recursive datatypes
data RoseTree a = RTree a (Forest a)

data Forest a = Empty | Forest (RoseTree a) (Forest a)

Class for updating trees
class UpdateTree a b where

replaceBy :: RoseTree a -> b -> b
replaceBy = id

instance UpdateTree a (RoseTree a) where
replaceBy t = t

instance UpdateTree a (Forest a)

14 / 26

Evaluating the Approach: The Generic Zipper Interface and usage

Usage II

Chaining moves and edits
(>>>) :: (a -> b) -> (b -> c) -> (a -> c)
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

Example of usage
type TreeFam a = '[RoseTree a, Forest a]

*Main> let forest
= Forest (RTree 'a' $ Forest (RTree 'b' Empty) Empty)

(Forest (RTree 'x' Empty) Empty)

*Main> let t = RoseTree 'c' Empty

*Main> enter @(TreeFam Char) @(UpdateTree Char)
>>> goDown >=> goRight >=> goDown
>=> update (replaceBy t)
>>> leave >>> return $ forest

Forest (RTree 'a' $ Forest (RTree 'b' Empty) Empty)
(Forest (RTree 'c' Empty) Empty)

15 / 26

Evaluating the Approach: The Generic Zipper Locations

Datatype of Locations

Datatype of locations
data Loc (r :: *) (fam :: [*]) (c :: * -> Constraint) where

Loc :: Focus r a fam c
-> Contexts r a fam c
-> Loc r fam c

Meanings of the type parameters
r — the root type of the tree;
fam — the list of types of nodes to visit (family);
c — constraint imposing restrictions on the types in the list;
a — a type of the focus’ parent.

17 / 26

Evaluating the Approach: The Generic Zipper Locations

Focus

Focus
data Focus (r :: *) (a :: *) (fam :: [*])

(c :: * -> Constraint) where
Focus :: (Generic b, In b fam, ZipperI r a b fam c)

=> b -> Focus r a fam c

type In a fam = InFam a fam ∼ 'True

18 / 26

Evaluating the Approach: The Generic Zipper Locations

Proof for Focus

This proof generalizes the proof of type equality.

class ProofFocus (inFam :: Bool) (r :: *) (a :: *) (b :: *)
(fam :: [*]) (c :: * -> Constraint) where

witness :: b -> Maybe (Focus r a fam c)

instance ProofFocus 'False r a b fam c where
witness = Nothing

instance (Generic b, In b fam, ZipperI r a b fam c)
=> ProofFocus 'True r a b fam c where

witness = Just . Focus

class ProofFocus (InFam b fam) r a b fam c
=> ProofIn r a b fam c

instance ProofFocus (InFam b fam) r a b fam c
=> ProofIn r a b fam c

19 / 26

Evaluating the Approach: The Generic Zipper Locations

Contexts

The context can be expressed as a stack, called Contexts;
Each frame, Context, corresponds to the particular node with a hole.

Datatype of contexts
data Contexts (r :: *) (a :: *) (fam :: [*])

(c :: * -> Constraint) where
CNil :: Contexts a a fam c
Ctxs :: (Generic a, In a fam, ZipperI r x a fam c)

=> Context fam a -> Contexts r x fam c
-> Contexts r a fam c

20 / 26

Evaluating the Approach: The Generic Zipper Locations

Type-level Differentiation

“The derivative of a regular type is its type of one-hole contexts.”
(McBride) [6]

Defining type-level algebraic operations
Sum of products (SOP) + (.+) — appends two type-level lists
of lists;

SOP-by-product × (.*) — appends the list to the head of each
inner product of the sum.

21 / 26

Evaluating the Approach: The Generic Zipper Locations

Context Frame

Differentiation of a product of type
type family DiffProd (fam :: [*]) (xs :: [*]) :: [[*]] where

DiffProd fam '[] = '[]
DiffProd fam '[x] = If (InFam x fam) '['[]] '[]
DiffProd fam (x ': xs)

= xs .* DiffProd fam '[x] .++ '[x] .* DiffProd fam xs

Computation of the context type
type family ToContext (fam :: [*]) (code :: [[*]]) :: [[*]] where

ToContext fam '[] = '[]
ToContext fam (xs ': xss)

= DiffProd fam xs .++ ToContext fam xss

newtype Context fam a = Ctx {ctx :: SOP I (CtxCode fam a)}

22 / 26

Evaluating the Approach: The Generic Zipper Implementing the interface

Function goDown

Definition of goDown
goDown :: Loc a fam c -> Maybe (Loc a fam c)
goDown (Loc (Focus t) cs)

= case toFirst t of
Just t' -> Just $ Loc t' (Ctxs (toFirstCtx t) cs)
_ -> Nothing

This uses two auxiliary functions:

toFirst — analyzes the focal subtree’s representation to

find its first immediate child;

toFirstCtx — computes its respective context.

24 / 26

Evaluating the Approach: The Generic Zipper Implementing the interface

Implementation of toFirst
toFirst :: ∀ fam c r a. (Generic a, ToFirst r a fam c)

=> a -> Maybe (Focus r a fam c)
toFirst t = appToNP @AllProof toFirstNP $ unSOP $ from t

Proof
class All (ProofIn r a fam c) xs => AllProof r a fam c xs
instance All (ProofIn r a fam c) xs => AllProof r a fam c xs

type ToFirst r a fam c = All (AllProof r a fam c) (Code a)

Processing products
toFirstNP :: ∀ fam c r a xs. All (ProofIn r a fam c) xs

=> NP I xs -> Maybe (Focus r a fam c)
toFirstNP (I (x :: b) :* xs)

= witness @(InFam b fam) x `mplus` toFirstNP xs
toFirstNP Nil = Nothing

The full implementation of the zipper interface is available at
https://github.com/Maryann13/Zipper. 25 / 26

https://github.com/Maryann13/Zipper

References

References

[1] E. De Vries and A. Löh. True sums of products. WGP ’14.

[2] R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich. Closed type families with
overlapping equations. POPL ’14.

[3] G. Huet. The zipper. JFP, 1997.

[4] A. Löh and J. P. Magalhães. Generic programming with indexed functors. WGP ’11.

[5] J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A generic deriving mechanism for
haskell. Haskell ’10.

[6] C. McBride. The derivative of a regular type is its type of one-hole contexts. Unpublished
manuscript, 2001.

[7] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses,
envelopes and barbed wire. FPLCA ’91. Berlin Heidelberg.

[8] T. Van Noort, A. Rodriguez, S. Holdermans, J. Jeuring, and B. Heeren. A lightweight
approach to datatype-generic rewriting. WGP ’08.

[9] A. R. Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic programming with fixed
points for mutually recursive datatypes. ICFP ’09.

26 / 26

	Problem with Handling Recursive Datatypes
	Handling Recursion with Closed Type Families
	Evaluating the Approach: The Generic Zipper
	Interface and usage
	Locations
	Implementing the interface

