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‣ C compiler (gcc)
‣ inline assembly
‣ hardware
‣ hardware management
‣ boot code
‣ virtual memory

The aim of this work is to remove the first assumption.

‣ Cambridge ARM model

And also to validate L4.verified’s C semantics.
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Incompatible:

• different view on 
what valid C is

• pointers treated 
differently

• memory more 
abstract in 
CompCert C sem.

• different provers 
(Coq and Isabelle)
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Translation validationTranslation Validation

Translation Validation efforts:

• Pnueli et al, 1998. Introduce translation validation. Want to maintain
a compiler correctness proof more easily.

• Necula, 2000. Translation validation for a C compiler. Also wants to
pragmatically support compiler quality.

• Many others for many languages and levels of connection to
compilers.

• . . .

• Sewell & Myreen, 2013. Not especially interested in compilers.
Want to validate a source semantics.

Translation Validation for seL4 Copyright NICTA 2013
Thomas Sewell, Magnus Myreen 4/10
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Cambridge ARM model

• high-fidelity model of the ARM instruction set 
architecture formalised in HOL4 theorem prover

• originates in a project on hardware verification 
(ARM6 verification)

• extensively tested against different hardware 
implementations

developed by Anthony Fox

Web:  http://www.cl.cam.ac.uk/~acjf3/arm/

Cambridge ARM model

http://www.cl.cam.ac.uk/~acjf3/arm/


Stage 1: decompilation

Cambridge ARM model
seL4 machine code

machine code as functions

decompilation
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3

(Loops result in recursive functions.)
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• seL4 is ~12,000 lines of machine code

• compiled using gcc -O1 and gcc -O2

• must be compatible with L4.verified proof

Decompiling seL4: Challenges

✓ decompilation is compositional

✓ gcc implements ARM/C calling convention

➡ stack requires special treatment
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Some arguments are passed on the stack,
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 ... that are not 
present in C semantics.

C code:

uint avg8 (uint x0, x1, x2, x3, x4, x5, x6, x7) {
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Solution

Use separation-logic inspired approach

stack sp 3 (s0::s1::s2::s3::s4::ss) 

_ _ _ s0 s1 s2 s3 s4 ss

stack pointer: sp

{

3 slots of unused but 
required stack space

{
rest of stack

m

separation logic: *

* memory m

disjoint due to *
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Solution (cont.)

add r1, r1, r0
add r1, r1, r2
ldr r2, [sp]
add r1, r1, r3
add r0, r1, r2
ldmib sp, {r2, r3}
add r0, r0, r2
add r0, r0, r3
ldr r3, [sp, #12]
add r0, r0, r3
lsr r0, r0, #3
bx lr

1.static analysis to find 
stack operations,

2.derive stack-specific 
Hoare triples,

3.then run decompiler as 
before.

Method:

➡ 

➡ 

➡ 



avg8(r0,r1,r2,r3,s0,s1,s2,s3) = 
  let r1 = r1 + r0 in
  let r1 = r1 + r2 in
  let r2 = s0 in
  let r1 = r1 + r3 in
  let r0 = r1 + r3 in
  let (r2,r3) = (s1,s2) in
  let r0 = r0 + r2 in
  let r0 = r0 + r3 in
  let r3 = s3 in
  let r0 = r0 + r3 in
  let r0 = r0 >> 3 in
    r0

Result

add r1, r1, r0
add r1, r1, r2
ldr r2, [sp]
add r1, r1, r3
add r0, r1, r2
ldmib sp, {r2, r3}
add r0, r0, r2
add r0, r0, r3
ldr r3, [sp, #12]
add r0, r0, r3
lsr r0, r0, #3
bx lr

Stack load/stores become straightforward assignments. 



Other C-specifics

• struct as return value 

‣ case of passing pointer of stack location

‣ stack assertion strong enough 

• switch statements 

‣ position dependent

‣ must decompile elf-files, not object files

• infinite loops in C 

‣ make gcc go weird

‣ must be pruned from control-flow graph
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Approach for refinement proof

detailed model of C code

machine code as functions

C code as graph

mc functions as graph

 SMT proof



Translating C into graphs

   struct node *
   find (struct tree *t, int k) {
1    struct node *p = t->trunk;
2    while (p) {
3      if (p->key == k)
4        return p;
5      else if (p->key < k)
6        p = p->right;
       else
7        p = p->left;
     }
8    return NULL;
   }

Figure 3. Example Conversion of Structure and Statements to Graph Language

are later instantiated by reading the ELF symbol table. The expres-
sions that remain are entirely machine compatible: operations such
as 32-bit addition and multiplication, left and right shifts, signed
and unsigned less-than, and finally memory access and update of
32-bit and 8-bit values.

It is a theorem of the Tuch memory semantics [31] that memory
writes of aggregate types are equivalent to sequences of writes
of their fields, assuming the aggregate type contains no padding.
Padding creates a number of headaches for us, and so for the
purposes of this work we have adjusted the seL4 source to ensure
that all structures of interest are packed (see Section 4.3).

The complication is that C is not merely a portable assembler.
The C standard mandates a number of restrictions on the way
various operations may be used, and some of these restrictions go
beyond the scope of machine operations. One simple restriction is
that arithmetic on signed operands may not overflow, and another
is that dereferenced pointers must be aligned and nonzero. To
ensure the standard is followed, the parser inserts a number of
Guard statements into its output, which allow execution to continue
only if some condition is met. The conditions become verification
obligations in the existing verification work.

These guard statements are translated into condition nodes with
one of the outbound edges pointing to the special label Err. Given
that the guard conditions have all been established from the invari-
ants in previous work, it will become an input assumption to the
current work that these paths to Err are never taken. These guards
were omitted from Figure 3 — there ought to be condition nodes
immediately before all memory-using nodes which check pointer
validity.

The key restriction from the C standard that cannot be realised
in machine operations is the strict-aliasing rule. This allows the
compiler to assume that a given memory address is not in use
with two different incompatible types. In systems code, program-
mers occasionally break this assumption (see also Section 4.4), but
most code conforms to it. Since optimisations frequently make use
of the rule, we need to make the information it conveys available
at the points where it does hold. To do this, we strengthened the
checks made in the C parser output against the heap type descrip-
tion, a global variable which tracks the expected type of mem-
ory. The graph conversion then includes the heap type descrip-
tion and checks in its output. The stronger checks are of the form
pvalid htd ⌧ p for some heap type description htd, C type ⌧ and
pointer value p. The expected non-aliasing conditions are theorems
of the Tuch memory model [31], for instance this rule about ints
and floats:

pvalid htd int p pvalid htd

0 float p
{x | p  x < p+ 4} \ {x | p0  x < p

0 + 4} = {}
The semantics of the graph language are straightforward to for-

malise in Isabelle/HOL or HOL4. The node types are introduced as

datatype constructors Basic, Cond and Call. A single step start-
ing from a Basic node updates local variables, and starting from
a Cond node decides between two possible successor labels. The
Call nodes create a new stack frame, with a new graph and new
local variables, and steps from the Ret and Err labels fold the cur-
rent stack frame into the previous one. The semantics of execution
are given by the transitive closure of this single-step relation. Given
this formal semantics, we have proven, in Isabelle/HOL, that the
converted functions in the graph language refine the original C se-
mantics. The details of this formalisation and proof are elided here,
and are largely technical.

