
Compiler construction
Lecture 6: Code generation for x86

Magnus Myreen
Spring 2019

Chalmers University of Technology — Gothenburg University

This lecture

• x86 architecture
• Calling conventions
• Some x86 instructions
• From LLVM to assembler

• Instruction selection
• (Instruction scheduling)
• Register allocation

x86 architecture

x86: assembly for a real machine

High-level view of x86

• Not a stack machine; no direct correspondence to operand
stacks

• Arithmetics, etc. is done with values in registers
• Much more limited support for function calls; you need to
handle return addresses, jumps, allocation of stack frames, etc.
yourself

• Your code is assembled and run; no further optimization
• CISC architecture usually has few registers; straightforward
code will run slowly

x86 assembler, a �rst example

JavaLette (or C)
> cat ex1.jl

int f (int x, int y) {

int z = x + y;

return z;

}

This might be compiled to the
assembler code to the right.

NASM assembly code
segment .text

global f

f:

push dword ebp

mov ebp, esp

sub esp, 4

mov eax, [ebp+12]

add eax, [ebp+8]

mov [ebp-4], eax

mov eax, [ebp-4]

mov esp, ebp

pop ebp

ret

Example explained

NASM code commented
segment .text ; code area

global f ; f has external scope

f: ; entry point for f

push dword ebp ; save caller's fp

mov ebp, esp ; set our fp

sub esp, 4 ; allocate space for z

mov eax, [ebp+12] ; move y to eax

add eax, [ebp+8] ; add x to eax

mov [ebp-4], eax ; move eax to z

mov eax, [ebp-4] ; return value to eax

mov esp, ebp ; restore caller's sp

pop ebp ; restore caller's fp

ret ; pop return addr, jump



Intel x86 architectures

Long history

8086 1978. First IBM PCs, 16 bit registers, real mode
80286 1982. AT, Windows, protected mode
80386 1985. 32 bit registers, virtual memory
80486 (Pentium, Pentium II, III, IV) 1989 – 2003.

Math coprocessor, pipelining, caches, SSE, ...
Intel Core 2 2006. Multi-core
Core i3/i5/i7 2009 —

Backwards compatibility important; leading to a large set of
opcodes.

Not only Intel o�er x86 processors, also AMD is in the market.

Which version should you target?

x86
When speaking of the x86 architecture, one generally means
register/instruction set for the 80386 (with �oating-point
operations).

You can compile code which would run on a 386 – or you may use
SSE2 operations for a more recent version.

x86 registers

General purpose registers (32-bits)
eax, ebx, ecx, edx, ebp, esp, esi, edi.

Conventional use:

ebp and esp for frame pointer and stack pointer.

Segment registers
Legacy from old segmented addressing architecture.

Can be ignored in JavaLette compilers.

Floating-point registers
Eight 80–bit registers st0 – st7 organised as a stack.

Flag registers
Status registers with bits for results of comparisons, etc.

We will discuss these later.

Calling convention

Data area for parameters and local variables

Runtime stack

• Contiguous memory area
• Grows from high addresses
downwards

• AR layout illustrated
• ebp contains current base
pointer (= frame pointer)

• esp contains current stack
pointer

• Note: We need to store
return address (address of
instruction to jump to on
return)

Pn

Caller’s base pointer
High address

Stack 
growth

Return address
Caller’s base pointer

Local vars

Parameters

EBP

ESP

Local vars

Callee’s
AR

Caller’s 
AR

P1

Calling convention

Caller, before call

• Push params (in reverse
order)

• Push return address
• Jump to callee entry

push dword paramn
...

push dword param1
call f

Caller, a�er call

• Pop parameters
add esp parambytes

Callee, on entry

• Push caller’s base pointer
• Update current base pointer
• Allocate space for locals

Callee, on exit

• Restore base and stack ptr
• Pop return address and jump



Calling convention

Caller, before call

• Push params (in reverse
order)

• Push return address
• Jump to callee entry

push dword paramn
...

push dword param1
call f

Caller, a�er call

• Pop parameters
add esp parambytes

Callee, on entry

• Push caller’s base pointer
• Update current base pointer
• Allocate space for locals

push dword ebp

mov ebp, esp

sub esp, localbytes

Callee, on exit

• Restore base and stack ptr
• Pop return address and jump

Calling convention

Caller, before call

• Push params (in reverse
order)

• Push return address
• Jump to callee entry

push dword paramn
...

push dword param1
call f

Caller, a�er call

• Pop parameters
add esp parambytes

Callee, on entry

• Push caller’s base pointer
• Update current base pointer
• Allocate space for locals

push dword ebp

mov ebp, esp

sub esp, localbytes

Callee, on exit

• Restore base and stack ptr
• Pop return address and jump

mov esp, ebp

pop ebp

ret

Calling convention

Caller, before call

• Push params (in reverse
order)

