
Translation Validation for a Verified OS Kernel

Thomas Sewell
NICTA & UNSW, Sydney, Australia

thomas.sewell@nicta.com.au

Magnus Myreen
Cambridge University, UK

magnus.myreen@cl.cam.ac.uk

Gerwin Klein
NICTA & UNSW, Sydney, Australia

gerwin.klein@nicta.com.au

Abstract
We extend the existing formal verification of the seL4 operating
system microkernel from 9 500 lines of C source code to the binary
level. We handle all functions that were part of the previous verifi-
cation. Like the original verification, we currently omit the assem-
bly routines and volatile accesses used to control system hardware.

More generally, we present an approach for proving refinement
between the formal semantics of a program on the C source level
and its formal semantics on the binary level, thus checking the
validity of compilation, including some optimisations, and linking,
and extending static properties proved of the source code to the
executable. We make use of recent improvements in SMT solvers
to almost fully automate this process.

We handle binaries generated by unmodified gcc 4.5.1 at opti-
misation level 1, and can handle most of seL4 even at optimisation
level 2.

Categories and Subject Descriptors D.4.5 [Operating Systems]:
Reliability—Verification; D.2.4 [Software Engineering]: Soft-
ware/Program Verification

General Terms Verification, Languages

Keywords Binary Verification, seL4, Microkernel

1. Introduction
Our aim is to extend one of the largest formal verifications, that of
the seL4 microkernel by Klein et al [11], from around 9 500 lines
of C source code down to 11 736 instructions on the binary level.

Recent successes in the formal verification of sizeable programs
at the implementation level, such as the CompCert C compiler [14],
the Verisoft project [1], or the above mentioned seL4 microker-
nel [11], suggest that formal verification of small, high-importance
software systems is feasible and may become more common in
the future. Unfortunately such software systems tend to be writ-
ten in old, low-level, but high-performance languages like C whose
standards are difficult to formalise, are by necessity purposely vi-
olated by systems programmers, and are rarely implemented pre-
cisely by their toolchains. This leaves the prospective verifier with
a difficult choice. Clean-room designs of modern low-level systems
languages are an attractive research topic, but tend to come with
pragmatic limitations, such as requiring garbage collection for type
safety. The alternative is to proceed with the best available seman-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI ’13 June 2013, Seattle, WA.
Copyright c© 2013 ACM . . . $15.00

tic model of the implementation language and program and hope
that any compiler defect or difference between the compiler’s and
the verifier’s interpretation can be found by testing or other means.

In their study on compiler testing, Yang et al reported 325 pre-
viously unknown defects in 11 different C compilers [34]. Even the
formally verified CompCert was found to exhibit 5 defects, albeit
in its unverified front-end only—it was the only compiler Yang et
al did not manage to break in its code generation phase, despite
devoting significant resources to the task. We have used this veri-
fied compiler on the verified C source of the seL4 microkernel, but
in this case found the result unsatisfactory: There is a remaining
chance of a mismatch between CompCert’s interpretation of the C
standard in the theorem prover Coq and the interpretation of the C
standard the seL4 verification uses [32] in the theorem prover Is-
abelle/HOL [21], esp. in cases where the standard is purposely vio-
lated to implement machine-dependent, low-level operating system
(OS) functionality. Reconciling these two semantics is non-trivial.
Firstly the logics of Coq and Isabelle/HOL are not directly compat-
ible. Secondly, since the seL4 semantics is largely shallowly em-
bedded, an equivalence proof would have to be performed for each
program, similar to our more direct method below.

In this paper we present a hybrid approach, in which we take
precisely the semantics for that specific program (seL4) produced
by Norrish’s C parser [32] for Isabelle/HOL as used in the seL4
verification. We then produce a model of the compiled binary of
this program, extending the approach of Myreen [17, 18] in the
HOL4 theorem prover [29], and we check the soundness of this ex-
tracted model against the strongly validated Cambridge semantics
for the ARM architecture [8]. Finally we use an SMT-based proof
process to establish that the compiled binary matches the expected
semantics of the C source. Formally, we prove that the binary is
a refinement of the stated C source semantics. This property com-
poses with the existing functional correctness proof of seL4.

Our method eliminates one of the Achilles’ heels of the veri-
fied compiler approach: the parser and lexer for concrete C syntax.
Since the high-level functional verification and the binary verifi-
cation connect to precisely the same formal artefact, the output of
the now untrusted C parser, the method by which we arrive at this
artefact is irrelevant. Instead, this trust is replaced by trust in the bi-
nary verification tool and into the import of an executable file into
hexadecimal numbers into the theorem prover HOL4.

In fact, it is not even important any more that the compiler con-
forms to the C standard, or that the C semantics in the theorem
prover agrees with the C standard. All that matters is that compiler
and prover semantics match and thereby transport high-level prop-
erties that have been proved on the C code down to the binary level.
For seL4, this includes functional correctness, integrity, authority
confinement, and non-interference [11, 15, 28].

We provide a full proof of correctness of the compilation by
standard gcc 4.5.1 of all previously formally verified functions [11]
in seL4 at optimisation level 1. We additionally produce proofs
for all of seL4’s unverified initialisation functions except for 3

nested loops. At optimisation level 2, which is the standard high-
performance setting for seL4, we are able to automatically extract
a model for all but four assembly routines (i.e. coverage of 98 %)
and produce proofs of correctness for the vast majority of loop-
free functions. Using optimisation level 1 rather than 2 incurs a
performance cost of 15-20% depending on the system call.

Like the original seL4 verification, we do not handle the as-
sembly routines and volatile accesses used to directly control the
system hardware.

The verification strategy is to first build a representation of both
the C program and the binary within a single restricted intermedi-
ate language. This language consists of simple control flow mecha-
nisms and standard arithmetic operations which are common to the
C language, CPU instruction sets and the SMT bit-vector theory. It
is thus highly amenable to analysis by SMT solvers. To prove our
refinement statement, we extract SMT formulas with consideration
towards program loops as well as proof obligations and assump-
tions arising from the decompilation process and C semantics.