3.2 Decompiling Compiler Output into Logic
The next piece of the puzzle is the right-hand side of Figure 2,
i.e. how we take binaries the compilers (recent versions of stan-
dard unmodified gcc) produce, decompile these binaries into func-
tions, which we, in turn, translate into the graph language described
above. By decompilation we mean proof-producing extraction of
functional programs from concrete binaries. Here we build on pre-
vious work on such decompilation [17, 18], but in this text we do
not assume any prior knowledge of the previous work. Instead, we
use a few examples below to demonstrate what decompilation pro-
vides and what we had to alter in Myreen’s original decompilation
approach to make the decompiler’s output better compatible with
the C semantics to which the left-hand side of the Figure 2 con-
nects the decompiler’s output.

3.2.1 Simple Decompilation Example
To get a flavour of what decompilation provides, consider the
following simple C function for taking the average of two integers.

uint avg (uint i, uint j) {
return (i + j) / 2;

}

When compiled with gcc, this C code is translated into an ARM bi-
nary (an ELF file). Applying relevant objdump tools to the binary,
one can produce a text file showing the generated ARM machine
code (on the left below) and ARM assembly code (in the centre).

<avg>:

e0810000 add r0, r1, r0 // add r1 to r0

e1a000a0 lsr r0, r0, #1 // shift r0 right

e12fff1e bx lr // return

To decompile the generated machine code, one simply provides
the hex codes on the left to the decompiler together with the signa-
ture of the C function. The decompiler extracts from the machine
code a function in logic that describes the state update the machine
code performs. The machine code above is converted into the fol-
lowing logic function. Note that here, r0 and r1 are 32-bit integers
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   struct node *
   find (struct tree *t, int k) {
1    struct node *p = t->trunk;
2    while (p) {
3      if (p->key == k)
4        return p;
5      else if (p->key < k)
6        p = p->right;
       else
7        p = p->left;
     }
8    return NULL;
   }
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are later instantiated by reading the ELF symbol table. The expres-
sions that remain are entirely machine compatible: operations such
as 32-bit addition and multiplication, left and right shifts, signed
and unsigned less-than, and finally memory access and update of
32-bit and 8-bit values.

It is a theorem of the Tuch memory semantics [31] that memory
writes of aggregate types are equivalent to sequences of writes
of their fields, assuming the aggregate type contains no padding.
Padding creates a number of headaches for us, and so for the
purposes of this work we have adjusted the seL4 source to ensure
that all structures of interest are packed (see Section 4.3).

The complication is that C is not merely a portable assembler.
The C standard mandates a number of restrictions on the way
various operations may be used, and some of these restrictions go
beyond the scope of machine operations. One simple restriction is
that arithmetic on signed operands may not overflow, and another
is that dereferenced pointers must be aligned and nonzero. To
ensure the standard is followed, the parser inserts a number of
Guard statements into its output, which allow execution to continue
only if some condition is met. The conditions become verification
obligations in the existing verification work.

These guard statements are translated into condition nodes with
one of the outbound edges pointing to the special label Err. Given
that the guard conditions have all been established from the invari-
ants in previous work, it will become an input assumption to the
current work that these paths to Err are never taken. These guards
were omitted from Figure 3 — there ought to be condition nodes
immediately before all memory-using nodes which check pointer
validity.

The key restriction from the C standard that cannot be realised
in machine operations is the strict-aliasing rule. This allows the
compiler to assume that a given memory address is not in use
with two different incompatible types. In systems code, program-
mers occasionally break this assumption (see also Section 4.4), but
most code conforms to it. Since optimisations frequently make use
of the rule, we need to make the information it conveys available
at the points where it does hold. To do this, we strengthened the
checks made in the C parser output against the heap type descrip-
tion, a global variable which tracks the expected type of mem-
ory. The graph conversion then includes the heap type descrip-
tion and checks in its output. The stronger checks are of the form
pvalid htd ⌧ p for some heap type description htd, C type ⌧ and
pointer value p. The expected non-aliasing conditions are theorems
of the Tuch memory model [31], for instance this rule about ints
and floats:

pvalid htd int p pvalid htd

0 float p
{x | p  x < p+ 4} \ {x | p0  x < p

0 + 4} = {}
The semantics of the graph language are straightforward to for-

malise in Isabelle/HOL or HOL4. The node types are introduced as

datatype constructors Basic, Cond and Call. A single step start-
ing from a Basic node updates local variables, and starting from
a Cond node decides between two possible successor labels. The
Call nodes create a new stack frame, with a new graph and new
local variables, and steps from the Ret and Err labels fold the cur-
rent stack frame into the previous one. The semantics of execution
are given by the transitive closure of this single-step relation. Given
this formal semantics, we have proven, in Isabelle/HOL, that the
converted functions in the graph language refine the original C se-
mantics. The details of this formalisation and proof are elided here,
and are largely technical.

3.2 Decompiling Compiler Output into Logic
The next piece of the puzzle is the right-hand side of Figure 2,
i.e. how we take binaries the compilers (recent versions of stan-
dard unmodified gcc) produce, decompile these binaries into func-
tions, which we, in turn, translate into the graph language described
above. By decompilation we mean proof-producing extraction of
functional programs from concrete binaries. Here we build on pre-
vious work on such decompilation [17, 18], but in this text we do
not assume any prior knowledge of the previous work. Instead, we
use a few examples below to demonstrate what decompilation pro-
vides and what we had to alter in Myreen’s original decompilation
approach to make the decompiler’s output better compatible with
the C semantics to which the left-hand side of the Figure 2 con-
nects the decompiler’s output.

3.2.1 Simple Decompilation Example
To get a flavour of what decompilation provides, consider the
following simple C function for taking the average of two integers.

uint avg (uint i, uint j) {
return (i + j) / 2;

}

When compiled with gcc, this C code is translated into an ARM bi-
nary (an ELF file). Applying relevant objdump tools to the binary,
one can produce a text file showing the generated ARM machine
code (on the left below) and ARM assembly code (in the centre).

<avg>:

e0810000 add r0, r1, r0 // add r1 to r0

e1a000a0 lsr r0, r0, #1 // shift r0 right

e12fff1e bx lr // return

To decompile the generated machine code, one simply provides
the hex codes on the left to the decompiler together with the signa-
ture of the C function. The decompiler extracts from the machine
code a function in logic that describes the state update the machine
code performs. The machine code above is converted into the fol-
lowing logic function. Note that here, r0 and r1 are 32-bit integers
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are later instantiated by reading the ELF symbol table. The expres-
sions that remain are entirely machine compatible: operations such
as 32-bit addition and multiplication, left and right shifts, signed
and unsigned less-than, and finally memory access and update of
32-bit and 8-bit values.

It is a theorem of the Tuch memory semantics [31] that memory
writes of aggregate types are equivalent to sequences of writes
of their fields, assuming the aggregate type contains no padding.
Padding creates a number of headaches for us, and so for the
purposes of this work we have adjusted the seL4 source to ensure
that all structures of interest are packed (see Section 4.3).

The complication is that C is not merely a portable assembler.
The C standard mandates a number of restrictions on the way
various operations may be used, and some of these restrictions go
beyond the scope of machine operations. One simple restriction is
that arithmetic on signed operands may not overflow, and another
is that dereferenced pointers must be aligned and nonzero. To
ensure the standard is followed, the parser inserts a number of
Guard statements into its output, which allow execution to continue
only if some condition is met. The conditions become verification
obligations in the existing verification work.