• Push return address
• Jump to callee entry

push dword paramn
...

push dword param1
call f

Caller, a�er call

• Pop parameters
add esp parambytes

Callee, on entry

• Push caller’s base pointer
• Update current base pointer
• Allocate space for locals

push dword ebp

mov ebp, esp

sub esp, localbytes

Callee, on exit

• Restore base and stack ptr
• Pop return address and jump

mov esp, ebp

pop ebp

ret

Calling convention

Caller, before call

• Push params (in reverse
order)

• Push return address
• Jump to callee entry

push dword paramn
...

push dword param1
call f

Caller, a�er call

• Pop parameters
add esp parambytes

Callee, on entry

• Push caller’s base pointer
• Update current base pointer
• Allocate space for locals

enter localbytes, 0

Callee, on exit

• Restore base and stack ptr
• Pop return address and jump

leave

ret

Parameters, local variables and return values

Parameters

• In the callee code, integer parameter 1 has address ebp+8,
parameter 2 ebp+12, etc.

• Parameter values accessed with indirect addressing: [ebp+8],
etc.

• Double parameters require 8 bytes
• Here ebp+n means “(address stored in ebp) + n”

Local variables

• First local var is at address ebp-4, etc.
• Local vars are conventionally addressed relative to ebp, not esp
• Again, refer to vars by indirect addressing: [ebp-4], etc.

Return values
Integer and boolean values are returned in eax, doubles in st0

Register usage

Scratch registers (caller save)
eax, ecx and edx must be saved by caller before call, if used; can be
freely used by callee.

Callee save register
ebx, esi, edi, ebp, esp.

For ebp and esp, this is handled in the code patterns.

Note

• What we have described is one common calling convention for
32-bit x86, called cdecl

• Other conventions exist, but we omit them



Assemblers for x86

Several alternatives

• Several assemblers for x86 exist, with di�erent syntax
• We will use NASM, the Netwide Assembler, which is available for
several platforms

• We also recommend Paul Carter’s book and examples; follow
link from course website

• Some syntax di�erences to the GNU assembler:
• GNU uses %eax etc. as register names
• For two-argument instructions, the operands have opposite
order!

• Di�erent syntax for indirect addressing
If you use gcc -S ex.c, you will get GNU syntax

Example: GNU syntax

First example, revisited
> gcc -c ex1.c

> objdump -d ex1.o

ex1.o: file format elf32-i386

Disassembly of section .text:

00000000 <f>:

0: 55 push %ebp

1: 89 e5 mov %esp,%ebp

3: 8b 45 0c mov 0xc(%ebp),%eax

6: 03 45 08 add 0x8(%ebp),%eax

9: c9 leave

a: c3 ret

Assembler

Integer arithmetic; two-adress code

Addition, subtraction and multiplication
add dest, src ; dest := dest + src

sub dest, src ; dest := dest - src

imul dest, src ; dest := dest * src

Operands can be values in registers or in memory; src also a literal.

Division – one-address code
idiv denom

(eax, edx) := ((edx:eax) / denom, (edx:eax) % denom)

• The numerator is the 64-bit value edx:eax (no other choices)
• Both div and mod are performed; results in eax resp. edx
• edx must be zeroed before division

Example

JavaLette program
int main () {

printString "Input a number: ";

int n = readInt();

printInt(2 * n);

return 0;

}

The above code could be translated as
follows (slightly optimized to �t on
slide).

Code for main
push dword ebp

mov ebp, esp

push str1

call printString

add esp, 4

call readInt

imul eax, 2

push eax

call printInt

add esp, 4

mov eax, 0

leave

ret

Example, continued

Complete �le
extern printString, printInt

extern readInt

segment .data

str1 db "Input a number: "

segment .text

global main

main:

; code from previous slide

Comments

• IO functions are external;
we will come back to that

• The .data segment
contains constants such as
str1

• The .text segment
contains code

• The global declaration
gives main external scope
(can be called from code
outside this �le)



Floating-point arithmetic in x86

Moving numbers (selection)

fld src Pushes value in src on fp stack
fild src Pushes integer value in src on fp stack

fstp dest Stores top of fp stack in dest and pops

Both src and dest can be fp register or memory reference.

Arithmetic (selection)

fadd src Adds src to st0
fadd to dest Adds st0 to dest

faddp dest Adds st0 to dest, then pop

Similar variants for fsub, fmul and fdiv.

