
Verified compilers

Magnus Myreen

Chalmers University of Technology

Mentions joint work with Anthony Fox, Ramana Kumar, Michael Norrish,
Scott Owens, Yong Kiam Tan and many more (incl. Chalmers/GU MSc students)

Compiler Construction, Spring 2019

LLVM (Low Level Virtual Machine) ���� –

Goals

• Multi-stage code improvement, throughout life cycle
• Modular design, easy to grasp internal structure
• Practical, drop-in replacement for other compilers (e.g. GCC)
• LLVM IR: three-address code in SSA form, with type information

Status

• New front end (CLANG) released (for C, C�� and Obj. C)
• GCC front end adapted to emit LLVM IR
• LLVM back ends of good quality available

LLVM optimization architecture

Linker
C

LLVM

native+LLVM
profile

codeprofile

Offline Optimizer

Runtime optimizer

Host Machine

Libraries

.exe.oCompiler

Code optimization opportunities

• During compilation to LLVM (as in all compilers)
• When linking modules and libraries
• Recompilation of hot-spot code at run-time, based on run-time

profiling (LLVM code part of executable)
• Off-line, when computer is idle, based on stored profile info

CompCert ���� –

Program verification

• For safety-critical software, formal verification of program
correctness may be worth the cost

• Such verification is typically done of the source program. So
what if the compiler is buggy?

Use a certified compiler!

• CompCert is a compiler for a large subset of C, with PowerPC
assembler as target language

• Written in Coq, a proof assistant for formal proofs
• Comes with a machine-checked proof that for any program,

which does not generate a compilation error, the source and
target programs behave identically

CompCert architecture

Intermediate constructions

• Eight intermediate languages
• Six type systems
• Thirteen passes

Javalette

Verified compilers
What?

(Sometimes called certified compilers, but that’s misleading…)

Compiler Construction, Spring 2018

Your program crashes.
Where do you look for the fault?

Do you look at your source code?

Do look at the code for the compiler that you used?

users want to rely on compilers

What you have to do

• BNFC takes care of lexing and parsing, however, you will have to
change the BNFC file for J���L���� that we provide for you

• Write typechecker
• Write code generator
• Write a main function which connects the above pieces together

and invokes the various LLVM tools to generate an executable
program (for submissions B and C)

Version control

• It is highly recommend that you use version control software;
using version control software is an essential practice when
developing code

• For example: git, darcs, subversion, mecurial, ...
• However, do not put your code in a public repository, where

others can see your code
• Alternative: use a Dropbox folder as a git remote (create a bare

repo)

Testing compilers

Trusting the compiler

Bugs
When finding a bug, we go to great lengths to find it in our own code.

• Most programmers trust the compiler to generate correct code
• The most important task of the compiler is to generate correct

code

Establishing compiler correctness

Alternatives

• Proving the correctness of a compiler is prohibitively expensive
• Testing is the only viable option

Testing compilers

• Most compilers use unit testing
• They have a big collection of example programs which are used

for testing the compiler
• For each program the expected output is stored in the test suite
• Whenever a new bug is found, a new example program is added

to the test suite; this is known as regression testing

Random testing

Generating random inputs and check correctness of output.
Property-based testing

• Specify (semi-formal) properties that software should have
• Generate random inputs to validate these properties
• In case of a violation, then we have found a counterexample
• Shrink the counterexample to a minimal failing test case

Example
propReverse :: [Int] -> [Int] -> Bool

propReverse xs ys =

reverse (xs ++ ys) == reverse ys ++ reverse xs

Prelude Test.QuickCheck> quickCheck propReverse

+++ OK, passed 100 tests.

What you have to do

• BNFC takes care of lexing and parsing, however, you will have to
change the BNFC file for J���L���� that we provide for you

• Write typechecker
• Write code generator
• Write a main function which connects the above pieces together

and invokes the various LLVM tools to generate an executable
program (for submissions B and C)

Version control

• It is highly recommend that you use version control software;
using version control software is an essential practice when
developing code

• For example: git, darcs, subversion, mecurial, ...
• However, do not put your code in a public repository, where

others can see your code
• Alternative: use a Dropbox folder as a git remote (create a bare

repo)

Testing compilers

Trusting the compiler

Bugs
When finding a bug, we go to great lengths to find it in our own code.