These guard statements are translated into condition nodes with
one of the outbound edges pointing to the special label Err. Given
that the guard conditions have all been established from the invari-
ants in previous work, it will become an input assumption to the
current work that these paths to Err are never taken. These guards
were omitted from Figure 3 — there ought to be condition nodes
immediately before all memory-using nodes which check pointer
validity.

The key restriction from the C standard that cannot be realised
in machine operations is the strict-aliasing rule. This allows the
compiler to assume that a given memory address is not in use
with two different incompatible types. In systems code, program-
mers occasionally break this assumption (see also Section 4.4), but
most code conforms to it. Since optimisations frequently make use
of the rule, we need to make the information it conveys available
at the points where it does hold. To do this, we strengthened the
checks made in the C parser output against the heap type descrip-
tion, a global variable which tracks the expected type of mem-
ory. The graph conversion then includes the heap type descrip-
tion and checks in its output. The stronger checks are of the form
pvalid htd ⌧ p for some heap type description htd, C type ⌧ and
pointer value p. The expected non-aliasing conditions are theorems
of the Tuch memory model [31], for instance this rule about ints
and floats:

pvalid htd int p pvalid htd

0 float p
{x | p  x < p+ 4} \ {x | p0  x < p

0 + 4} = {}
The semantics of the graph language are straightforward to for-

malise in Isabelle/HOL or HOL4. The node types are introduced as

datatype constructors Basic, Cond and Call. A single step start-
ing from a Basic node updates local variables, and starting from
a Cond node decides between two possible successor labels. The
Call nodes create a new stack frame, with a new graph and new
local variables, and steps from the Ret and Err labels fold the cur-
rent stack frame into the previous one. The semantics of execution
are given by the transitive closure of this single-step relation. Given
this formal semantics, we have proven, in Isabelle/HOL, that the
converted functions in the graph language refine the original C se-
mantics. The details of this formalisation and proof are elided here,
and are largely technical.

3.2 Decompiling Compiler Output into Logic
The next piece of the puzzle is the right-hand side of Figure 2,
i.e. how we take binaries the compilers (recent versions of stan-
dard unmodified gcc) produce, decompile these binaries into func-
tions, which we, in turn, translate into the graph language described
above. By decompilation we mean proof-producing extraction of
functional programs from concrete binaries. Here we build on pre-
vious work on such decompilation [17, 18], but in this text we do
not assume any prior knowledge of the previous work. Instead, we
use a few examples below to demonstrate what decompilation pro-
vides and what we had to alter in Myreen’s original decompilation
approach to make the decompiler’s output better compatible with
the C semantics to which the left-hand side of the Figure 2 con-
nects the decompiler’s output.

3.2.1 Simple Decompilation Example
To get a flavour of what decompilation provides, consider the
following simple C function for taking the average of two integers.

uint avg (uint i, uint j) {
return (i + j) / 2;

}

When compiled with gcc, this C code is translated into an ARM bi-
nary (an ELF file). Applying relevant objdump tools to the binary,
one can produce a text file showing the generated ARM machine
code (on the left below) and ARM assembly code (in the centre).

<avg>:

e0810000 add r0, r1, r0 // add r1 to r0

e1a000a0 lsr r0, r0, #1 // shift r0 right

e12fff1e bx lr // return

To decompile the generated machine code, one simply provides
the hex codes on the left to the decompiler together with the signa-
ture of the C function. The decompiler extracts from the machine
code a function in logic that describes the state update the machine
code performs. The machine code above is converted into the fol-
lowing logic function. Note that here, r0 and r1 are 32-bit integers



Translating C into graphs

   struct node *
   find (struct tree *t, int k) {
1    struct node *p = t->trunk;
2    while (p) {
3      if (p->key == k)
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5      else if (p->key < k)
6        p = p->right;
       else
7        p = p->left;
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8    return NULL;
   }
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are later instantiated by reading the ELF symbol table. The expres-
sions that remain are entirely machine compatible: operations such
as 32-bit addition and multiplication, left and right shifts, signed
and unsigned less-than, and finally memory access and update of
32-bit and 8-bit values.

It is a theorem of the Tuch memory semantics [31] that memory
writes of aggregate types are equivalent to sequences of writes
of their fields, assuming the aggregate type contains no padding.
Padding creates a number of headaches for us, and so for the
purposes of this work we have adjusted the seL4 source to ensure
that all structures of interest are packed (see Section 4.3).

The complication is that C is not merely a portable assembler.
The C standard mandates a number of restrictions on the way
various operations may be used, and some of these restrictions go
beyond the scope of machine operations. One simple restriction is
that arithmetic on signed operands may not overflow, and another
is that dereferenced pointers must be aligned and nonzero. To
ensure the standard is followed, the parser inserts a number of
Guard statements into its output, which allow execution to continue
only if some condition is met. The conditions become verification
obligations in the existing verification work.

These guard statements are translated into condition nodes with
one of the outbound edges pointing to the special label Err. Given
that the guard conditions have all been established from the invari-
ants in previous work, it will become an input assumption to the
current work that these paths to Err are never taken. These guards
were omitted from Figure 3 — there ought to be condition nodes
immediately before all memory-using nodes which check pointer
validity.

The key restriction from the C standard that cannot be realised
in machine operations is the strict-aliasing rule. This allows the
compiler to assume that a given memory address is not in use
with two different incompatible types. In systems code, program-
mers occasionally break this assumption (see also Section 4.4), but
most code conforms to it. Since optimisations frequently make use
of the rule, we need to make the information it conveys available
at the points where it does hold. To do this, we strengthened the
checks made in the C parser output against the heap type descrip-
tion, a global variable which tracks the expected type of mem-
ory. The graph conversion then includes the heap type descrip-
tion and checks in its output. The stronger checks are of the form
pvalid htd ⌧ p for some heap type description htd, C type ⌧ and
pointer value p. The expected non-aliasing conditions are theorems
of the Tuch memory model [31], for instance this rule about ints
and floats:

pvalid htd int p pvalid htd

0 float p
{x | p  x < p+ 4} \ {x | p0  x < p

0 + 4} = {}
The semantics of the graph language are straightforward to for-

malise in Isabelle/HOL or HOL4. The node types are introduced as

datatype constructors Basic, Cond and Call. A single step start-
ing from a Basic node updates local variables, and starting from
a Cond node decides between two possible successor labels. The
Call nodes create a new stack frame, with a new graph and new
local variables, and steps from the Ret and Err labels fold the cur-
rent stack frame into the previous one. The semantics of execution
are given by the transitive closure of this single-step relation. Given
this formal semantics, we have proven, in Isabelle/HOL, that the
converted functions in the graph language refine the original C se-
mantics. The details of this formalisation and proof are elided here,
and are largely technical.

