Compiler Construction, Spring 2019

Verified compilers

Magnus Myreen

Mentions joint work with Anthony Fox, Ramana Kumar, Michael Norrish,
Scott Owens, Yong Kiam Tan and many more (incl. Chalmers/GU MSc students)

Compiler Construction, Spring 2018

Verified compilers

L— What?

+ Comes with a machine-checked proof that for any program,
which does not generate a compilation error, the source and
target programs behave identically

——

(Sometimes called certified compilers, but that’s misleading...)

Your program crashes.

Where do you look for the fault?

—» Do you look at your source code?

—>» Do look at the code for the compiler that you used?

(users want to rely on compilers)

Trusting the compiler

Bugs
When finding a bug, we go to great lengths to find it in our own code.

+ Most programmers trust the compiler to generate correct code

+ The most important task of the compiler is to generate correct
code

Maybe it is worth the cost?
Establishing compiler correctness

Cost reduction?

Alternatives

+ Proving the correctness of a compiler is prohibitively expensive
« Testing is the only viable option

A

(... but with testing you never know you caught all bugs!)

All (unverified) compilers have bugs

‘“ Every compiler we tested was found to
crash and also to silently generate
wrong code when presented with valid input.”

PLDI'A

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr
—

“ [The verified part of] CompCert is the only compiler
we have tested for which Csmith cannot find wrong-code
errors.This is not for lack of trying: we have devoted
about six CPU-years to the task.”

R i, Ul v P T e ‘
ofour bug-huning el B0 . Unlike previous ool Comit e
e po that cover a large subset of C while avoiding the I
S e DY g d Csmith, a randomized test-case gENCTTAL & |

Motivations

Bugs in compilers are not tolerated by users
Bugs can be hard to find by testing

Verified compilers must be used for verification
of source-level programs to imply guarantees at
the level of verified machine code

Research question: how easy (cheap) can
we make compiler verification?

This lecture:
Verified compilers

What? Prove that compiler produces good code.

Why? To avoid bugs, to avoid testing.

rest of How? By mathematical proof...
this lecture

Proving a compiler correct

like first-order logic, or higher-order logic)

Ingredients:
* a formal logic for the proofs
¢ accurate models of

* the source language

* the target language
* the compiler algorithm

proofs are only about things

that live within the logic, i.e.
we need to represent the

relevant artefacts in the logic

Tools: (a lot of details... (to get wrong))
* a proof assistant (software)

... necessary to use mechanised proof
assistant (think ‘Eclipse for logic’) to
avoid accidentally skipping details

Accurate model of prog. language

Model of programs:
* syntax — what it looks like
* semantics — how it behaves

(Je\.g. an interpreter for the syntax)

Major styles of (operational, relational) semantics:

* big-step this style for structured source semantics)

* small-step this style for unstructured target semantics)

... next slides provide examples.

Syntax

Source:

exp = Num num
| Var name
| Plus exp exp

Target ‘machine code’:

= Const name num
| Move name name
| Add name name name

inst

Target program consists of list of inst)

Source semantics (big-step)

Big-step semantics as relation | defined by rules, e.g.

lookup s in env finds v

(Num n, env) ! n (Var s, env) | v

(x1, env) | vl (x2, env) | v2

(Add x1 x2, env) 1 vl + v2

|

(called “big-step”: each step { describes complete evaluation)

Source semantics (...gone wrong)

Real-world semantics are not always clean:

https://www.destroyallsoftware.com/talks/wat

Target semantics (small-step)

“small-step”: transitions describe parts of executions

We model the state as a mapping from names to values here.

= state[s » n]
step (Move sl s2) state = state[sl -~ state s2]
step (Add sl s2 s3) state

step (Const s n) state

state[sl ~ state s2 + state s3]

steps [] state = state
steps (x::xs) state

steps xs (step x state)

Compiler function

generated code stores
result in register name (n)
given to compiler

i
compile (Num k) n = [Const n k

compile (Var v) n

Relies on variable names in
source to match variables
names in target.

[Move n v

compile (Plus x1 x2) n

I
compile x1 n ++ compile x2 (n+1) ++ [Add n n (n+1)]

(Uses names above n as temporaries.)

Correctness statement

Proved using proof assistant — demo!

VX env res.
(x, env) | res =
vstate k.

For every evaluation in the source ...)

for target state and k, such that ...)

(vi v. (lookup env i = SOME v) = (state i
(let state'

steps (compile x k) state in
(state' k = res) A
vi.