• Most programmers trust the compiler to generate correct code
• The most important task of the compiler is to generate correct

code

Establishing compiler correctness

Alternatives

• Proving the correctness of a compiler is prohibitively expensive
• Testing is the only viable option

Testing compilers

• Most compilers use unit testing
• They have a big collection of example programs which are used

for testing the compiler
• For each program the expected output is stored in the test suite
• Whenever a new bug is found, a new example program is added

to the test suite; this is known as regression testing

Random testing

Generating random inputs and check correctness of output.
Property-based testing

• Specify (semi-formal) properties that software should have
• Generate random inputs to validate these properties
• In case of a violation, then we have found a counterexample
• Shrink the counterexample to a minimal failing test case

Example
propReverse :: [Int] -> [Int] -> Bool

propReverse xs ys =

reverse (xs ++ ys) == reverse ys ++ reverse xs

Prelude Test.QuickCheck> quickCheck propReverse

+++ OK, passed 100 tests.

What you have to do

• BNFC takes care of lexing and parsing, however, you will have to
change the BNFC file for J���L���� that we provide for you

• Write typechecker
• Write code generator
• Write a main function which connects the above pieces together

and invokes the various LLVM tools to generate an executable
program (for submissions B and C)

Version control

• It is highly recommend that you use version control software;
using version control software is an essential practice when
developing code

• For example: git, darcs, subversion, mecurial, ...
• However, do not put your code in a public repository, where

others can see your code
• Alternative: use a Dropbox folder as a git remote (create a bare

repo)

Testing compilers

Trusting the compiler

Bugs
When finding a bug, we go to great lengths to find it in our own code.

• Most programmers trust the compiler to generate correct code
• The most important task of the compiler is to generate correct

code

Establishing compiler correctness

Alternatives

• Proving the correctness of a compiler is prohibitively expensive
• Testing is the only viable option

Testing compilers

• Most compilers use unit testing
• They have a big collection of example programs which are used

for testing the compiler
• For each program the expected output is stored in the test suite
• Whenever a new bug is found, a new example program is added

to the test suite; this is known as regression testing

Random testing

Generating random inputs and check correctness of output.
Property-based testing

• Specify (semi-formal) properties that software should have
• Generate random inputs to validate these properties
• In case of a violation, then we have found a counterexample
• Shrink the counterexample to a minimal failing test case

Example
propReverse :: [Int] -> [Int] -> Bool

propReverse xs ys =

reverse (xs ++ ys) == reverse ys ++ reverse xs

Prelude Test.QuickCheck> quickCheck propReverse

+++ OK, passed 100 tests.

… but with testing you never know you caught all bugs!

Maybe it is worth the cost?

Cost reduction?

All (unverified) compilers have bugs

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract
Compilers should be correct. To improve the quality of C compilers,

we created Csmith, a randomized test-case generation tool, and

spent three years using it to find compiler bugs. During this period

we reported more than 325 previously unknown bugs to compiler

developers. Every compiler we tested was found to crash and also

to silently generate wrong code when presented with valid input.

In this paper we present our compiler-testing tool and the results

of our bug-hunting study. Our first contribution is to advance the

state of the art in compiler testing. Unlike previous tools, Csmith

generates programs that cover a large subset of C while avoiding the

undefined and unspecified behaviors that would destroy its ability

to automatically find wrong-code bugs. Our second contribution is a

collection of qualitative and quantitative results about the bugs we

have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-

ing]: Testing and Debugging—testing tools; D.3.2 [Programming

Languages]: Language Classifications—C; D.3.4 [Programming

Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,

random testing, random program generation

1. Introduction
The theory of compilation is well developed, and there are compiler

frameworks in which many optimizations have been proved correct.

Nevertheless, the practical art of compiler construction involves a

morass of trade-offs between compilation speed, code quality, code

debuggability, compiler modularity, compiler retargetability, and

other goals. It should be no surprise that optimizing compilers—like

all complex software systems—contain bugs.

Miscompilations often happen because optimization safety

checks are inadequate, static analyses are unsound, or transfor-

mations are flawed. These bugs are out of reach for current and

future automated program-verification tools because the specifica-

tions that need to be checked were never written down in a precise

way, if they were written down at all. Where verification is imprac-

tical, however, other methods for improving compiler quality can

succeed. This paper reports our experience in using testing to make

C compilers better.

c� ACM, 2011. This is the author’s version of the work. It is posted here by permission

of ACM for your personal use. Not for redistribution.