3.2 Decompiling Compiler Output into Logic
The next piece of the puzzle is the right-hand side of Figure 2,
i.e. how we take binaries the compilers (recent versions of stan-
dard unmodified gcc) produce, decompile these binaries into func-
tions, which we, in turn, translate into the graph language described
above. By decompilation we mean proof-producing extraction of
functional programs from concrete binaries. Here we build on pre-
vious work on such decompilation [17, 18], but in this text we do
not assume any prior knowledge of the previous work. Instead, we
use a few examples below to demonstrate what decompilation pro-
vides and what we had to alter in Myreen’s original decompilation
approach to make the decompiler’s output better compatible with
the C semantics to which the left-hand side of the Figure 2 con-
nects the decompiler’s output.

3.2.1 Simple Decompilation Example
To get a flavour of what decompilation provides, consider the
following simple C function for taking the average of two integers.

uint avg (uint i, uint j) {
return (i + j) / 2;

}

When compiled with gcc, this C code is translated into an ARM bi-
nary (an ELF file). Applying relevant objdump tools to the binary,
one can produce a text file showing the generated ARM machine
code (on the left below) and ARM assembly code (in the centre).

<avg>:

e0810000 add r0, r1, r0 // add r1 to r0

e1a000a0 lsr r0, r0, #1 // shift r0 right

e12fff1e bx lr // return

To decompile the generated machine code, one simply provides
the hex codes on the left to the decompiler together with the signa-
ture of the C function. The decompiler extracts from the machine
code a function in logic that describes the state update the machine
code performs. The machine code above is converted into the fol-
lowing logic function. Note that here, r0 and r1 are 32-bit integers
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are later instantiated by reading the ELF symbol table. The expres-
sions that remain are entirely machine compatible: operations such
as 32-bit addition and multiplication, left and right shifts, signed
and unsigned less-than, and finally memory access and update of
32-bit and 8-bit values.

It is a theorem of the Tuch memory semantics [31] that memory
writes of aggregate types are equivalent to sequences of writes
of their fields, assuming the aggregate type contains no padding.
Padding creates a number of headaches for us, and so for the
purposes of this work we have adjusted the seL4 source to ensure
that all structures of interest are packed (see Section 4.3).

The complication is that C is not merely a portable assembler.
The C standard mandates a number of restrictions on the way
various operations may be used, and some of these restrictions go
beyond the scope of machine operations. One simple restriction is
that arithmetic on signed operands may not overflow, and another
is that dereferenced pointers must be aligned and nonzero. To
ensure the standard is followed, the parser inserts a number of
Guard statements into its output, which allow execution to continue
only if some condition is met. The conditions become verification
obligations in the existing verification work.

These guard statements are translated into condition nodes with
one of the outbound edges pointing to the special label Err. Given
that the guard conditions have all been established from the invari-
ants in previous work, it will become an input assumption to the
current work that these paths to Err are never taken. These guards
were omitted from Figure 3 — there ought to be condition nodes
immediately before all memory-using nodes which check pointer
validity.

The key restriction from the C standard that cannot be realised
in machine operations is the strict-aliasing rule. This allows the
compiler to assume that a given memory address is not in use
with two different incompatible types. In systems code, program-
mers occasionally break this assumption (see also Section 4.4), but
most code conforms to it. Since optimisations frequently make use
of the rule, we need to make the information it conveys available
at the points where it does hold. To do this, we strengthened the
checks made in the C parser output against the heap type descrip-
tion, a global variable which tracks the expected type of mem-
ory. The graph conversion then includes the heap type descrip-
tion and checks in its output. The stronger checks are of the form
pvalid htd ⌧ p for some heap type description htd, C type ⌧ and
pointer value p. The expected non-aliasing conditions are theorems
of the Tuch memory model [31], for instance this rule about ints
and floats:

pvalid htd int p pvalid htd

0 float p
{x | p  x < p+ 4} \ {x | p0  x < p

0 + 4} = {}
The semantics of the graph language are straightforward to for-

malise in Isabelle/HOL or HOL4. The node types are introduced as

datatype constructors Basic, Cond and Call. A single step start-
ing from a Basic node updates local variables, and starting from
a Cond node decides between two possible successor labels. The
Call nodes create a new stack frame, with a new graph and new
local variables, and steps from the Ret and Err labels fold the cur-
rent stack frame into the previous one. The semantics of execution
are given by the transitive closure of this single-step relation. Given
this formal semantics, we have proven, in Isabelle/HOL, that the
converted functions in the graph language refine the original C se-
mantics. The details of this formalisation and proof are elided here,
and are largely technical.

3.2 Decompiling Compiler Output into Logic
The next piece of the puzzle is the right-hand side of Figure 2,
i.e. how we take binaries the compilers (recent versions of stan-
dard unmodified gcc) produce, decompile these binaries into func-
tions, which we, in turn, translate into the graph language described
above. By decompilation we mean proof-producing extraction of
functional programs from concrete binaries. Here we build on pre-
vious work on such decompilation [17, 18], but in this text we do
not assume any prior knowledge of the previous work. Instead, we
use a few examples below to demonstrate what decompilation pro-
vides and what we had to alter in Myreen’s original decompilation
approach to make the decompiler’s output better compatible with
the C semantics to which the left-hand side of the Figure 2 con-
nects the decompiler’s output.

3.2.1 Simple Decompilation Example
To get a flavour of what decompilation provides, consider the
following simple C function for taking the average of two integers.

uint avg (uint i, uint j) {
return (i + j) / 2;

}

When compiled with gcc, this C code is translated into an ARM bi-
nary (an ELF file). Applying relevant objdump tools to the binary,
one can produce a text file showing the generated ARM machine
code (on the left below) and ARM assembly code (in the centre).

<avg>:

e0810000 add r0, r1, r0 // add r1 to r0

e1a000a0 lsr r0, r0, #1 // shift r0 right

e12fff1e bx lr // return

To decompile the generated machine code, one simply provides
the hex codes on the left to the decompiler together with the signa-
ture of the C function. The decompiler extracts from the machine
code a function in logic that describes the state update the machine
code performs. The machine code above is converted into the fol-
lowing logic function. Note that here, r0 and r1 are 32-bit integers

1: p := Mem[t + 4];

2: p == 0 ?

8: ret := 0
3: Mem[p] == k ?

4: ret := p;
5: Mem[p] < k ?

6: p := Mem[p + 4];
7: p := Mem[p + 8];
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are later instantiated by reading the ELF symbol table. The expres-
sions that remain are entirely machine compatible: operations such
as 32-bit addition and multiplication, left and right shifts, signed
and unsigned less-than, and finally memory access and update of
32-bit and 8-bit values.

It is a theorem of the Tuch memory semantics [31] that memory
writes of aggregate types are equivalent to sequences of writes
of their fields, assuming the aggregate type contains no padding.
Padding creates a number of headaches for us, and so for the
purposes of this work we have adjusted the seL4 source to ensure
that all structures of interest are packed (see Section 4.3).

The complication is that C is not merely a portable assembler.
The C standard mandates a number of restrictions on the way
various operations may be used, and some of these restrictions go
beyond the scope of machine operations. One simple restriction is
that arithmetic on signed operands may not overflow, and another
is that dereferenced pointers must be aligned and nonzero. To
ensure the standard is followed, the parser inserts a number of
Guard statements into its output, which allow execution to continue
only if some condition is met. The conditions become verification
obligations in the existing verification work.

These guard statements are translated into condition nodes with
one of the outbound edges pointing to the special label Err. Given
that the guard conditions have all been established from the invari-
ants in previous work, it will become an input assumption to the
current work that these paths to Err are never taken. These guards
were omitted from Figure 3 — there ought to be condition nodes
immediately before all memory-using nodes which check pointer
validity.