While our main target was extending the seL4 verification to
the binary level, we believe that this approach generalises to other
C verifications and to other compilers. We have for instance started
experimenting with extending the decompilation phase to the out-
put of CompCert. While there are still a number of limitations to
overcome that we discuss in Section 4, we believe this work repre-
sents evidence for a general, flexible method of extending formal
reasoning about C programs to the binary level using standard off-
the-shelf compilers.

In the remainder of this paper, we first summarise the pieces
of previous work we build on in Section 2, before describing the
conversions and proof process in Section 3. Section 4 evaluates the
performance and limitations of our verification method in more de-
tail. We discuss related binary verification approaches in Section 5.

2. Background
In this section, we describe previous background work our binary
verification of seL4 builds on. In particular, these are existing
proofs on seL4 [11] together with its C semantics [32], and existing
work on decompilation [17] and its validated ARM semantics [8].

2.1 The seL4 microkernel verification
The seL4 kernel is a general-purpose OS microkernel measuring
about 9 500 source lines of C code1 and 600 lines of assembly
code. As usual for microkernels, it provides a minimal set of mech-
anisms, including threads, interrupts, virtual memory, and inter-
process communication. Less usual is its capability-based manda-
tory access control model and explicitly user-controlled, but kernel-
enforced memory allocation mechanism. It can be configured as a
classical microkernel, as a hypervisor running Linux instances, or
as a high-assurance pure separation kernel.

What makes this kernel special is that its functional correctness
has been verified over multiple levels by formal refinement from an
abstract specification down to the C source code level [11], and that
further properties have been established over that specification [28].
It represents a large body of existing work, with over 200 000 lines
of Isabelle/HOL proof, that our approach has to interface to if it is
to extend this verification to the binary level.

Figure 1 illustrates the existing verification stack on top and our
new work interfacing with it on the bottom. The existing work starts
with high-level properties on top, abstract functional specification
next, design-level specification further down, and the semantic C
source code level at the bottom. Our work extends this stack by
the semantic description of the binary, thereby removing compiler

1 Klein et al report 8 700 lines [11]. We are basing our work on a newer
version of seL4 that supports further API features.

Access Control

Abstract Specification

Executable Design Spec

Semantic C Level

Binary Semantics

C Code

Binary

C Parser

Decompilation

Proof Formal

Code

Compiler

Tool

pr
ev

io
us

 s
eL

4
w

or
k

Figure 1. Existing seL4 verification stack.

and Isabelle/HOL C parser from the trust chain of the proof and
replacing it with the ARM semantics and our tool set.

The kernel exists for multiple architectures, among them Intel
x86 (unverified) and ARMv6/ARMv7 (verified). It is available as
a commercial product under the name OKL4:verified and for free
download for academic use [22].

Apart from its manageable size, key seL4 features for verifia-
bility were that, as usual for microkernels, almost all device drivers
and therefore most hardware interaction is outside the kernel in
user-space, and the fact that seL4 is an event-based kernel for a
uni-processor setting. This means, interrupts are switched off for
most kernel operations. For long-running operations, seL4 contains
specific preemption points where it explicitly checks for interrupts.
This allows the verification to proceed on a sequential language
model where the explicit coarse-grained preemption points are nor-
mal kernel exits. This is important, both for the C semantics used
in the original verification as well as for the ARM semantics used
in the binary decompilation work we build on.

As illustrated in Figure 1, the bottom level of the existing ver-
ification work is a semantic Isabelle/HOL model of the C source
code of seL4, generated automatically by Norrish’s C parser [32].
This parser instantiates a generic language framework for impera-
tive languages by Schirmer [27], consisting of a generic operational
semantics framework with a Hoare-logic and verification condition
generator on top, which are proved sound and relatively complete
in Isabelle/HOL. This instantiation covers a large subset of stan-
dard C99 [10] extended with architecture and compiler-specific as-
sumptions, for instance about endianness and data layout, that sys-
tems programmers have to make. Its largest limitation is that it does
not permit taking the address of local variables. This enables the C
model to treat parameters and local variables on the stack sepa-
rately from the pointer-addressable heap, thereby simplifying veri-
fication. This limitation could be lifted in future work at the expense
of having to invest more explicit reasoning about this separation in
C source-level verifications.

The memory model this parser uses in its semantic C embedding
is due to Tuch [31, 32]. Its main feature is that it provides abstract
C types and comparatively convenient type-based reasoning on
top of a precise, byte-wise memory model that formalises the C
heap merely as a function from 32-bit words to 8-bit words. Type
information is kept as a so-called heap type description in ghost
state for verification convenience, and Isabelle/HOL type classes
establish abstractions on top. At the rare occasions where kernel
code breaks type safety, such as memory allocation, reasoning can
fall back to the explicit byte level. This model enables high-level
reasoning in the existing verification, and is also compatible with
the binary level in this work.

2.2 Decompilation from ARM into Higher-Order Logic
In this paper, we present how we proved seL4 correct down to
the concrete ARM machine code that gcc produces. In order to
reason formally about ARM machine code we require a semantics
for this machine code, i.e. a formal specification of the ARM
instruction set architecture (ISA). For this purpose, we build on
the Cambridge ARM ISA specification [8] and proof tools, namely
a proof-producing decompiler, which makes reasoning about such
complex ISA specifications tractable.

The Cambridge ARM specification has evolved from a string of
ARM related projects that started in 2000 with a hardware verifica-
tion project where Fox formally specified the ARM ISA version 3
and proved, using the HOL4 theorem prover [29], that a hardware
implementation (the ARM6) implements its ISA correctly. Later,
the project’s focus shifted to software verification: the ARM model
was updated and extended to cover all modern versions of the ARM
ISA, namely versions 4–7 including all operation modes and every
instruction. Since the latest model is no longer directly connected
via proof to modern hardware implementations, Fox and Myreen
have extensively validated the latest specification against different
real hardware implementations [8]. This latest ARM specification
is the most comprehensive formal specification of a commercial
ISA that is publicly available.