The definitive version was published in Proceedings of the 2011 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), San Jose,

CA, Jun. 2011, http://doi.acm.org/10
.1145/NNNNNNN.NNNNNNN

1 int foo (void) {

2 signed char x = 1;

3 unsigned char y = 255;

4 return x > y;

5 }

Figure 1. We found a bug in the version of GCC that shipped with

Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles

this function to return 1; the correct result is 0. The Ubuntu compiler

was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-

ports compiler bug-hunting using differential testing. Csmith gen-

erates a C program; a test harness then compiles the program us-

ing several compilers, runs the executables, and compares the out-

puts. Although this compiler-testing approach has been used be-

fore [6, 16, 23], Csmith’s test-generation techniques substantially

advance the state of the art by generating random programs that

are expressive—containing complex code using many C language

features—while also ensuring that every generated program has a

single interpretation. To have a unique interpretation, a program

must not execute any of the 191 kinds of undefined behavior, nor

depend on any of the 52 kinds of unspecified behavior, that are

described in the C99 standard.

For the past three years, we have used Csmith to discover bugs

in C compilers. Our results are perhaps surprising in their extent: to

date, we have found and reported more than 325 bugs in mainstream

C compilers including GCC, LLVM, and commercial tools. Figure 1

shows a representative example. Every compiler that we have tested,

including several that are routinely used to compile safety-critical

embedded systems, has been crashed and also shown to silently

miscompile valid inputs. As measured by the responses to our bug

reports, the defects discovered by Csmith are important. Most of

the bugs we have reported against GCC and LLVM have been

fixed. Twenty-five of our reported GCC bugs have been classified as

P1, the maximum, release-blocking priority for GCC defects. Our

results suggest that fixed test suites—the main way that compilers

are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part

because it generates tests that explore atypical combinations of C

language features. Atypical code is not unimportant code, how-

ever; it is simply underrepresented in fixed compiler test suites.

Developers who stray outside the well-tested paths that represent

a compiler’s “comfort zone”—for example by writing kernel code

or embedded systems code, using esoteric compiler options, or au-

tomatically generating code—can encounter bugs quite frequently.

This is a significant problem for complex systems. Wolfe [30], talk-

ing about independent software vendors (ISVs) says: “An ISV with

a complex code can work around correctness, turn off the optimizer

in one or two files, and usually they have to do that for any of the

compilers they use” (emphasis ours). As another example, the front

1

PLDI’11

“ Every compiler we tested was found to
crash and also to silently generate

wrong code when presented with valid input. ”

“ [The verified part of] CompCert is the only compiler
 we have tested for which Csmith cannot find wrong-code
 errors. This is not for lack of trying: we have devoted
 about six CPU-years to the task.”

Motivations
Bugs in compilers are not tolerated by users

Bugs can be hard to find by testing

Verified compilers must be used for verification
of source-level programs to imply guarantees at
the level of verified machine code

Research question: how easy (cheap) can
we make compiler verification?

What?

This lecture:
Verified compilers

Why?

How?

Prove that compiler produces good code.

To avoid bugs, to avoid testing.

By mathematical proof…rest of
this lecture

Proving a compiler correct

Ingredients:
• a formal logic for the proofs

• the source language
• the target language
• the compiler algorithm

• accurate models of

Tools:
• a proof assistant (software)

like first-order logic, or higher-order logic

proofs are only about things
that live within the logic, i.e.
we need to represent the

relevant artefacts in the logic

a lot of details… (to get wrong)

… necessary to use mechanised proof
assistant (think ‘Eclipse for logic’) to
 avoid accidentally skipping details

Accurate model of prog. language

Model of programs:
• syntax — what it looks like
• semantics — how it behaves

e.g. an interpreter for the syntax

Major styles of (operational, relational) semantics:
• big-step
• small-step

… next slides provide examples.

this style for structured source semantics

this style for unstructured target semantics

Syntax

 exp = Num num
 | Var name
 | Plus exp exp

Source:

Target ‘machine code’:

 inst = Const name num
 | Move name name
 | Add name name name

Target program consists of list of inst

Source semantics (big-step)

Big-step semantics as relation ↓ defined by rules, e.g.

