CHALMERS

Compiler construction

Lecture 4: Code generation for LLVM

Magnus Myreen
Spring 2019

Chalmers University of Technology — Gothenburg University

LLVM modules

A LLVM compilation unit (a module) consists of a sequence of:

« type definitions
- global variable definitions
« function definitions

- (external) function declarations

Also global variables may be declared, rather than defined.

This is not necessary for JAVALETTE; the only use of global variables
is for naming string literals (as arguments to @printString).

Basic blocks in LLVM

Basic blocks in LLVM

Recall
A basic block starts with a label

and ends with a terminating
instruction (ret or br).

Thus one cannot ‘fall through’
the end of a block into the next;
an explicit branch to (the label
of) the next instruction is
necessary.

Recall
A basic block starts with a label

and ends with a terminating
instruction (ret or br). entry #

tsum = alloca i32
store 132 0, i32* %sum
%i = alloca i32

store i32 0, i32* %i
br label $loop

Thus one cannot ‘fall through’
the end of a block into the next;
an explicit branch to (the label

loop

$t1 = load i32% %i
$t2 = load i32* $sum

of) the next instruction is

43 = add i32 $tl1, $t2

necessary. store i32 $t3, i32* $sum
44 = add i32 $t1, 1
store i32 3t4, i32% 3i

Consequence %t = icmp eq i32 1, %n

The basic blocks of a LLVM

br il 3t, label %end, label 3loop

function definition can be
reordered arbitrarily; a function
body is a graph of basic blocks
(the control flow graph).

ret i32 3t3

Compilation to LLVM

Code generation for variables, 1

General observations
+ Compilation schemes described for JVM (in the PLT course)
often easily modified
+ Local variables and parameters should be treated as memory
locations (alloca/load/store instructions)
+ These will be removed by opt (and new memory references
maybe introduced during register allocation)

There are no nested scopes in
LLVM. Thus JAVALETTE variables e
may need to be renamed. ;

store 132 5, 32* %x
%y = alloca i32
store 32 3, 132* %y
br label %lab0

_

Example

int main () {

int x = 5; lab0:
. %10 = load i32* %x
int y = 3; %tl = iemp sgt i32 %10, 0
. bril %1, label %labl, label %lab2
while (x > 0) {
int y = x;
printInt(y);
xo: 0
3 lab2:
. call void @printlht(i32 %td) | | %8 = load i32* %y
printInt(y); 16 = load §32* [%x call void @printInt(i32 %18)
%7 = sub i32 16, 1 ret i320
return 0; store 132 %17, 32* %x
} br label %lab)

Optimizing code from previous slide

; ModuleID = '<st

define i32 G@main(

entry:
tail call void
tail call void
tail call void
tail call void
tail call void
tail call void
ret i32 0

din>'

declare void @printInt(i32)

) {

@printInt (i32
@printInt (i32
@printInt (i32
@printInt (i32
@printInt (i32
@printInt (i32

> opt -std-compile-opts a.ll | llvm-dis

5)
4)
3)
2)
1)
3)

Code generation for variables, 2

When a variable declaration is seen:
« generate a (possibly) new name
+ generate alloca instruction
+ save (JAVALETTE name, LLVM name) pair in lookup table in the
code generator

Keep track of scope in lookup table

In assignment statement, store value of RHS using the LLVM
name

When a variable is seen (in an expression), 1oad from memory
using the LLVM name

Similar considerations for parameters

Code generation for variables, alternative

Use a-renaming to convert each variable to a fresh variable. Some
compilers include an a-renaming phase to rename all program
variables such that variable names become unique. (This may

Before

int main) {

printInt(y);

simplify subsequent compiler phases.)

After

int main O {

int x = 5; int v, = 5;

int y = 3; int v, = 3;

while (x > 0) { while (vq > 0) {
int y = x; int v3 = vq;

printInt(v;);

x==; vi=;
} }
printInt(y); printInt(v,);
return 0; return 0;
} }

Types of local and global variables

Local variables
The instruction

%% = alloca i32

introduces a new variable %x of type i32%

%x is a pointer to a newly allocated memory location on the stack.

Types of local and global variables

Local variables
The instruction

%% = alloca 132

Global variables
The instruction

@hw is a pointer to a byte array.

introduces a new variable 7x of type i32x

’x is a pointer to a newly allocated memory location on the stack.

Ohw = global [13 x i8] c"hello world\OA\0O"

introduces a global name ehv of type [13 x i8]

Treatment of labels

Labels are not instructions in LLVM)
But it may be convenient for you to treat them as if they were!

Basic blocks without instructions are illegal)
Depending on your compilation schemes, you may find yourself in

the situation that a label has just been emitted and the function
ends without further instructions.

Treatment of labels

instruction

Labels are not instructions in LLVM)
But it may be convenient for you to treat them as if they were!

Basic blocks without instructions are illegal
Depending on your compilation schemes, you may find yourself in

the situation that a label has just been emitted and the function
ends without further instructions.

The situation can then be saved by emitting the terminator
instruction unreachable.

From reference manual o
The getelementptr instruction is used to get the address of a

subelement of an aggregate data structure. It performs address
calculation only and does not access memory.