The key restriction from the C standard that cannot be realised
in machine operations is the strict-aliasing rule. This allows the
compiler to assume that a given memory address is not in use
with two different incompatible types. In systems code, program-
mers occasionally break this assumption (see also Section 4.4), but
most code conforms to it. Since optimisations frequently make use
of the rule, we need to make the information it conveys available
at the points where it does hold. To do this, we strengthened the
checks made in the C parser output against the heap type descrip-
tion, a global variable which tracks the expected type of mem-
ory. The graph conversion then includes the heap type descrip-
tion and checks in its output. The stronger checks are of the form
pvalid htd ⌧ p for some heap type description htd, C type ⌧ and
pointer value p. The expected non-aliasing conditions are theorems
of the Tuch memory model [31], for instance this rule about ints
and floats:

pvalid htd int p pvalid htd

0 float p
{x | p  x < p+ 4} \ {x | p0  x < p

0 + 4} = {}
The semantics of the graph language are straightforward to for-

malise in Isabelle/HOL or HOL4. The node types are introduced as

datatype constructors Basic, Cond and Call. A single step start-
ing from a Basic node updates local variables, and starting from
a Cond node decides between two possible successor labels. The
Call nodes create a new stack frame, with a new graph and new
local variables, and steps from the Ret and Err labels fold the cur-
rent stack frame into the previous one. The semantics of execution
are given by the transitive closure of this single-step relation. Given
this formal semantics, we have proven, in Isabelle/HOL, that the
converted functions in the graph language refine the original C se-
mantics. The details of this formalisation and proof are elided here,
and are largely technical.

3.2 Decompiling Compiler Output into Logic
The next piece of the puzzle is the right-hand side of Figure 2,
i.e. how we take binaries the compilers (recent versions of stan-
dard unmodified gcc) produce, decompile these binaries into func-
tions, which we, in turn, translate into the graph language described
above. By decompilation we mean proof-producing extraction of
functional programs from concrete binaries. Here we build on pre-
vious work on such decompilation [17, 18], but in this text we do
not assume any prior knowledge of the previous work. Instead, we
use a few examples below to demonstrate what decompilation pro-
vides and what we had to alter in Myreen’s original decompilation
approach to make the decompiler’s output better compatible with
the C semantics to which the left-hand side of the Figure 2 con-
nects the decompiler’s output.

3.2.1 Simple Decompilation Example
To get a flavour of what decompilation provides, consider the
following simple C function for taking the average of two integers.

uint avg (uint i, uint j) {
return (i + j) / 2;

}

When compiled with gcc, this C code is translated into an ARM bi-
nary (an ELF file). Applying relevant objdump tools to the binary,
one can produce a text file showing the generated ARM machine
code (on the left below) and ARM assembly code (in the centre).

<avg>:

e0810000 add r0, r1, r0 // add r1 to r0

e1a000a0 lsr r0, r0, #1 // shift r0 right

e12fff1e bx lr // return

To decompile the generated machine code, one simply provides
the hex codes on the left to the decompiler together with the signa-
ture of the C function. The decompiler extracts from the machine
code a function in logic that describes the state update the machine
code performs. The machine code above is converted into the fol-
lowing logic function. Note that here, r0 and r1 are 32-bit integers
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With the stack-aware decompiling, the entire code for avg8 turns
into the following function which does not mention memory. We
have expanded the let-expressions for brevity below.

avg8 (r0, r1, r2, r3, s0, s1, s2, s3) =
(r1 + r0 + r2 + r3 + s0 + s1 + s2 + s3) >>> 3

The generated certificate theorem is stated in terms of the stack
assertion. For avg8, this theorem is:

{R0 r0 ⇤ R1 r1 ⇤ . . . ⇤ stack sp n (s0::s1::s2::s3::ss) ⇤ PC p}
p : e0811000 e0811002 ... e12fff1e

{let r0 = avg8 (r0, r1, r2, r3, s0, s1, s2, s3) in
R0 r0 ⇤ R1 ⇤ . . . ⇤ stack sp n (s0::s1::s2::s3::ss) ⇤ PC lr}

Care is taken to make these Hoare triples adhere exactly to the
calling convention so that they can be used in future decompilations
of code that call this function. Using this certificate theorem, we
can decompile a call to avg8 into a let-expression of the following
form in the decompilation of a caller.

. . . let r0 = avg8 (r0, r1, r2, r3, s0, s1, s2, s3) in . . .

Given that we do not allow C code to take the address of a
local variable, this stack simulation is relatively straightforward to
implement in practice, i.e. it is reasonably easy to automatically
find which locations access the stack and which do not (even
without use of any debug information). If we were to allow taking
the address of a local variable, then this approach would fall apart
very quickly as the distinction between memory and stack locations
becomes blurred.

Having said that, there is one situation where the C compiler
will produce code that passes an address of a stack location around,
even if the C code does not seem to do so. This happens in cases
where a function is to return a struct that does not fit into a single
machine word, i.e. does not fit into a single register. When a func-
tion is to return a struct, it expects to get an address into the caller’s
stack space. This address points to a segment in the caller’s part of
the stack into which the callee is to write its result.

Our approach to dealing with the stack can manage this form
of passing around of pointers into the stack. The solution is to ini-
tialise the stack heuristic appropriately. Instead of starting the stack
heuristic off from a state where the caller’s stack is an opaque un-
touchable part of state, we start it off with a slot for the return struct.
If the result is n-words long, then we start the stack simulation
from a stack which consists of an initial segment ss , the result slots
[t1, t2, . . . , tn] and finally the rest of the stack stack :

stack sp n (ss ++ [t1, t2, . . . , tn] ++ stack)

We also assume (according to the calling convention) that register 0
holds, on entry to the function, the address of the first result slot in
the stack, i.e. sp + 4 ⇥ length ss . With such an initialisation, we
can deal with the case of returning a struct directly into the stack.
The rest of the decompiler runs exactly as before.

The new stack heuristic brings with it a number of new limita-
tions, since the decompiler now tries to discover what the compiler
did with the stack and prove that the stack is kept separate from the
heap. Limitations are discussed in Section 4.2.

3.2.3 Converting Extracted Functions into Graph Format
The pure functions extracted here can be easily converted into the
graph representation. An example is shown in Figure 4. We invent a
collection of unique variable names for the input values (x and y in
the example), the (anonymous) output values (we pick r0 and r1 in
the example), and each variable fixed in a let expression (a, b and c).
If-then-else expressions become condition nodes. Values, such as
(3, x), become updates to variables, in this case to a and b as set by
the let expression they appear in. Let expressions control order of
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Figure 4. Example conversion of let-expression to graph

operations but create no nodes. Function calls become function call
nodes. Tail recursion becomes a graph arc back to the beginning of
the function.

This conversion is currently done automatically, but without
proof of correctness. If more assurance is desired, the transforma-
tion could in future work be included on the Isabelle/HOL side of
the tool and produce a corresponding certificate theorem.

3.3 Proof of Refinement
The final step in our process is the refinement proof, which we
decompose function by function. We assume that we can treat
other called functions as black boxes fully specified by their cor-
responding refinement theorem, with the calling convention giving
us enough information to relate the C and binary behaviour. If the
compiler makes use of inter-procedural analysis this may invali-
date our assumption; we currently do not support this case. This
compositional approach reduces our large code base to a series of
manageable problems.