Floating-point arithmetic in SSE2

New registers

• 128-bit registers xmm0–xmm7 (later also xmm8–xmm15)
• Each can hold two double precision �oats or four
single-precision �oats

• SIMD operations for arithmetic

Arithmetic instructions

• Two-address code, ADDSD, MULSD, etc.
• SSE2 fp code similar to integer arithmetic

Control �ow

Integer comparisons
• cmp v1 v2

• v1 - v2 is computed and bits
in the �ag register are set:

• ZF is set i� value is zero
• OF is set i� result over�ows
• SF is set i� result is
negative

Branch instructions (selection)

• JZ lab branches if ZF is set
• JL lab branches if SF is set
• Similarly for the other
relations between v1 and v2

• fcomi src compares st0 and
src and sets �ags; can be
followed by branching as
above

Control �ow

Integer comparisons
• cmp v1 v2

• v1 - v2 is computed and bits
in the �ag register are set:

• ZF is set i� value is zero
• OF is set i� result over�ows
• SF is set i� result is
negative

Branch instructions (selection)

• JZ lab branches if ZF is set
• JL lab branches if SF is set
• Similarly for the other
relations between v1 and v2

• fcomi src compares st0 and
src and sets �ags; can be
followed by branching as
above

One more example

JavaLette (or C)
int sum(int n) {

int res = 0;

int i = 0;

while (i < n) {

res = res + i;

i++;

}

return res;

}

Naive assembler
sum: enter 8, 0

mov [ebp-4], 0

mov [ebp-8], 0

jmp L2

L3: mov eax, [ebp-8]

add [ebp-4], eax

inc [ebp-8]

L2: mov eax, [ebp-8]

cmp eax, [ebp+8]

jl L3

mov eax, [ebp-4]

leave

ret

How to do an x86 backend

Starting point
Two alternatives:

• From LLVM code (requires your basic backend to generate LLVM
code as a data structure, not directly as strings); will generate
many local vars

• From AST’s generated by the frontend (means a lot of code
common with LLVM backend)

Variables
In either case, your code will contain a lot of variables/virtual
registers. Possible approaches:

• Treat these as local vars, storing to and fetching from stack at
each access; gives really slow code

• Do register allocation1; much better code
1Future lecture



Input and output

A simple proposal
De�ne printInt, readInt, etc. in C. Then link this �le together with
your object �les using gcc.

Alternative: Compile runtime.ll with llvm-as and llc to get
runtime.s; this can be given to gcc as below.

Linux building
To assemble a NASM �le to file.o:

nasm -f elf file.asm

To link:

gcc file.o runtime.s

Result is executable a.out

More info
Paul Carter’s book (link on course web site) gives more info.

From LLVM to assembler

From LLVM to assembler

Several stages

• Instruction selection
• Instruction scheduling
• SSA-based optimizations
• Register allocation
• Prolog/epilog code (AR management)
• Code emission

Target-independent generation
Also much of this is done in target-independent ways and using
general algorithms operating on target descriptions.

Native code generation, revisited

More complications
So far, we have ignored some important concerns in code
generation:

• The instruction set in real-world processors typically o�er
many di�erent ways to achieve the same e�ect. Thus, when
translating an IR program to native code we must do instruction
selection, i.e., choose between available alternatives.

• O�en an instruction sequence contain independent parts that
can be executed in arbitrary order. Di�erent orders may take
very di�erent time; thus a code generator should do instruction
scheduling.

Both these task are complex and interact with register allocation.

In LLVM, these tasks are done by the native code generator llc and
the JIT compiler in lli.

Instruction selection

Further observations

• Instruction selection for RISC machines generally simpler than
for CISC machines

• The number of translation possibilities grow (combinatorially)
as one considers larger chunks of IR code for translation

Pattern matching
The IR code can be seen as a pattern matching problem: The native
instructions are seen as patterns; instruction selection is the
problem to cover the IR code by patterns.

Two approaches

• Tree pattern matching: think of IR code as tree
• Peephole matching: think of IR code as sequence

Instruction selection

Further observations

• Instruction selection for RISC machines generally simpler than
for CISC machines

• The number of translation possibilities grow (combinatorially)
as one considers larger chunks of IR code for translation

Pattern matching
The IR code can be seen as a pattern matching problem: The native
instructions are seen as patterns; instruction selection is the
problem to cover the IR code by patterns.