(Num n, env) ↓ n (Var s, env) ↓ v

lookup s in env finds v

(Add x1 x2, env) ↓ v1 + v2

(x1, env) ↓ v1 (x2, env) ↓ v2

called “big-step”: each step ↓ describes complete evaluation

Source semantics (…gone wrong)

Real-world semantics are not always clean:

https://www.destroyallsoftware.com/talks/wat

Target semantics (small-step)

“small-step”: transitions describe parts of executions

We model the state as a mapping from names to values here.

 step (Const s n) state = state[s ↦ n]
 step (Move s1 s2) state = state[s1 ↦ state s2]
 step (Add s1 s2 s3) state = state[s1 ↦ state s2 + state s3]

 steps [] state = state
 steps (x::xs) state = steps xs (step x state)

Compiler function

 compile (Num k) n = [Const n k]

 compile (Var v) n = [Move n v]

 compile (Plus x1 x2) n =
 compile x1 n ++ compile x2 (n+1) ++ [Add n n (n+1)]

generated code stores
result in register name (n)

given to compiler

generated code stores
result in register name (n)

given to compiler

generated code stores
result in register name (n)

given to compiler

Uses names above n as temporaries.

Relies on variable names in
source to match variables

names in target.

Correctness statement

∀x env res.
 (x, env) ↓ res ⇒
 ∀state k.
 (∀i v. (lookup env i = SOME v) ⇒ (state i = v) ∧ i < k) ⇒
 (let state' = steps (compile x k) state in
 (state' k = res) ∧
 ∀i. i < k ⇒ (state' i = state i))

For every evaluation in the source …

for target state and k, such that …

k greater than all var
names and state in sync

with source env …

… in that case, the result res will be stored at
location k in the target state after execution

… and lower part of state left untouched.

Proved using proof assistant — demo!
open HolKernel Parse boolLib bossLib lcsymtacs stringTheory combinTheory
 arithmeticTheory finite_mapTheory;
val _ = tight_equality();

val _ = new_theory "demo";

val _ = type_abbrev("name",``:num``);

(* -- SYNTAX -- *)

(* source *)

val _ = Datatype `
 exp = Num num
 | Var name
 | Plus exp exp
`

(* target *)

val _ = Datatype `
 inst = Const name num
 | Move name name
 | Add name name name
`

(* -- SEMANTICS -- *)

(* source *)

val (eval_rules,eval_ind,eval_cases) = Hol_reln `
 (T
 ==>
 eval (Num n, env) n)
 /\
 ((FLOOKUP env s = SOME v)
 ==>
 eval (Var s, env) v)
 /\
 (eval (x1,env) v1 /\ eval (x2,env) v2
 ==>
 eval (Plus x1 x2, env) (v1+v2))
`

(* target *)

val step_def = Define `
 step (Const s n) state = (s =+ n) state /\
 step (Move s1 s2) state = (s1 =+ state s2) state /\
 step (Add s1 s2 s3) state = (s1 =+ state s2 + state s3) state
`

val steps_def = Define `
 steps [] state = state /\
 steps (x::xs) state = steps xs (step x state)
`

(* -- COMPILER -- *)

val compile_def = Define `
 compile (Num k) n = [Const n k] /\
 compile (Var v) n = [Move n v] /\
 compile (Plus x1 x2) n =
 compile x1 n ++ compile x2 (n+1) ++ [Add n n (n+1)]`

(* verification proof *)

val steps_append = store_thm("steps_append[simp]",
 ``∀xs ys state. steps (xs ++ ys) state = steps ys (steps xs state)``,
 Induct \\ fs [steps_def]);

val compile_correct = store_thm("compile_correct",
 ``∀x_env res.
 eval x_env res ⇒
 let (x,env) = x_env in
 ∀k state.
 (∀i v. (FLOOKUP env i = SOME v) ⇒ (state i = v) ∧ i < k) ⇒
 let state' = steps (compile x k) state in
 (state' k = res) ∧
 ∀i. i < k ⇒ (state' i = state i)``,
 ho_match_mp_tac eval_ind \\ rpt strip_tac \\ fs [LET_DEF]
 \\ fs [compile_def,steps_def,step_def]
 \\ rw [APPLY_UPDATE_THM] \\ res_tac
 \\ first_x_assum (qspecl_then [`k+1`,`steps (compile x1 k) state`] mp_tac)
 \\ impl_tac \\ rw [] \\ res_tac \\ fs []);

val _ = export_theory();

Code for the demo:

Well, that example was simple enough…

Bootstrapping for verified compilers? Yes!