As recommended in Pnueli et al’s original definition of transla-
tion validation [24], we divide the validation process into a search
process and a checker, with the search process discovering a proof
script which the checker then validates. This separation is par-
tial, with the two processes sharing some code and the proof
steps checked being far from minimal. The proof script consists
of a problem space description together with a tree of proof rules
Restrict, Split and Leaf. The rules give structure to the proof,
but all the heavy lifting is done by converting proof goals on the
problem space into SMT problems. We will describe these proof
components as the proof checker sees them.

3.3.1 Inlining and The Problem Space
The first step in building a proof script is to establish a problem
space, a shared graph namespace into which the binary and C
bodies of the function of interest are copied. The problem space
is free to be modified, in particular by inlining function calls. The
search process attempts to inline sufficiently that the two function
graphs in the problem space can be proven equivalent.

Inlining is done on the binary side of the problem whenever the
called function does not match any C function, which may be be-
cause the compiler invented the function or modified its signature.

Inlining is done on the C side of the problem at any call site
which is reachable and which calls a function name that does not
appear on the binary side. This simple heuristic may fail in the
presence of selective inlining. It could also potentially inline far
too much source code in the case where a function designated pure
or const was dropped because its result was ignored. This heuristic
has, however, worked well at the optimisation levels we currently
address.

With the stack-aware decompiling, the entire code for avg8 turns
into the following function which does not mention memory. We
have expanded the let-expressions for brevity below.

avg8 (r0, r1, r2, r3, s0, s1, s2, s3) =
(r1 + r0 + r2 + r3 + s0 + s1 + s2 + s3) >>> 3

The generated certificate theorem is stated in terms of the stack
assertion. For avg8, this theorem is:

{R0 r0 ⇤ R1 r1 ⇤ . . . ⇤ stack sp n (s0::s1::s2::s3::ss) ⇤ PC p}
p : e0811000 e0811002 ... e12fff1e

{let r0 = avg8 (r0, r1, r2, r3, s0, s1, s2, s3) in
R0 r0 ⇤ R1 ⇤ . . . ⇤ stack sp n (s0::s1::s2::s3::ss) ⇤ PC lr}

Care is taken to make these Hoare triples adhere exactly to the
calling convention so that they can be used in future decompilations
of code that call this function. Using this certificate theorem, we
can decompile a call to avg8 into a let-expression of the following
form in the decompilation of a caller.

. . . let r0 = avg8 (r0, r1, r2, r3, s0, s1, s2, s3) in . . .

Given that we do not allow C code to take the address of a
local variable, this stack simulation is relatively straightforward to
implement in practice, i.e. it is reasonably easy to automatically
find which locations access the stack and which do not (even
without use of any debug information). If we were to allow taking
the address of a local variable, then this approach would fall apart
very quickly as the distinction between memory and stack locations
becomes blurred.

Having said that, there is one situation where the C compiler
will produce code that passes an address of a stack location around,
even if the C code does not seem to do so. This happens in cases
where a function is to return a struct that does not fit into a single
machine word, i.e. does not fit into a single register. When a func-
tion is to return a struct, it expects to get an address into the caller’s
stack space. This address points to a segment in the caller’s part of
the stack into which the callee is to write its result.

Our approach to dealing with the stack can manage this form
of passing around of pointers into the stack. The solution is to ini-
tialise the stack heuristic appropriately. Instead of starting the stack
heuristic off from a state where the caller’s stack is an opaque un-
touchable part of state, we start it off with a slot for the return struct.
If the result is n-words long, then we start the stack simulation
from a stack which consists of an initial segment ss , the result slots
[t1, t2, . . . , tn] and finally the rest of the stack stack :

stack sp n (ss ++ [t1, t2, . . . , tn] ++ stack)

We also assume (according to the calling convention) that register 0
holds, on entry to the function, the address of the first result slot in
the stack, i.e. sp + 4 ⇥ length ss . With such an initialisation, we
can deal with the case of returning a struct directly into the stack.
The rest of the decompiler runs exactly as before.

The new stack heuristic brings with it a number of new limita-
tions, since the decompiler now tries to discover what the compiler
did with the stack and prove that the stack is kept separate from the
heap. Limitations are discussed in Section 4.2.

3.2.3 Converting Extracted Functions into Graph Format
The pure functions extracted here can be easily converted into the
graph representation. An example is shown in Figure 4. We invent a
collection of unique variable names for the input values (x and y in
the example), the (anonymous) output values (we pick r0 and r1 in
the example), and each variable fixed in a let expression (a, b and c).
If-then-else expressions become condition nodes. Values, such as
(3, x), become updates to variables, in this case to a and b as set by
the let expression they appear in. Let expressions control order of
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Figure 4. Example conversion of let-expression to graph

operations but create no nodes. Function calls become function call
nodes. Tail recursion becomes a graph arc back to the beginning of
the function.

This conversion is currently done automatically, but without
proof of correctness. If more assurance is desired, the transforma-
tion could in future work be included on the Isabelle/HOL side of
the tool and produce a corresponding certificate theorem.

3.3 Proof of Refinement
The final step in our process is the refinement proof, which we
decompose function by function. We assume that we can treat
other called functions as black boxes fully specified by their cor-
responding refinement theorem, with the calling convention giving
us enough information to relate the C and binary behaviour. If the
compiler makes use of inter-procedural analysis this may invali-
date our assumption; we currently do not support this case. This
compositional approach reduces our large code base to a series of
manageable problems.

As recommended in Pnueli et al’s original definition of transla-
tion validation [24], we divide the validation process into a search
process and a checker, with the search process discovering a proof
script which the checker then validates. This separation is par-
tial, with the two processes sharing some code and the proof
steps checked being far from minimal. The proof script consists
of a problem space description together with a tree of proof rules
Restrict, Split and Leaf. The rules give structure to the proof,
but all the heavy lifting is done by converting proof goals on the
problem space into SMT problems. We will describe these proof
components as the proof checker sees them.

3.3.1 Inlining and The Problem Space
The first step in building a proof script is to establish a problem
space, a shared graph namespace into which the binary and C
bodies of the function of interest are copied. The problem space
is free to be modified, in particular by inlining function calls. The
search process attempts to inline sufficiently that the two function
graphs in the problem space can be proven equivalent.

Inlining is done on the binary side of the problem whenever the
called function does not match any C function, which may be be-
cause the compiler invented the function or modified its signature.

Inlining is done on the C side of the problem at any call site
which is reachable and which calls a function name that does not
appear on the binary side. This simple heuristic may fail in the
presence of selective inlining. It could also potentially inline far
too much source code in the case where a function designated pure
or const was dropped because its result was ignored. This heuristic
has, however, worked well at the optimisation levels we currently
address.
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The SMT proof step

Following Pnuelli’s original translation validation, we 
split the proof step:

Part 1:  proof search (proof script construction)

Part 2:  proof checking (checking the proof script)

The proof scripts consist of a state space description 
and a tree of proof rules: Restrict, Split and Leaf.

The heavy lifting is done by calls to SMT solvers for 
both the proof search and checking.