=V)Ail<k) =

t k greater than all var
i < k =|(state' i = state 1))

names and state in sync

with source env ...
... in that case, the result res will be stored at
location k in the target state after execution

... and lower part of state left untouched.)

Code for the demo:

Well, that example was simple enough...

But:

Some people say:

A programming language isn't real until it has a self-hosting
compiler

Bootstrapping for verified compilers? Yes!

Scaling up...
POPL 2014

<on of ML
. lementation ©

. A Verified Imp
CakeML: A

3
s
2 Scott Owens
#1 Michael Norrish
reen
‘ e " ~ambridge, UK
S L poratory, University of Cant “S“Z\m
d e :am Ressarch Lab, NICTA B0
‘SC ;‘\“0:06 Computing, Univers y
cho

1 Introduction wrong int
. ~cade has seen @ 5! h-profile
Jast decade 1as S0 S0 Mo
?::Z there have been signIETe (1 14, 16
Cei

fied compilation>
<1 verified compilatio
crest i ¥ s, many based
20). This interest I

ied
Jerified an ML SY 5‘3‘“{5'\35

s ¢ Standard ML
subsmm\a\ subset odrﬂa\r‘mm et

ifie
- tion, an unveri

o Yerification: o

axt of program computing

 to justify: in he °°“‘“(§ucz"§,\e.\ part of ‘“\f "u:\‘f‘?ng work on

cas! ¢ a large AN f the € a

s a largs dge, none O ddressed

e ur knowledge ages has &

base, However. 10 08 ELC0 purpose langs e D

eified comPIIETS 10" S0 (wo dimension® - wing toalisto
g a compiler 219" ‘trom a source SUINE'D 0

checking. in°
type chec! -
oction, arbitrary

precision arthm

First bootstrapping of a
formally verified compiler. |

e CakeML, a0 TR TG nd OCamT BY T e code along:

Py 1
ating that €4t
Our cont

i, demons s
can in_proct D
o cffort can i PECLE Fy o

Y cch o verification € U one of the PIECSR - ovel ap-

Dimensions of Compiler Verification

source code ;
how far compiler goes

abstract syntax
intermediate language

bytecode Our verification covers the full

. spectrum of both dimensions.
machine code

compiler implementation

implementation machine code as part
algorithm in ML

in machine code of a larger system
N >
(the thing that is verified)

ldea behind in-logic bootstrapping

input: verified compiler function)

Trustw || thy code generation:
functions in HOL (shallow embedding)
l proof-producing translation [ICFP’12, JFP’ 4]
CakeML program (deep embedding)
l verified compilation of CakeML [POPL 14,ICFP’| 6]

x86-64 machine code (deep embedding)

output: verified implementation of compiler function)

The CakeML at a glance

strict impure functional language)

The CakeML langua;
=~ Standard ML without functors

A

i.e. with almost everything else:

v higher-order functions

¥ mutual recursion and polymorphism

v datatypes and (nested) pattern matching
v references and (user-defined) exceptions
v modules, signatures, abstract types

The verified machine-code implementation:
parsing, type inference, compilation, garbage collection, bignums etc.

implements a read-eval-print loop (see demo).

The CakeML compiler verification

How?

Mostly standard verification techniques as presented in this lecture,
but scaled up to large examples. (Four people, two years.)

Version |:
;- G-0-C3-0
Version 2:

x86-64

oo ool

... actively developed (want to join? myreen@chalmers.se)

State of the art

CompCert

CompCert C compiler

Leroy et al. Source: http://compcert.inria.fr/

Compiles C source code to assembly.
Has good performance numbers

Proved correct in Coq. http://compcert.inria.fr/

CakeML compiler

Compiles CakeML concrete
syntax to machine code.

Proved correct in HOL4.

Has mostly good performance
numbers (later lecture)

Known as the first verified compiler
to be bootstrapped.

I’'m one of the six developers behind
version 2 (diagram to the right).

(larger at https://cakeml.org 7

robust, inflexible

proved to always
work correctly

Verified compilers

Pilsner
CompCert C compiler

CakeML compiler

CompCertTSO

more flexible,

but can be fragile

(produces a proof'for each run)

Proof-producing compilers

Fiat
Cogent

Translation validation for
a verified OS kernel

Summary

Ingredients:
* a formal logic for the proofs
* accurate models of

* the source language

* the target language

* the compiler algorithm

Tools:
* a proof assistant (software)

Method:
* (interactively) prove a simulation relation

Questions? — contact me regarding MSc projects on this topic

