
Compiler construction
Lecture 8: Functions

Magnus Myreen
Spring 2019

Chalmers University of Technology — Gothenburg University

Nested functions

A Nested Function

Suppose we extended JavaLette with nested functions.

double hypSq(double a, double b) {

double square(double d) {

return d * d;

}

return square(a) + square(b);

}

Another example

To make nested functions useful we would like to have lexical
scoping.

This means that we can use variables in the inner function, de�ned
in the outer function.

double sqrt(double s) {

double newton(double y) {

return (y + s / y) / 2;

}

double x = 0.0; int i = 0;

while (i < 10) {

x = newton(x);

i++;

}

return x;

}

Access Links

• Access Links is a mechanism to access variables de�ned in an
enclosing procedure

• An access link is an extra �eld in a stack frame which points to
the closes stack frame of the enclosing procedure

Access Links

Outline of a quicksort implementation:

void sort(int[] arr) {

void quicksort(int m,int n) {

v = ...

void partition(int y,int z) {

... arr ... v ...

}

... a ... v ... partition ... quicksort

}

... quicksort ...

}



Example stack

S

Access Link

arr

q(1,9)

Access Link

v

Access Link

v

q(1,3)

p(1,3)

Access Link

When accessing e.g. the variable arr in p we need to go through the
access link to q and then to s.

Manipulating Access Links

When procedure q calls procedure p there are three cases to
consider:
1. p has higher nesting depth than q
Then the depth of p must be exactly one larger than q and p’s
access link must point to q.

2. p and q have the same nesting depth
The access link for p is the same as for q.

3. p has a lower nesting depth than q
Let np be the nesting depth of p and nq be the nesting depth of q.
Furthermore, suppose that p is de�ned immediately within
procedure r. The top activation record for r can be found by
following nq − np + 1 access links down the stack.

Displays

• If the nesting depth is very large, then the link chains may be
very long; traversing these links can be costly

• Displays were developed to speed up access
• A display is a stack, separate from the call stack, which
maintains pointers to the most recent activation record of the
di�erent nesting depths

• The display grows and shrinks with the maximum nesting
depth of the functions on the call stack

Displays

S

q(1,9)

v

v

q(1,3)

p(1,3)

saved d[2]

saved d[2]

saved d[3]

d[1]

d[2]

d[3]

Lambda Li�ing

• Another way of implementing nested functions is by li�ing
them to the top level

• Free variables are handled by adding them as parameters to
the li�ed function

Lambda Li�ing - example

Original sqrt
double sqrt(double s) {

double newton(double y) {

return (y + s / y) / 2;

}

double x = 0.0;

int i = 0;

while (i < 10) {

x = newton(x);

}

return x;

}



Lambda Li�ing - example

Lambda li�ed sqrt

double newton(double y, double s) {

return (y + s / y) / 2;

}

double sqrt(double s) {

double x = 0.0;

int i = 0;

while (i < 10) {

x = newton(x, s);

}

return x;

}

Call-by-reference

Consider lambda li�ing the function below.

The local function incc modi�es its free variable. In order to li�
incc we have to pass the parameter c by reference.

void foo() {

int c = 0;

void incc() {

c++;

}

incc();

incc();

printInt(c);

}

Call-by-reference

Consider lambda li�ing the function below.

The local function incc modi�es its free variable. In order to li�
incc we have to pass the parameter c by reference.

void incc(int *c) {

(*c)++;

}

void foo() {

int c = 0;

incc(&c);

incc(&c);

printInt(c);

}

Higher Order Functions

Higher Order Fuctions in JavaLette

Adding higher order functions to JavaLette we need a new form of
types:

Type(Type, ..., Type)

Examples:

• bool(int, int)

A function which takes two int arguments and returns a bool
• void()

A function which takes no arguments and doesn’t return
anything

Higher Order Functions in JavaLette

int main() {

int(int) add(int n) {

int h(int m) {

return n + m;