Translating graphs into SMT exps

�������������

	����
����

����������
��	

���������������

��
��

�����

���������
	���	


���������
	���	


����	
���


������	
���
�����
	���	


����	
���


������	
���
���������	
���
�����
	���
���	
���
������������	
���
����
�������	


����	
���


Figure 5. Example Conversion to SMT

looping case, the new hypothesis is ¬b pcn. In each case it is ex-
pected that the subproof will begin with two Restrict rules which
use these hypotheses to restrict the number of visits into some finite
set. In the looping case, the set of possible visit counts will be of
the form {x | i  x < i + k} rather than {x | x < k}. This is an
alternative form of the Restrict rule.

Some slight generalisations to this induction are needed. Firstly,
the Split rule may define a sequence offset on either side. A C se-
quence offset of 2 means that we ignore the first two visits to b sp,
so b pci is the condition that b sp is visited at least i+2 times, and
|P |i is computed on the variable state at the second visit after the i-
th visit. This may be needed to handle various optimisations which
affect the initial few iterations of a loop, including a case where the
binary sequence is shorter than the C sequence because some iter-
ations have been unpacked entirely. Secondly, the predicate P may
be a function not only of the variable states at the respective i-th
visits, but also of the value i and the variable states at the first visit.
If a C variable is incremented by 1 each iteration, it is simplest to
record that it is i� 1 more than its first valuation.

The search process discovers the Split rules essentially by an
exhaustive search with some minor optimisations. In practice this
seems to be sufficient, although loop problems are by far the slow-
est problems for us to solve. In 33 of our 43 loops, the induction
proof succeeds for the first candidate P for which I0, I1, . . . In�1

hold, whereas in the remaining 10 cases the early check was mostly
irrelevant and an average of 15 attempts were required to find a suc-
cessful condition. The variation in these numbers is large, with the
worst offending loop contributing 84 attempts, nearly half the total.

3.3.6 Assertions
Assertions are checks introduced by the C parser to ensure the stan-
dard is respected. These checks have all been handled as proof obli-
gations in the seL4 verification, and may now be used as assump-
tions in this proof.

One assertion of the C standard is that no NULL pointer ever
be dereferenced. The C parser produces a guard at every statement
that uses a pointer which checks that the pointer is non-NULL and
appropriately aligned. These guards are converted into inequalities
and bit checks for the SMT solver, as are similar guards for arith-
metic overflow, division by zero, etc.

Note that, for clarity, we omit these guards in our examples.
There should, for instance, be a guard before the x+ 1 calculation
in Figure 5 to check that x+ 1 does not overflow to negative.

The most involved guards relate to the strict-aliasing rule in C.
The compiler is entitled to assume that no address is simultaneously
in use with two different types. We adjusted the C parser to generate
strong pointer validity assumptions pvalid htd ⌧ p for every pointer
p that is used with type ⌧ when the global heap type description
is htd. These assertions cannot be translated accurately into any

gcc -O1 gcc -O2
Instructions in Binary 11 736 12 299
Decompiled Functions 260 259
- Placeholders 3
Function Pairings 260 225
Successes 234 145
Failures 0 18
Aborted 26 62
- Machine Operations 21 13
- Nested Loops 3 2
- Machine Operations Inlined 2 47
Time Taken in Proof 59m 4h 23m

Table 1. Decompilation and Proof Results

SMT theory. Instead, each time we encounter and expression of
this form, we introduce new booleans pvalid1, pvalid2, etc to
represent them. We then translate the following key theorem:

pvalid htd ⌧ p pvalid htd

0
⌧

0
p distinct types ⌧ ⌧

0

{x | p  x < p+ size(⌧)} \ {x | p0  x < p

0 + size(⌧ 0)} = {}

The SMT form of this fact is pvalid1^pvalid2 �! p+ size(⌧)�
1 < p

0 _ p

0 + size(⌧ 0) � 1 < p. We produce all such theorems,
a possibly quadratic expansion, though the largest group of pvalid
assertions on the same heap type description which we have seen
in successful runs is 20.

These assertions appear in path conditions in the C function
graph. The proof checker always assumes the negation of the path
condition to Err in all its SMT checks, thus this information is
always available.

4. Evaluation and Discussion
4.1 Results
We report on two runs of the decompilation and proof, both for gcc
builds of seL4 at optimisation level 1 and 2 respectively. Table 1
shows the results. Proof timings are taken on a single core of
an Intel Core 2 Duo E8400. The majority of the time taken is
spent in the SMT solvers. A full decompilation run with proof
certificates takes an additional 6–8 hours on modern hardware. Our
implementation is based on the original decompiler implementation
by Myreen et al. [17], which was not optimised for speed. Recent
advances [18] may significantly improve this speed.

There are 540 functions in seL4, but far less symbols in the
binary after inlining. Our proof-producing decompiler is able to
process the whole binary for gcc -O1 and, at the time of writing, all

Here: ‘pc’ is the accumulated path condition and 
         variables (x, y etc.) are values w.r.t. inputs (xi, yi, etc.)

(The actual translation avoids a blow up in size...)



Full workflow
2.2 Decompilation from ARM into Higher-Order Logic
In this paper, we present how we proved seL4 correct down to
the concrete ARM machine code that gcc produces. In order to
reason formally about ARM machine code we require a semantics
for this machine code, i.e. a formal specification of the ARM
instruction set architecture (ISA). For this purpose, we build on
the Cambridge ARM ISA specification [8] and proof tools, namely
a proof-producing decompiler, which makes reasoning about such
complex ISA specifications tractable.

The Cambridge ARM specification has evolved from a string of
ARM related projects that started in 2000 with a hardware verifica-
tion project where Fox formally specified the ARM ISA version 3
and proved, using the HOL4 theorem prover [29], that a hardware
implementation (the ARM6) implements its ISA correctly. Later,
the project’s focus shifted to software verification: the ARM model
was updated and extended to cover all modern versions of the ARM
ISA, namely versions 4–7 including all operation modes and every
instruction. Since the latest model is no longer directly connected
via proof to modern hardware implementations, Fox and Myreen
have extensively validated the latest specification against different
real hardware implementations [8]. This latest ARM specification
is the most comprehensive formal specification of a commercial
ISA that is publicly available.

Due to its history, the Cambridge ARM specification is highly
trustworthy, lengthy and very detailed. Reasoning manually in a
theorem prover about such models is hopelessly tedious. For this
reason, Myreen et al. developed automation that makes machine-
code verification tractable even for very complex ISA specifica-
tions. The main tool is called a decompiler. This tool aids program
verification by extracting a piece of the lengthy model, given a pro-
gram to interpret the model on. More specifically, given a snip-
pet of machine code, this decompiler extract a function describing
the effect of running the code on the ISA specification. Loops in
the machine code turn into recursion in the extracted functions.
The decompiler is automatic and proof producing: for each run,
the decompiler proves that the extracted function is indeed accu-
rate w.r.t. the given code and the ISA specification. Myreen [16]
has shown that decompilation can be used for verification of size-
able case studies, e.g. garbage collectors and Lisp implementations.
This paper builds on decompilation, extends it and shows that it can
be used in the verification of the seL4 microkernel.