But:

Random testing for compilers

• Testing compilers using random testing means generating
programs in the source language

• Writing good random test generators for a language is very
difficult

• Different parts of the compiler might need different generators
• The parser needs random strings, but they need to be skewed

towards syntactically correct programs in order to be useful
• The type checker needs a generator which can generate type

correct programs (with high probablity)

• It can be hard to know what the correct execution of a program
is; we need another compiler or interpreter to test against

• What if the generated program doesn’t terminate, or takes a
very long time?

• Using random testing for compilers is difficult and a lot of work

Testing your J���L���� compiler

Remember to test your compiler!

• Use the provided test suite!
• Write your own tests!

Compiler Bootstrapping

A real language

Some people say:
A programming language isn’t real until it has a self-hosting
compiler

A self-hosting compiler
If you’re designed an awesome programming language you would
probably want to program in it.

In particular, you would want to write the compiler in this language.

The chicken and egg problem

If we want to write a compiler for the language X in the language X,
how does the first compiler get written?

Solutions

• Write an interpreter for language X in language Y
• Write another compiler for language X in language Y
• Write the compiler in a subset of X which is possible to compile

with an existing compiler
• Hand-compile the first compiler

Porting to new architectures

A related problem
How to port a compiler to a new hardware architecture?

Solution: cross-compilation
Let the compiler emit code for the new architecture while still
running on an old architecture.

CakeML: A Verified Implementation of ML

Ramana Kumar ⇤ 1 Magnus O. Myreen † 1 Michael Norrish 2 Scott Owens 3

1 Computer Laboratory, University of Cambridge, UK

2 Canberra Research Lab, NICTA, Australia‡

3 School of Computing, University of Kent, UK

Abstract

We have developed and mechanically verified an ML system called

CakeML, which supports a substantial subset of Standard ML.

CakeML is implemented as an interactive read-eval-print loop

(REPL) in x86-64 machine code. Our correctness theorem ensures

that this REPL implementation prints only those results permitted

by the semantics of CakeML. Our verification effort touches on

a breadth of topics including lexing, parsing, type checking, in-

cremental and dynamic compilation, garbage collection, arbitrary-

precision arithmetic, and compiler bootstrapping.

Our contributions are twofold. The first is simply in build-

ing a system that is end-to-end verified, demonstrating that each

piece of such a verification effort can in practice be composed

with the others, and ensuring that none of the pieces rely on any

over-simplifying assumptions. The second is developing novel ap-

proaches to some of the more challenging aspects of the veri-

fication. In particular, our formally verified compiler can boot-

strap itself: we apply the verified compiler to itself to produce a

verified machine-code implementation of the compiler. Addition-

ally, our compiler proof handles diverging input programs with a

lightweight approach based on logical timeout exceptions. The en-

tire development was carried out in the HOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification—Correctness proofs, Formal

methods; F.3.1 [Logics and meanings of programs]: Specifying

and Verifying and Reasoning about Programs—Mechanical veri-

fication, Specification techniques, Invariants

Keywords Compiler verification; compiler bootstrapping; ML;

machine code verification; read-eval-print loop; verified parsing;

verified type checking; verified garbage collection.

⇤ supported by the Gates Cambridge Trust

† supported by the Royal Society, UK

‡ NICTA is funded by the Australian Government through the Department

of Communications and the Australian Research Council through the ICT

Centre of Excellence Program.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

POPL ’14, January 22–24, 2014, San Diego, CA, USA..

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2544-8/14/01. . . $15.00.

http://dx.doi.org/10.1145/2535838.2535841

1. Introduction

The last decade has seen a strong interest in verified compilation;

and there have been significant, high-profile results, many based

on the CompCert compiler for C [1, 14, 16, 29]. This interest is

easy to justify: in the context of program verification, an unverified

compiler forms a large and complex part of the trusted computing

base. However, to our knowledge, none of the existing work on

verified compilers for general-purpose languages has addressed all

aspects of a compiler along two dimensions: one, the compilation

algorithm for converting a program from a source string to a list of

numbers representing machine code, and two, the execution of that

algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified

a compiler along the full scope of both of these dimensions for a

practical, general-purpose programming language. Our language is

called CakeML, and it is a strongly typed, impure, strict functional

language based on Standard ML and OCaml. By verified, we mean

that the CakeML system is ultimately x86-64 machine code along-

side a mechanically checked theorem in higher-order logic saying

that running that machine code causes an input program to yield

output or diverge as specified by the semantics of CakeML.