}

return h;

}

int(int) addFive = add(5);

printInt(addFive(15));

}



Higher Order Functions in JavaLette

int main() {

int(int) add(int n) { ... }

int(int) addFive = add(5);

int(int) twice(int(int) f) {

int g(int x) {

return f(f(x));

}

return g;

}

int(int) addTen = twice(addFive);

printInt(twice(twice(addTen))(6));

}

Implementing higher order functions

There are several ways implementing higher order functions:

• Access Links can be adapted to also deal with higher order
functions

• Defunctionalization is a method to convert higher order
functions to data structures; requires whole program
compilation

• Closures are used to represent functions by a heap allocated
record containing a code pointer and the free variables of the
function

• Using closures is by far the most common implementation
method

Closures

main

add

n code for h

• The closure for h inside add contains a pointer to the code for h
and the value for the variable n

• The closure is heap allocated

Closures and mutable variables

What happens with the stack allocated variable counter once we
exit the function makeCounter?

• Heap allocate part of the stack frame
• Forbid such programs (example: Java)

int() makeCounter(int start) {

int counter = start;

int inc() {

counter++;

return counter;

}

return inc;

}

Closures and mutable variables

Functional languages like Haskell and ML deal with the problem of
closures and mutability as follows:

• Everything is immutable by default
• Mutation is introduced by references which always live on the
heap

makeCounter = do

r <- newIORef 0

let inc = do

n <- readIORef r

writeIORef r (n+1)

return n

return inc

Anonymous nested functions

Lambda expressions

• An increasingly popular language feature is to have anonymous
nested functions, so called lambda expressions

• Compiling lambda expressions works the same way as nested
functions with names

A note on terminology
One can o�en hear the phrase that a language “has closures”.

This is a somewhat unfortunate use of the word.

Closures is an implementation technique for the language feature
higher order functions.



Lazy evaluation

Question

• Is it possible to implement if as a function?

• We can fake it by using functions which take no arguments
void if(bool c, void() th) {

if (c)

th();

}

• We emulate lazy evaluation with this construct

Question

• Is it possible to implement if as a function?
• We can fake it by using functions which take no arguments

void if(bool c, void() th) {

if (c)

th();

}

• We emulate lazy evaluation with this construct

Example - lazy lists

typedef struct Node *lazylist;

struct Node {

int elem;

lazylist() next;

}

lazylist cons(int x, lazylist() xs) {

list res = new Node;

res->elem = x;

res->next = xs;

return res;

}

int sum(lazylist xs) {

if (xs == (lazylist)null)

return 0;

else

return xs->elem + sum(xs->next());

}

Example - lazy lists

int main() {

printInt(sum(take(42, enumFrom(1))));

return 0;

}

lazylist enumFrom(int n) {

lazylist rec() { return enumFrom(n + 1); }

return cons(n, rec);

}

lazylist take(int n, lazylist xs) {

if (xs == (lazylist)null)

return xs;

else if (n < 1)

return (lazylist)null;

else {

lazylist rec() { return take(n - 1, xs->next()); }

return cons(xs->elem, rec);

}

}

Thunks

• Call-by-name is a calling convention where the arguments are
not evaluated until needed

• Thunks are used to implement call-by-name
• Thunks are essentially functions which take no arguments
• They are typically implemented as closures



Lazy evaluation

• The di�erence between call-by-name and lazy evaluation is
that once an argument is evaluated, it is not reevaluated if it is
used twice

• In order to achieve laziness, once the value is computed we
need to remember it. This can be done in two ways:

• Overwrite the thunk with an indirection pointing to the value
• Overwrite the thunk with the value directly, if the space allocated
for the thunk is big enough to hold the value

A Note

• Call-by-name and lazy evaluation is very handy as they allow
the programmer to create new control structures

• Be careful with combining them with side-e�ects: it can yield
very surprising results

• An impure language with lazy evaluation as default is a bad
idea