3. Correctness Proof
This section describes our refinement approach between C source
semantics and binary code.

The verification process involves a collection of representations
of the input program which are outlined in Figure 2. The two inputs
into the process are the C program and binary ELF file on the top of
Figure 2. The three dotted boxes in the diagram represent the three
main proof systems used in the binary verification: the interactive
LCF-style provers Isabelle/HOL and HOL4, and our SMT-based
proof tool that is centred around a common intermediate language
describing control-flow graphs. On the left of the diagram, the C
program is parsed into the theorem prover Isabelle/HOL using ex-
isting tools [32], and then transformed into a form closer to binary
code. The first such transformation step is within Isabelle/HOL,
the second in our external tool. On the right of Figure 2, the bi-
nary program is decompiled into HOL4, using the existing vali-
dated Cambridge ARM semantics [8]. Since the logics of the two
theorem provers are almost identical, these can be translated into
Isabelle/HOL in a straightforward way to be exported to the inter-
mediate graph language. Once the C program and binary have both
been represented in the common graph language, on the bottom of
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Figure 2. Artefacts in the correctness proof

the diagram, refinement between them can be proven with the as-
sistance of the two SMT solvers Z3 [7] and SONOLAR [23].

The following subsections present each of these steps in more
detail.

The SMT-based proof tool and some of the relevant Isabelle
theories are available from http://www.ssrg.nicta.com.au/

software/TS/graph-refine/.

3.1 Conversion from C Semantics to the Graph Language
This subsection describes the pseudo-compilation process which
converts functions in the C model into the intermediate graph
language. This also serves as an introduction to the graph language.

The idea of the graph conversion is to replace the language
based control flow rules with a simpler control flow graph. An ex-
ample conversion is given in Figure 3. All statements are numbered,
and the steps between them become graph edges, giving us a la-
belled, directed graph. The point of doing this is that the context-
dependent effects of break, continue and others are replaced by
graph edges which simply specify the number of the next statement.
The special label Ret represents return from the function.

The graph consists of three types of nodes. Conditional nodes
are used to pick between execution paths, and correspond closely
to decisions made by if and while statements in C. Basic nodes
represent normal statements, and update the value of some variable
with the result of some calculation (memory is represented as a
variable). Call nodes are used to represent function calls, which
are distinguished from other statements. A number of restrictions
enforced by the C parser are relevant here: function calls may
be embedded in other expressions and statements only in very
limited ways, statements with multiple effects are forbidden, and
switch statements must always be convertible into a chain of if-else
statements.

The conversion also pseudo-compiles all C expressions. An ex-
ample is on the right hand side of Figure 3. Insofar as C can be seen
as a portable assembler, the conversion makes this explicit. Point-
ers become 32-bit words, with address operations of various kinds
becoming explicit arithmetic. Local variables of structure and array
type are replaced by collections of local variables representing their
fields. Assignments of structure type are expanded into a sequence
of assignments for each field. Reads and writes of global variables
become reads and writes of memory, at symbolic addresses which
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Figure 5. Example Conversion to SMT

looping case, the new hypothesis is ¬b pcn. In each case it is ex-
pected that the subproof will begin with two Restrict rules which
use these hypotheses to restrict the number of visits into some finite
set. In the looping case, the set of possible visit counts will be of
the form {x | i  x < i + k} rather than {x | x < k}. This is an
alternative form of the Restrict rule.

Some slight generalisations to this induction are needed. Firstly,
the Split rule may define a sequence offset on either side. A C se-
quence offset of 2 means that we ignore the first two visits to b sp,
so b pci is the condition that b sp is visited at least i+2 times, and
|P |i is computed on the variable state at the second visit after the i-
th visit. This may be needed to handle various optimisations which
affect the initial few iterations of a loop, including a case where the
binary sequence is shorter than the C sequence because some iter-
ations have been unpacked entirely. Secondly, the predicate P may
be a function not only of the variable states at the respective i-th
visits, but also of the value i and the variable states at the first visit.
If a C variable is incremented by 1 each iteration, it is simplest to
record that it is i� 1 more than its first valuation.

The search process discovers the Split rules essentially by an
exhaustive search with some minor optimisations. In practice this
seems to be sufficient, although loop problems are by far the slow-
est problems for us to solve. In 33 of our 43 loops, the induction
proof succeeds for the first candidate P for which I0, I1, . . . In�1

hold, whereas in the remaining 10 cases the early check was mostly
irrelevant and an average of 15 attempts were required to find a suc-
cessful condition. The variation in these numbers is large, with the
worst offending loop contributing 84 attempts, nearly half the total.

3.3.6 Assertions
Assertions are checks introduced by the C parser to ensure the stan-
dard is respected. These checks have all been handled as proof obli-
gations in the seL4 verification, and may now be used as assump-
tions in this proof.

One assertion of the C standard is that no NULL pointer ever
be dereferenced. The C parser produces a guard at every statement
that uses a pointer which checks that the pointer is non-NULL and
appropriately aligned. These guards are converted into inequalities
and bit checks for the SMT solver, as are similar guards for arith-
metic overflow, division by zero, etc.

Note that, for clarity, we omit these guards in our examples.
There should, for instance, be a guard before the x+ 1 calculation
in Figure 5 to check that x+ 1 does not overflow to negative.

The most involved guards relate to the strict-aliasing rule in C.
The compiler is entitled to assume that no address is simultaneously
in use with two different types. We adjusted the C parser to generate
strong pointer validity assumptions pvalid htd ⌧ p for every pointer
p that is used with type ⌧ when the global heap type description
is htd. These assertions cannot be translated accurately into any
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Decompiled Functions 260 259
- Placeholders 3
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Successes 234 145
Failures 0 18
Aborted 26 62
- Machine Operations 21 13
- Nested Loops 3 2
- Machine Operations Inlined 2 47
Time Taken in Proof 59m 4h 23m

Table 1. Decompilation and Proof Results

SMT theory. Instead, each time we encounter and expression of
this form, we introduce new booleans pvalid1, pvalid2, etc to
represent them. We then translate the following key theorem:

pvalid htd ⌧ p pvalid htd

0
⌧

0
p distinct types ⌧ ⌧

0

{x | p  x < p+ size(⌧)} \ {x | p0  x < p

0 + size(⌧ 0)} = {}

The SMT form of this fact is pvalid1^pvalid2 �! p+ size(⌧)�
1 < p

0 _ p

0 + size(⌧ 0) � 1 < p. We produce all such theorems,
a possibly quadratic expansion, though the largest group of pvalid
assertions on the same heap type description which we have seen
in successful runs is 20.

These assertions appear in path conditions in the C function
graph. The proof checker always assumes the negation of the path
condition to Err in all its SMT checks, thus this information is
always available.

4. Evaluation and Discussion
4.1 Results
We report on two runs of the decompilation and proof, both for gcc
builds of seL4 at optimisation level 1 and 2 respectively. Table 1
shows the results. Proof timings are taken on a single core of
an Intel Core 2 Duo E8400. The majority of the time taken is
spent in the SMT solvers. A full decompilation run with proof
certificates takes an additional 6–8 hours on modern hardware. Our
implementation is based on the original decompiler implementation
by Myreen et al. [17], which was not optimised for speed. Recent
advances [18] may significantly improve this speed.

There are 540 functions in seL4, but far less symbols in the
binary after inlining. Our proof-producing decompiler is able to
process the whole binary for gcc -O1 and, at the time of writing, all

We have (almost) proved a full connection between 
the verified C and seL4 binary.