We did not write the CakeML compiler and platform directly in

machine code. Instead we write it in higher-order logic and synthe-

sise CakeML from that using our previous technique [22], which

puts the compiler on equal footing with other CakeML programs.

We then apply the compiler to itself, i.e., we bootstrap it. This

avoids a tedious manual refinement proof relating the compilation

algorithm to its implementation, as well as providing a moderately

large example program. More specifically,

• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler

inside the logic;

• we bootstrap the compiler to get a machine-code implementa-

tion inside the logic; and

• the compiler correctness theorem thereby applies to the

machine-code implementation of the compiler.

Another consequence of bootstrapping is that we can include the

compiler implementation as part of the runtime system to form an

interactive read-eval-print loop (REPL). A verified REPL enables

high-assurance applications that provide interactivity, an important

feature for interactive theorem provers in the LCF tradition, which

were the original motivation for ML.

Contributions
• Semantics that are carefully designed to be simultaneously suit-

able for proving meta-theoretic language properties and for sup-

porting a verified implementation. (Section 3)

• An extension of a proof-producing synthesis pathway [22] orig-

inally from logic to ML, now to machine code (via verified

compilation). (Sections 4–6, 10)

POPL 2014

Scaling up…

First bootstrapping of a
formally verified compiler.

Dimensions of Compiler Verification

source code

abstract syntax

intermediate language

bytecode

machine code

how far compiler goes

compiler
algorithm

implementation
in ML

implementation
in machine code

machine code as part
of a larger system

the thing that is verified

Our verification covers the full
spectrum of both dimensions.

proof-producing translation [ICFP’12, JFP’14]

functions in HOL (shallow embedding)

CakeML program (deep embedding)

verified compilation of CakeML [POPL’14,ICFP’16]

x86-64 machine code (deep embedding)

Idea behind in-logic bootstrapping

output: verified implementation of compiler function

Trustworthy code generation:

input: verified compiler function

strict impure functional language

The CakeML at a glance

i.e. with almost everything else:
✓ higher-order functions
✓ mutual recursion and polymorphism
✓ datatypes and (nested) pattern matching
✓ references and (user-defined) exceptions
✓ modules, signatures, abstract types

The CakeML language
≈ Standard ML without functors

The verified machine-code implementation:

parsing, type inference, compilation, garbage collection, bignums etc.

implements a read-eval-print loop (see demo).

The CakeML compiler verification

How?

Mostly standard verification techniques as presented in this lecture,
but scaled up to large examples. (Four people, two years.)

Version 1:

string tokens AST IL bytecode x86

Version 2:

IL-N ASM

ARM

x86-64

MIPS-64
…IL-2IL-1

… actively developed (want to join? myreen@chalmers.se)

State of the art

CompCert

Compiles C source code to assembly.

Has good performance numbers

CompCert C compiler

Leroy et al. Source: http://compcert.inria.fr/

Proved correct in Coq. http://compcert.inria.fr/

Compiles CakeML concrete
syntax to machine code.

Has mostly good performance
numbers (later lecture)

Proved correct in HOL4.

CakeML compiler

Known as the first verified compiler
to be bootstrapped.

I’m one of the six developers behind
version 2 (diagram to the right).

larger at https://cakeml.org

A spectrum

Verified compilers Proof-producing compilers

CompCert C compiler

CakeML compiler

Cogent

Translation validation for
a verified OS kernel

Pilsner

…

Fiat

CompCertTSO

proved to always
work correctly produces a proof for each run

robust, inflexible more flexible,
but can be fragile

Summary

Questions? — contact me regarding MSc projects on this topic

Ingredients:
• a formal logic for the proofs

• the source language
• the target language
• the compiler algorithm

• accurate models of

Tools:
• a proof assistant (software)

Method:
• (interactively) prove a simulation relation