Two approaches

• Tree pattern matching: think of IR code as tree
• Peephole matching: think of IR code as sequence



Tree pattern matching, an example

a[i] := x as tree IR code

MOVE

CONST xFP

CONST 4TEMP i

CONST aFP

+

*MEM

++

MEMMEM

• a and x local vars, i in
register

• a is pointer to �rst element

Algorithm outline

• Represent native instructions
as patterns, or tree fragments

• Tile the IR tree using these
patterns so that all nodes in
the tree are covered

• Output the sequence of
instructions corresponding
to the tiling

Tree pattern matching, an example

a[i] := x as tree IR code

MOVE

CONST xFP

CONST 4TEMP i

CONST aFP

+

*MEM

++

MEMMEM

• a and x local vars, i in
register

• a is pointer to �rst element

Algorithm outline

• Represent native instructions
as patterns, or tree fragments

• Tile the IR tree using these
patterns so that all nodes in
the tree are covered

• Output the sequence of
instructions corresponding
to the tiling

A simple instruction set

ADD ri ← rj + rk
MUL ri ← rj ∗ rk
SUB ri ← rj − rk
DIV ri ← rj/rk
ADDI ri ← rj + c
SUBI ri ← rj − c
LOAD ri ← M[rj + c]
STORE M[rj + c]← ri
MOVEM M[rj]← M[ri]

Notes

• We consider only
arithmetic and memory
instructions (no jumps!)

Identifying patterns (incomplete)

+
MUL

MOVEM

STORE

LOAD

ADDI 

ADD

MEMMEM

MOVE

MEM

MOVE

CONST

MEM

MOVE

CONST

+

MEM

MOVE

CONST

+

MEM

MOVE

MEMMEM

CONST

CONST

MEM

+

CONST

+

MEM

CONST

CONSTCONST

++

*

Instruction scheduling, background

Simple-minded, old-fashioned view of processor
Fetch an instruction, decode it, fetch operands, perform operation,
store result. Then fetch next operation, ...

Modern processors

• Several instructions under execution concurrently
• Memory system cause delays, with operations waiting for data
• Similar problems for results from arithmetic operations, that
may take several cycles

Consequence
Important to understand data dependencies and order instructions
advantageously.

Instruction scheduling, example

Example (from Cooper)
w = w * 2 * x * y * z

• Memory op takes 3 cycles, mult 2 cycles, add one cycle
• One instruction can be issued each cycle, if data available

Schedule 1

r1 <- M [fp + @w]

r1 <- r1 + r1

r2 <- M [fp + @x]

r1 <- r1 * r2

r2 <- M [fp + @y]

r1 <- r1 * r2

r2 <- M [fp + @z]

r1 <- r1 * r2

M [fp + @w] <- r1

Schedule 2

r1 <- M [fp + @w]

r2 <- M [fp + @x]

r3 <- M [fp + @y]

r1 <- r1 + r1

r1 <- r1 * r2

r2 <- M [fp + @z]

r1 <- r1 * r3

r1 <- r1 * r2

M [fp + @w] <- r1



Instruction scheduling, example

Example (from Cooper)
w = w * 2 * x * y * z

• Memory op takes 3 cycles, mult 2 cycles, add one cycle
• One instruction can be issued each cycle, if data available

Schedule 1

r1 <- M [fp + @w]

r1 <- r1 + r1

r2 <- M [fp + @x]

r1 <- r1 * r2

r2 <- M [fp + @y]

r1 <- r1 * r2

r2 <- M [fp + @z]

r1 <- r1 * r2

M [fp + @w] <- r1

Schedule 2

r1 <- M [fp + @w]

r2 <- M [fp + @x]

r3 <- M [fp + @y]

r1 <- r1 + r1

r1 <- r1 * r2

r2 <- M [fp + @z]

r1 <- r1 * r3

r1 <- r1 * r2

M [fp + @w] <- r1

Instruction scheduling, example

Example (from Cooper)
w = w * 2 * x * y * z

• Memory op takes 3 cycles, mult 2 cycles, add one cycle
• One instruction can be issued each cycle, if data available

Schedule 1

r1 <- M [fp + @w]

r1 <- r1 + r1

r2 <- M [fp + @x]

r1 <- r1 * r2

r2 <- M [fp + @y]

r1 <- r1 * r2

r2 <- M [fp + @z]

r1 <- r1 * r2

M [fp + @w] <- r1

Schedule 2

r1 <- M [fp + @w]

r2 <- M [fp + @x]

r3 <- M [fp + @y]

r1 <- r1 + r1

r1 <- r1 * r2

r2 <- M [fp + @z]

r1 <- r1 * r3

r1 <- r1 * r2

M [fp + @w] <- r1

Instruction scheduling

Comments

• Problem is NP-complete for realistic architectures
• Common technique is list scheduling: greedy algorithm for
scheduling a basic block

• Builds graph describing data dependencies between
instructions and schedules instructions from ready list of
instructions with available operands

Interaction
Despite interaction between selection, scheduling and register
allocation, these are typically handled independently (and in this
order).

x86 backend extension

Comments

• Two credits
• Need to implement at least one optimization pass
• Acts as a ‘multiplier’ for other extensions