Due to its history, the Cambridge ARM specification is highly
trustworthy, lengthy and very detailed. Reasoning manually in a
theorem prover about such models is hopelessly tedious. For this
reason, Myreen et al. developed automation that makes machine-
code verification tractable even for very complex ISA specifica-
tions. The main tool is called a decompiler. This tool aids program
verification by extracting a piece of the lengthy model, given a pro-
gram to interpret the model on. More specifically, given a snip-
pet of machine code, this decompiler extract a function describing
the effect of running the code on the ISA specification. Loops in
the machine code turn into recursion in the extracted functions.
The decompiler is automatic and proof producing: for each run,
the decompiler proves that the extracted function is indeed accu-
rate w.r.t. the given code and the ISA specification. Myreen [16]
has shown that decompilation can be used for verification of size-
able case studies, e.g. garbage collectors and Lisp implementations.
This paper builds on decompilation, extends it and shows that it can
be used in the verification of the seL4 microkernel.

3. Correctness Proof
This section describes our refinement approach between C source
semantics and binary code.

The verification process involves a collection of representations
of the input program which are outlined in Figure 2. The two inputs
into the process are the C program and binary ELF file on the top of
Figure 2. The three dotted boxes in the diagram represent the three
main proof systems used in the binary verification: the interactive
LCF-style provers Isabelle/HOL and HOL4, and our SMT-based
proof tool that is centred around a common intermediate language
describing control-flow graphs. On the left of the diagram, the C
program is parsed into the theorem prover Isabelle/HOL using ex-
isting tools [32], and then transformed into a form closer to binary
code. The first such transformation step is within Isabelle/HOL,
the second in our external tool. On the right of Figure 2, the bi-
nary program is decompiled into HOL4, using the existing vali-
dated Cambridge ARM semantics [8]. Since the logics of the two
theorem provers are almost identical, these can be translated into
Isabelle/HOL in a straightforward way to be exported to the inter-
mediate graph language. Once the C program and binary have both
been represented in the common graph language, on the bottom of

ARM Binary
Semantics

Decompiled
Functions

Adjusted C
Semantics

C Semantics

C Program Binary ProgramCompilation

Im
p

o
rt

Im
p

o
rt

P
ro

o
f

C Graph
Program

P
ro

o
f

Compiled C
Graph Program

Decompiled
Functions 2

Import

E
x
p

o
rt

Decompiled
Graph Program

E
x
p

o
rt

Proof

Isabelle/HOL HOL4

Graph Proof Script

ARM ISA
Model

Reference

C
o
n

v
e
rt

Z3

SONOLAR

Figure 2. Artefacts in the correctness proof

the diagram, refinement between them can be proven with the as-
sistance of the two SMT solvers Z3 [7] and SONOLAR [23].

The following subsections present each of these steps in more
detail.

The SMT-based proof tool and some of the relevant Isabelle
theories are available from http://www.ssrg.nicta.com.au/
software/TS/graph-refine/.

3.1 Conversion from C Semantics to the Graph Language
This subsection describes the pseudo-compilation process which
converts functions in the C model into the intermediate graph
language. This also serves as an introduction to the graph language.

The idea of the graph conversion is to replace the language
based control flow rules with a simpler control flow graph. An ex-
ample conversion is given in Figure 3. All statements are numbered,
and the steps between them become graph edges, giving us a la-
belled, directed graph. The point of doing this is that the context-
dependent effects of break, continue and others are replaced by
graph edges which simply specify the number of the next statement.
The special label Ret represents return from the function.

The graph consists of three types of nodes. Conditional nodes
are used to pick between execution paths, and correspond closely
to decisions made by if and while statements in C. Basic nodes
represent normal statements, and update the value of some variable
with the result of some calculation (memory is represented as a
variable). Call nodes are used to represent function calls, which
are distinguished from other statements. A number of restrictions
enforced by the C parser are relevant here: function calls may
be embedded in other expressions and statements only in very
limited ways, statements with multiple effects are forbidden, and
switch statements must always be convertible into a chain of if-else
statements.

The conversion also pseudo-compiles all C expressions. An ex-
ample is on the right hand side of Figure 3. Insofar as C can be seen
as a portable assembler, the conversion makes this explicit. Point-
ers become 32-bit words, with address operations of various kinds
becoming explicit arithmetic. Local variables of structure and array
type are replaced by collections of local variables representing their
fields. Assignments of structure type are expanded into a sequence
of assignments for each field. Reads and writes of global variables
become reads and writes of memory, at symbolic addresses which

http://www.ssrg.nicta.com.au/software/TS/graph-refine/
http://www.ssrg.nicta.com.au/software/TS/graph-refine/

 struct node *
 find (struct tree *t, int k) {
1 struct node *p = t->trunk;
2 while (p) {
3 if (p->key == k)
4 return p;
5 else if (p->key < k)
6 p = p->right;
 else
7 p = p->left;
 }
8 return NULL;
 }

1

2

38

4 5

Ret 6 7

1: p := Mem[t + 4];

2: p == 0 ?

8: ret := 0
3: Mem[p] == k ?

4: ret := p;
5: Mem[p] < k ?

6: p := Mem[p + 4];
7: p := Mem[p + 8];

True

Fa
lse

Tru
eFa

ls
e

Tru
e

Fa
lse

Figure 3. Example Conversion of Structure and Statements to Graph Language

are later instantiated by reading the ELF symbol table. The expres-
sions that remain are entirely machine compatible: operations such
as 32-bit addition and multiplication, left and right shifts, signed
and unsigned less-than, and finally memory access and update of
32-bit and 8-bit values.

It is a theorem of the Tuch memory semantics [31] that memory
writes of aggregate types are equivalent to sequences of writes
of their fields, assuming the aggregate type contains no padding.
Padding creates a number of headaches for us, and so for the
purposes of this work we have adjusted the seL4 source to ensure
that all structures of interest are packed (see Section 4.3).