Instruction arguments)

Type to index %T, a variable %x that has pointer type %Tx, and then
indexing into the pointer (first index is to * of %Tx).

Example type Example use
%T = type define 132 0f (UT* %x) {
{i32, %p = getelementptr T, %T* Ix,
{[4 x i32], i32 0, i32 1, i32 1, i32 7
[8 x i32] Jres = load 132, 132* Jp
} ret 132 Yres
} }

Another example

Yet another example

Gmat = global [3 x [4 x i32]]
[[4 x i32] [i32 1, i32 2, i32 3, i32 4],
[4 x i32] [i32 5, i32 6, i32 7, i32 8],
[4 x i32] [i32 9, i32 10, i32 11, i32 12]]

declare void @printInt(i32)

define i32 @main () {
%»tl = getelementptr [3 x [4 x i32]], [3 x [4 x i32]]* Cmat,
i32 0, i32 1, i32 2
%t2 = load i32, i32* Jtl
call void @printInt(i32 %t2)
ret i32 0
¥

Executing this program prints 7. Note type of @nat.

%T1 = type {i32, {[4 x i32]*, [8 x i32]*}}

define i32 Qg (%T1* %x) {
%p = getelementptr %T1, %Tix %x, i32 0, i32 1, i32 1
Ypl = load [8 x i32]*, [8 x 132]** Yp
/p2 = getelementptr [8 x i32], [8 x i32]* Ypl, 132 0, 132 7
%res = load 132, i32% Jp2
ret i32 Jres

}

og returns the last element of the 8-element array in %x.

We can not do this with just one getelementptr instruction; we
need to access memory to get the pointer to the array.

Why the first 0?

Why the first 0?

struct Pair {
int x, y;
};
int f(struct Pair *p) {
return p[0].y + p[1].x;
}

struct Pair {
int x, y;
178
int f(struct Pair *p) {
return p[0].y + p[1].x;
}

J%Pair = type { 132, 132 }

define 132 @h(%Pairx %p) {
%tl = getelementptr %Pair, %Pair* %p, i32 0, i32 1
%t2 = load i32, i32x ’tl
%t3 = getelementptr %Pair, %Pair* %p, i32 1, i32 0
%té load 132, i32* %t3
%t5 = add 132 %t2, %té
ret i32 t5

Computing the size of a type

Size of a variable
With the size of a type %T, we mean the size (in bytes) of a variable

of type %T. For a given LLVM type %T, this size can vary between
target architectures (e.g. pointer types differ in size). So, how does
one write portable code?

LLVM does not have a correspondence to C's sizeof macro.

Computing the size of a type

Size of a variable
With the size of a type %T, we mean the size (in bytes) of a variable

of type %T. For a given LLVM type 7T, this size can vary between
target architectures (e.g. pointer types differ in size). So, how does
one write portable code?

LLVM does not have a correspondence to C's sizeof macro.

The trick))
We use the getelementptr instruction:

%p = getelementptr %T, %T* null, i32 1
%s = ptrtoint %T* %p to 132

Now, %= holds the size of %T. Why?

Treatment of string literals

String literals occur in JAVALETTE only as argument to
@printString

When you encounter such a string you must introduce a
definition that gives the string literal a global name

Such a definition must not appear in the middle of the current
function (recall the ‘hello world’ program)

The type of a global variable is [n x i8]*, where n is the length
of the string (after padding at the end)

oprintString is called with a global variable as argument

Quiz
What is the type of the parameter to @printString?

declare void @printString(7)

String literals, 2

Answer

+ We cannot let the parameter type be [n x i8], since n varies
+ Let instead the parameter type be i8%, a pointer to the first byte
+ How can we then call eprintString in a type-correct way?

String literals, 2

Answer

+ We cannot let the parameter type be [n x i8], since n varies
+ Let instead the parameter type be i8%, a pointer to the first byte
+ How can we then call eprintString in a type-correct way?

We use getelementptr to get a pointer to the first byte of the string
(i.e. to the same address, but the type will change).
Ohw = internal constant [13 x i8] c"hello world\OA\OO"
declare void OprintString(i8x%)

define i32 @main () {

%tl = getelementptr [13 x i8], [13 x i8] Ghw, i32 0, i32 0

call void @printString(i8+* %t1)
ret i32 0

State during code generation

We need to keep some state information during code generation.
This includes at least:

+ next number for generating register names (and labels)

+ definitions of global names for string literals

+ lookup table to find LLVM name for JAVALETTE variable name
+ lookup table to find type of function

Further properties of functions

In function definitions

- Linkage type, for example: private, internal
* Attributes, for example: readnone, readonly, nounwind

+ Calling convention, for example: ccc, fastcc

In function calls

* Tail call indication
* Attributes
« Calling convention

Final example

JAVALETTE code

boolean even(int n) {
if (n == 0)
return true;
else
return odd (n - 1);
I
boolean odd(int n) {
if (n == 0)
return false;
else

return even (n - 1);

JAVALETTE code

int main () {
if (even (20))
printString("Even!");
else
printString("0dd!");
return 0;

To be done in class

« Write naive LLVM code

- Send it through opt to get
better code