The complication is that C is not merely a portable assembler.
The C standard mandates a number of restrictions on the way
various operations may be used, and some of these restrictions go
beyond the scope of machine operations. One simple restriction is
that arithmetic on signed operands may not overflow, and another
is that dereferenced pointers must be aligned and nonzero. To
ensure the standard is followed, the parser inserts a number of
Guard statements into its output, which allow execution to continue
only if some condition is met. The conditions become verification
obligations in the existing verification work.

These guard statements are translated into condition nodes with
one of the outbound edges pointing to the special label Err. Given
that the guard conditions have all been established from the invari-
ants in previous work, it will become an input assumption to the
current work that these paths to Err are never taken. These guards
were omitted from Figure 3 — there ought to be condition nodes
immediately before all memory-using nodes which check pointer
validity.

The key restriction from the C standard that cannot be realised
in machine operations is the strict-aliasing rule. This allows the
compiler to assume that a given memory address is not in use
with two different incompatible types. In systems code, program-
mers occasionally break this assumption (see also Section 4.4), but
most code conforms to it. Since optimisations frequently make use
of the rule, we need to make the information it conveys available
at the points where it does hold. To do this, we strengthened the
checks made in the C parser output against the heap type descrip-
tion, a global variable which tracks the expected type of mem-
ory. The graph conversion then includes the heap type descrip-
tion and checks in its output. The stronger checks are of the form
pvalid htd τ p for some heap type description htd, C type τ and
pointer value p. The expected non-aliasing conditions are theorems
of the Tuch memory model [31], for instance this rule about ints
and floats:

pvalid htd int p pvalid htd′ float p
{x | p ≤ x < p+ 4} ∩ {x | p′ ≤ x < p′ + 4} = {}

The semantics of the graph language are straightforward to for-
malise in Isabelle/HOL or HOL4. The node types are introduced as

datatype constructors Basic, Cond and Call. A single step start-
ing from a Basic node updates local variables, and starting from
a Cond node decides between two possible successor labels. The
Call nodes create a new stack frame, with a new graph and new
local variables, and steps from the Ret and Err labels fold the cur-
rent stack frame into the previous one. The semantics of execution
are given by the transitive closure of this single-step relation. Given
this formal semantics, we have proven, in Isabelle/HOL, that the
converted functions in the graph language refine the original C se-
mantics. The details of this formalisation and proof are elided here,
and are largely technical.

3.2 Decompiling Compiler Output into Logic
The next piece of the puzzle is the right-hand side of Figure 2,
i.e. how we take binaries the compilers (recent versions of stan-
dard unmodified gcc) produce, decompile these binaries into func-
tions, which we, in turn, translate into the graph language described
above. By decompilation we mean proof-producing extraction of
functional programs from concrete binaries. Here we build on pre-
vious work on such decompilation [17, 18], but in this text we do
not assume any prior knowledge of the previous work. Instead, we
use a few examples below to demonstrate what decompilation pro-
vides and what we had to alter in Myreen’s original decompilation
approach to make the decompiler’s output better compatible with
the C semantics to which the left-hand side of the Figure 2 con-
nects the decompiler’s output.

3.2.1 Simple Decompilation Example
To get a flavour of what decompilation provides, consider the
following simple C function for taking the average of two integers.

uint avg (uint i, uint j) {
return (i + j) / 2;

}

When compiled with gcc, this C code is translated into an ARM bi-
nary (an ELF file). Applying relevant objdump tools to the binary,
one can produce a text file showing the generated ARM machine
code (on the left below) and ARM assembly code (in the centre).

<avg>:
e0810000 add r0, r1, r0 // add r1 to r0
e1a000a0 lsr r0, r0, #1 // shift r0 right
e12fff1e bx lr // return

To decompile the generated machine code, one simply provides
the hex codes on the left to the decompiler together with the signa-
ture of the C function. The decompiler extracts from the machine
code a function in logic that describes the state update the machine
code performs. The machine code above is converted into the fol-
lowing logic function. Note that here, r0 and r1 are 32-bit integers

and arithmetic + is over 32-bit integers (overflow wraps around).

avg (r0, r1) = let r0 = r1 + r0 in
let r0 = r0 >>> 1 in
r0

The decompiler also automatically proves a certificate theorem:
a theorem relating the extracted function avg with the original ma-
chine code. These certificate theorems are stated in terms of a total-
correctness Hoare logic with triples {pre}code{post} for machine
code. They are defined and proved in terms of the underlying spec-
ification of the ARM instruction set architecture [8]. Precise details
on their definition be found elsewhere [16]. Informally, the follow-
ing Hoare triple can be read to say: if the program counter p points
to the start of the machine code and r0, r1 and lr hold initial val-
ues of registers 0, 1 and 14 respectively, then execution will reach
a state where the postcondition is true, i.e. a state where the value
of register 0 is described by avg (r0, r1) and the program counter
is set to the return address lr . Informally, read ∗ below as ‘and’,
formally this is a separating conjunction from separation logic [25]
but here used to separate between any machine code resources [16].

{R0 r0 ∗ R1 r1 ∗ R14 lr ∗ PC p }
p : e0810000 e1a000a0 e12fff1e
{R0 (avg (r0, r1)) ∗ R1 ∗ R14 ∗ PC lr }

The benefit of decompilation is that the extracted functions
provide a convenient abstraction of the machine code from which
it is much more tractable to perform further proofs. Further proofs
need only deal with the extracted function because the certificate
theorem states that the behaviour of the extracted functions and the
original machine code agree according to the specification of the
instruction set architecture.

How is this form of proof-producing decompilation imple-
mented in a theorem prover? The original approach does not use
any heuristics and blindly follows the following steps:

1. For each instruction in the machine code, evaluate the specifica-
tion of the instruction set architecture and prove a machine-code
Hoare triple describing the effect of each instruction.

2. Construct a control-flow graph (CFG) based on these Hoare
triples. Split the code into separate decompilation rounds, e.g.
one round for each (nested) loop.

3. For each decompilation round:

(a) Compose the Hoare triples for each path through the code
segment, merge these Hoare triples to produce a single
Hoare triple describing this code segment.

(b) If there is a jump to one of the entry points, then apply a
special loop rule which introduces a tail-recursive function,

(c) The result is a theorem stated as a Hoare triple. Its postcon-
dition mentions the effect of executing the code segment,
expressed as a function applied to the initial values. We read
off this function from the postcondition and return both the
(certificate) theorem and the extracted function.

This form of decompilation is described in detail elsewhere [16]
and has recently been extended [18] to also allow arbitrary use of
code pointers, which the original approach struggled to handle.

3.2.2 C-Compatible (Stack Aware) Decompilation
Decompilation as outlined above can effectively extract functions
from machine code. However, the functions the decompilation pro-
duces are not immediately compatible with the C semantics which
we target. An extension of the avg example from above illustrates
what goes wrong. Consider the following C function which takes
eight integers as input and calculates their average.

uint avg8 (uint i1, i2, i3, i4, i5, i6, i7, i8) {
return (i1+i2+i3+i4+i5+i6+i7+i8) / 2;

}

When this is compiled, gcc produces the following ARM assembly.
Note that arguments i5-i8 are passed on the stack. Hence the
memory load instructions ldr and ldm.

<avg8>:
e0811000 add r1, r1, r0
e0811002 add r1, r1, r2
e59d2000 ldr r2, [sp] // load
e0811003 add r1, r1, r3
e0810002 add r0, r1, r2
e99d000c ldmib sp, {r2, r3} // load
e0800002 add r0, r0, r2
e0800003 add r0, r0, r3
e59d300c ldr r3, [sp, #12] // load
e0800003 add r0, r0, r3
e1a001a0 lsr r0, r0, #3
e12fff1e bx lr

The original decompiler knew nothing about how C uses the stack
and thus treats the stack accesses as ordinary memory accesses.
This results in extracted functions where stack accesses touch
memory explicitly, e.g. the last load from above turns into a line:

. . . let r3 = m(r13 + 12) in . . .

This fits very badly with the C semantics for which this spilling into
the stack is completely hidden. The C semantics we use treats all
local variables as simple ‘register’ variables, i.e. according to the C
semantics avg8 does not make any memory accesses.

To remedy this mismatch, we made the decompiler aware of the
stack and the C calling convention for ARM. We made the decom-
piler treat the stack as a separate datastructure. We formalised a
new separation-logic inspired stack assertion

stack sp n stack

which is true if the stack pointer (register 13) holds a value sp such
that the list of elements stack are on the stack and there is space
for n elements above the stack pointer, i.e. n elements can safely be
pushed onto the stack. We can keep this datastructure separate from
the rest of memory by proving pre/postconditions where the ‘heap’
memory is separate from the stack using the separating conjunction
∗ from separation logic [16, 25].

stack sp n stack ∗ memorym

The altered decompiler now has a new stack simulation phase
which attempts to discover where and how the stack pointer can
travel through the code, i.e. it attempts to identify which instruc-
tions access the stack and what offsets are used, i.e. which stack
elements are accessed. This phase comes immediately after CFG
exploration (i.e. step 2 of the original algorithm).

When run on the simple avg8 example, this stack heuristic finds
that all the load instructions are stack accesses. For each of the
stack accesses, it derives a new Hoare triple stated in terms of the
stack assertion. For example, the last load in the example above is
described by the following Hoare triple. Here :: is list cons.

{R3 r3 ∗ stack sp n (s0::s1::s2::s3::ss) ∗ PC p }
p : e59d300c
{R3 s3 ∗ stack sp n (s0::s1::s2::s3::ss) ∗ PC (p+4) }

Given these Hoare triples stated in terms of stack, the rest of the
decompiler runs just as before. The Hoare triple above turns into a
let-expression of the following form:

. . . let r3 = s2 in . . .

With the stack-aware decompiling, the entire code for avg8 turns
into the following function which does not mention memory. We
have expanded the let-expressions for brevity below.

avg8 (r0, r1, r2, r3, s0, s1, s2, s3) =
(r1 + r0 + r2 + r3 + s0 + s1 + s2 + s3) >>> 3

The generated certificate theorem is stated in terms of the stack
assertion. For avg8, this theorem is:

{R0 r0 ∗ R1 r1 ∗ . . . ∗ stack sp n (s0::s1::s2::s3::ss) ∗ PC p}
p : e0811000 e0811002 ... e12fff1e
{let r0 = avg8 (r0, r1, r2, r3, s0, s1, s2, s3) in

R0 r0 ∗ R1 ∗ . . . ∗ stack sp n (s0::s1::s2::s3::ss) ∗ PC lr}
Care is taken to make these Hoare triples adhere exactly to the
calling convention so that they can be used in future decompilations
of code that call this function. Using this certificate theorem, we
can decompile a call to avg8 into a let-expression of the following
form in the decompilation of a caller.

. . . let r0 = avg8 (r0, r1, r2, r3, s0, s1, s2, s3) in . . .

Given that we do not allow C code to take the address of a
local variable, this stack simulation is relatively straightforward to
implement in practice, i.e. it is reasonably easy to automatically
find which locations access the stack and which do not (even
without use of any debug information). If we were to allow taking
the address of a local variable, then this approach would fall apart
very quickly as the distinction between memory and stack locations
becomes blurred.

Having said that, there is one situation where the C compiler
will produce code that passes an address of a stack location around,
even if the C code does not seem to do so. This happens in cases
where a function is to return a struct that does not fit into a single
machine word, i.e. does not fit into a single register. When a func-
tion is to return a struct, it expects to get an address into the caller’s
stack space. This address points to a segment in the caller’s part of
the stack into which the callee is to write its result.

Our approach to dealing with the stack can manage this form
of passing around of pointers into the stack. The solution is to ini-
tialise the stack heuristic appropriately. Instead of starting the stack
heuristic off from a state where the caller’s stack is an opaque un-
touchable part of state, we start it off with a slot for the return struct.
If the result is n-words long, then we start the stack simulation
from a stack which consists of an initial segment ss , the result slots
[t1, t2, . . . , tn] and finally the rest of the stack stack :

stack sp n (ss ++ [t1, t2, . . . , tn] ++ stack)

We also assume (according to the calling convention) that register 0
holds, on entry to the function, the address of the first result slot in
the stack, i.e. sp + 4 × length ss . With such an initialisation, we
can deal with the case of returning a struct directly into the stack.
The rest of the decompiler runs exactly as before.

The new stack heuristic brings with it a number of new limita-
tions, since the decompiler now tries to discover what the compiler
did with the stack and prove that the stack is kept separate from the
heap. Limitations are discussed in Section 4.2.

3.2.3 Converting Extracted Functions into Graph Format
The pure functions extracted here can be easily converted into the
graph representation. An example is shown in Figure 4. We invent a
collection of unique variable names for the input values (x and y in
the example), the (anonymous) output values (we pick r0 and r1 in
the example), and each variable fixed in a let expression (a, b and c).
If-then-else expressions become condition nodes. Values, such as
(3, x), become updates to variables, in this case to a and b as set by
the let expression they appear in. Let expressions control order of

f x y =

 let (a, b) = if x < y

 then (1, 2)

 else (3, x)

 in let c = a + b - y

 in (c, 0)

1: x < y?

2: a := 1 4: a := 3

3: b := 1 5: b := x

6: c := a + b - y

7: r1 := c

8: r2 := 0

Figure 4. Example conversion of let-expression to graph

operations but create no nodes. Function calls become function call
nodes. Tail recursion becomes a graph arc back to the beginning of
the function.

This conversion is currently done automatically, but without
proof of correctness. If more assurance is desired, the transforma-
tion could in future work be included on the Isabelle/HOL side of
the tool and produce a corresponding certificate theorem.

3.3 Proof of Refinement
The final step in our process is the refinement proof, which we
decompose function by function. We assume that we can treat
other called functions as black boxes fully specified by their cor-
responding refinement theorem, with the calling convention giving
us enough information to relate the C and binary behaviour. If the
compiler makes use of inter-procedural analysis this may invali-
date our assumption; we currently do not support this case. This
compositional approach reduces our large code base to a series of
manageable problems.

As recommended in Pnueli et al’s original definition of transla-
tion validation [24], we divide the validation process into a search
process and a checker, with the search process discovering a proof
script which the checker then validates. This separation is par-
tial, with the two processes sharing some code and the proof
steps checked being far from minimal. The proof script consists
of a problem space description together with a tree of proof rules
Restrict, Split and Leaf. The rules give structure to the proof,
but all the heavy lifting is done by converting proof goals on the
problem space into SMT problems. We will describe these proof
components as the proof checker sees them.

3.3.1 Inlining and The Problem Space
The first step in building a proof script is to establish a problem
space, a shared graph namespace into which the binary and C
bodies of the function of interest are copied. The problem space
is free to be modified, in particular by inlining function calls. The
search process attempts to inline sufficiently that the two function
graphs in the problem space can be proven equivalent.

Inlining is done on the binary side of the problem whenever the
called function does not match any C function, which may be be-
cause the compiler invented the function or modified its signature.

Inlining is done on the C side of the problem at any call site
which is reachable and which calls a function name that does not
appear on the binary side. This simple heuristic may fail in the
presence of selective inlining. It could also potentially inline far
too much source code in the case where a function designated pure
or const was dropped because its result was ignored. This heuristic
has, however, worked well at the optimisation levels we currently
address.

This heuristic considers the C and binary functions completely
separately, ignoring the relationship between them for now. This
is a deliberate design decision allowing us to perform all inlining
before any other analyses.

The problem space produced after inlining is included in the
proof script, and the checker trusts that this problem space is deriv-
able from the functions of interest. Checking that inlining was per-
formed correctly did not seem worthwhile.

3.3.2 Conversion to SMT
The search and checker processes both use SMT solvers exten-
sively to make judgements about the C and binary execution. These
executions will form a sequence of visits to nodes in the problem
space graph. The items of interest for a given node n will be the
values of variables, should n be visited, at the point in execution
that n is reached, and also the conditions under which n is reached.
The final objective of the proof process is to reason about the val-
ues of returned variables should Ret be reached, and the conditions
under which Err is reached.

These valuations and conditions can be represented in the SMT
logic. Figure 5 shows nearly all of the steps of interest. The boxes
show the path condition and variable values immediately before
execution of each node. The function input variables are simply
named, for instance xi, and are unknowns in SMT. The path con-
dition at the starting node, 1, is simply true. Basic nodes, such as 1
and 3, update the variable state with values taken from the existing
variable state substituted into their expression, for instance, at node
1, x+1 is evaluated as xi+1, and this is used to update the value of
y. Condition nodes, such as 2, substitute their expression and add it
to the path condition, such as the path condition at 3. When paths
converge, such as at 4, the path condition to the node is the union of
the conditions on each path, and the variable values are constructed
using if-then-else expressions — if the path via 3 was taken, x has
the value from 3, otherwise from 2.

Conveniently omitted from Figure 5 was the variable state af-
ter calling function f at 4. The return value is named, for instance
z after 4 , and becomes another SMT unknown. The SMT con-
version process notes the input and output values, and if any other
call to f is made, adds SMT assertions that f will return the same
values given the same inputs. If the two calls are on the C and bi-
nary side, the argument types may differ slightly, in which case the
assertion takes into account the calling convention.

Figure 5 is inaccurate in that it is fully expanded. The expres-
sions computed at nodes 1 and 2 would have been given names us-
ing SMTLIB2’s definition feature, for instance y after 1 = xi+1,
cond at 2 = y after 1 < 3. This reduces the syntactic expan-
sion that already is seen at node 4.

This process does not handle loops, and the generalisation will
be discussed in Section 3.3.4.

The values here are all encoded in the SMTLIB2 QF ABV logic
(quantifier-free formulae over arrays and bit-vectors). The variables
and registers are all represented by 8-bit and 32-bit vectors. Mem-
ory is represented as an SMTLIB array, mapping 30-bit to 32-bit
words. We find that this representation results in better SMT solver
performance than the obvious 32-bit to 8-bit array, since it makes
the most common operations—aligned 32-bit reads and writes—
simple array operations, while the rarer 8-bit reads and writes be-
come more complex.

Some values cannot be simply encoded, for instance the heap
type description and pointer validity assertions described earlier.
Workarounds for this are discussed in Section 3.3.6.

3.3.3 Simple Cases and the Leaf Rule
With the problem space established, and a process available for
converting variable values and path conditions to SMT expressions,

the proof checker explores the proof tree. The starting assumptions
are that the input variables equate as specified by the calling con-
vention, for example x = r0, y = r1 etc.

The main objective is to show that the output variables, those
taken on the arcs to the Ret label, are equal as specified by the
calling convention. It may be assumed in proving this that the path
to the Err label is never taken on the C side. It must also be shown
that the path to Err is never taken on the binary side.

The Leaf rule instructs the proof checker to attempt to prove
these final goals immediately, by converting the values of variables
at Ret and the path conditions to Err into SMT values and check-
ing that the negation of the required propositions is unsatisfiable.

3.3.4 Path Restrictions and the Restrict Rule
The conversion of variables and path conditions to SMT depends
on the node of interest being reachable via some finite collection
of paths. This is problematic for points which are reachable via a
loop, which may be reachable after any number of loop iterations.

Consider a C function containing a single loop of this form:

for (i = 0; i < 4; i ++) { ...}
The compiler may well fully unroll this loop in the binary, since
only 4 copies are needed, making the binary loop-free. The proof
script must replicate this logic.

The SMT conversion process cannot describe in general the
state at a node in a loop, but it can describe the 1st, 2nd or n-th
visit to that node, for small values of n. The path condition for the
5th visit to the head of the loop described here can be converted to
SMT, and the key observation is that this condition is always false.

The Restrict rule names a node and a bound n, and instructs
the proof checker to check that the path condition to the nth visit
to that node is unsatisfiable by SMT. The proof checker then intro-
duces a restriction, which asserts that this node is reached less than
n times. This promotes the semantic limit on the loop iterations
into a syntactic limit used by the SMT conversion process, which
can now handle nodes in and beyond the loop.

Restrict proof script nodes have a single child, which contin-
ues the proof with the new restriction in force. In the case described,
the subproof may be the Leaf rule, which, with the restriction avail-
able, can reason about Ret and Err and finish the proof.

3.3.5 Split Induction
The Split rule is used to handle cases that cannot be finitely
enumerated. The rule names a C split point c sp, a binary split point
b sp, an equality predicate P and a bound n. Roughly speaking,
the checker will prove by induction that for each visit to b sp along
the binary execution path, c sp is also visited with the variable state
related byP . Formally, we define c pci to be the condition that c sp
is visited at least i times, b pci similarly, and |P |i to be condition
that the P holds on the values of the variables at the i-th visit to
c sp and b sp respectively. Define Ii to be the property that b pci
implies both c pci and |P |i. The checker shows ∀i > 0. Ii by
n-ary induction, that is, by proving I1, I2, . . . In directly and also
that the induction hypotheses Ii, Ii+1, . . . Ii+n−1 and i > 0 imply
Ii+n.

Having established that the sequence of visits to b sp is matched
at c sp, we consider three cases on the length of the sequence. If
the sequence is infinite, then the binary execution and C execution
are both non-terminating, and this is a valid refinement. The se-
quence may also contain n elements, in which case it ends with
the elements i, i + 1 . . . i + n − 1. Thirdly, the sequence may
contain less than n elements. The proof script considers the lat-
ter two cases via two subproofs, which are children of the Split
node in the proof tree. In the loop proof, new hypotheses are in-
troduced: b pci+n−1, ¬b pci+n, Ii, Ii+1, . . . Ii+n−1. In the non-

1. y := x + 1

2. y < 3 ?

3. x := y - 12

4. z = f (x, y)

Tr
ue

False

pc = True
x = xi

pc = True
x = xi

y = xi + 1

pc = (xi + 1) < 3
x = xi

y = xi + 1

pc = (xi + 1) < 3 ∨ (xi + 1) ≮ 3
x = if (xi + 1) < 3 then (xi + 1) - 12 else xi

y = xi + 1

Figure 5. Example Conversion to SMT

looping case, the new hypothesis is ¬b pcn. In each case it is ex-
pected that the subproof will begin with two Restrict rules which
use these hypotheses to restrict the number of visits into some finite
set. In the looping case, the set of possible visit counts will be of
the form {x | i ≤ x < i + k} rather than {x | x < k}. This is an
alternative form of the Restrict rule.

Some slight generalisations to this induction are needed. Firstly,
the Split rule may define a sequence offset on either side. A C se-
quence offset of 2 means that we ignore the first two visits to b sp,
so b pci is the condition that b sp is visited at least i+2 times, and
|P |i is computed on the variable state at the second visit after the i-
th visit. This may be needed to handle various optimisations which
affect the initial few iterations of a loop, including a case where the
binary sequence is shorter than the C sequence because some iter-
ations have been unpacked entirely. Secondly, the predicate P may
be a function not only of the variable states at the respective i-th
visits, but also of the value i and the variable states at the first visit.
If a C variable is incremented by 1 each iteration, it is simplest to
record that it is i− 1 more than its first valuation.

The search process discovers the Split rules essentially by an
exhaustive search with some minor optimisations. In practice this
seems to be sufficient, although loop problems are by far the slow-
est problems for us to solve. In 33 of our 43 loops, the induction
proof succeeds for the first candidate P for which I0, I1, . . . In−1

hold, whereas in the remaining 10 cases the early check was mostly
irrelevant and an average of 15 attempts were required to find a suc-
cessful condition. The variation in these numbers is large, with the
worst offending loop contributing 84 attempts, nearly half the total.

3.3.6 Assertions
Assertions are checks introduced by the C parser to ensure the stan-
dard is respected. These checks have all been handled as proof obli-
gations in the seL4 verification, and may now be used as assump-
tions in this proof.

One assertion of the C standard is that no NULL pointer ever
be dereferenced. The C parser produces a guard at every statement
that uses a pointer which checks that the pointer is non-NULL and
appropriately aligned. These guards are converted into inequalities
and bit checks for the SMT solver, as are similar guards for arith-
metic overflow, division by zero, etc.

Note that, for clarity, we omit these guards in our examples.
There should, for instance, be a guard before the x+ 1 calculation
in Figure 5 to check that x+ 1 does not overflow to negative.

The most involved guards relate to the strict-aliasing rule in C.
The compiler is entitled to assume that no address is simultaneously
in use with two different types. We adjusted the C parser to generate
strong pointer validity assumptions pvalid htd τ p for every pointer
p that is used with type τ when the global heap type description
is htd. These assertions cannot be translated accurately into any

gcc -O1 gcc -O2
Instructions in Binary 11 736 12 299
Decompiled Functions 260 259
- Placeholders 3
Function Pairings 260 225
Successes 234 145
Failures 0 18
Aborted 26 62
- Machine Operations 21 13
- Nested Loops 3 2
- Machine Operations Inlined 2 47
Time Taken in Proof 59m 4h 23m

Table 1. Decompilation and Proof Results

SMT theory. Instead, each time we encounter and expression of
this form, we introduce new booleans pvalid1, pvalid2, etc to
represent them. We then translate the following key theorem:

pvalid htd τ p pvalid htd′ τ ′ p distinct types τ τ ′

{x | p ≤ x < p+ size(τ)} ∩ {x | p′ ≤ x < p′ + size(τ ′)} = {}

The SMT form of this fact is pvalid1∧pvalid2 −→ p+ size(τ)−
1 < p′ ∨ p′ + size(τ ′) − 1 < p. We produce all such theorems,
a possibly quadratic expansion, though the largest group of pvalid
assertions on the same heap type description which we have seen
in successful runs is 20.

These assertions appear in path conditions in the C function
graph. The proof checker always assumes the negation of the path
condition to Err in all its SMT checks, thus this information is
always available.

4. Evaluation and Discussion
4.1 Results
We report on two runs of the decompilation and proof, both for gcc
builds of seL4 at optimisation level 1 and 2 respectively. Table 1
shows the results. Proof timings are taken on a single core of
an Intel Core 2 Duo E8400. The majority of the time taken is
spent in the SMT solvers. A full decompilation run with proof
certificates takes an additional 6–8 hours on modern hardware. Our
implementation is based on the original decompiler implementation
by Myreen et al. [17], which was not optimised for speed. Recent
advances [18] may significantly improve this speed.

There are 540 functions in seL4, but far less symbols in the
binary after inlining. Our proof-producing decompiler is able to
process the whole binary for gcc -O1 and, at the time of writing, all

but 3 routines2 (i.e. 98 % of the binary) at -O2. Some functions at
-O2 have optimised function signatures, and thus cannot be paired
via the calling convention with their C counterparts (we address
this problem at the refinement stage by inlining these functions
everywhere).

We produce proofs for all -O1 functions except for the 21 ma-
chine interface functions left abstract in the seL4 verification, 3 sys-
tem initialisation functions involving nested loops, and 2 functions
from the optional fastpath optimisation which inline machine in-
terface operations. In the -O2 binary far more functions inline ma-
chine interface operations. There are also a number of explicit proof
failures, most of which are failures to find split points, usually be-
cause of loop unrolling, loop invariant code motion and other loop
structure optimisations.

We use the SMT solvers SONOLAR [23] and Z3 [7]. SONO-
LAR solves all of the problems we pose to it whereas Z3 times
out on many of the larger problems. We suspect this is because of
our heavy use of the theory of arrays (to represent memory) which
SONOLAR is specifically designed to support. However Z3 sup-
ports all of the SMTLIB2 input standard, including retraction of as-
sertions, whereas SONOLAR must be restarted for each new prob-
lem, thus we get best performance by invoking Z3 with a timeout
of 2 seconds and SONOLAR if Z3 fails.

4.2 Constraints of the Approach
We aim to be general in supporting various flavours of C source,
compiler and optimisation level. In practice we are limited by
the restrictions of Norrish’s C parser [32] we build on, our stack
heuristic and the loop heuristics.

The largest single restriction imposed by the existing C parser
is that it forbids taking the addresses of stack variables. The parser
also forbids many uses of function pointers and all uses of variable-
length argument lists [32]. In the seL4 verification this restriction
simplified reasoning. As discussed in Section 3.2, it also enforces a
static separation of stack accesses and heap accesses here which is
needed for the decompilation process stack heuristic.

The C parser also mandates a level of conformity to the C stan-
dard which turns out to be rare in practice. For instance, duplicat-
ing a typedef statement, usually because of duplication of header
files, is illegal in the C standard and rejected by the parser. Global
variables with names beginning with underscores are also rejected.
Compilers such as gcc are flexible in this regard, and various open
source projects we had hoped to use as additional case studies tend
to abuse this flexibility w.r.t. the standard. Both restrictions could
be lifted easily in future work, since adherence to the standard be-
comes less important when binary verification is available.

The existing C semantics [32] as well as our graph language
design fail to handle the case where the compiler has a genuine
choice in data layout, such as when writing to a structure containing
padding. In principle the parser and graph language could include
some kind of unspecified decision node here, which would then
become an existentially quantified value in the SMT problem. In
practice we choose not to handle this situation, because embedded
systems code often intentionally avoids padding anyway and the
elimination of padding is easy to achieve on the source level.

The stack heuristic tries to discover how the binary handles the
stack and tries to prove that the stack is kept separate from the heap.
The exact use of the stack depends on the compiler, which means
that our heuristics are fragile and at present only target recent
versions of gcc. During the project, we switched gcc versions a
few times. Each time the stack heuristic required some fine-tuning.

2 These break the calling convention, i.e. gcc -O2 has performed aggressive
interprocedural optimisations.

The new decompiler uses the ARM/C calling convention to
make sure that the functions it extracts take input and produce out-
put that match the input and output signatures of the correspond-
ing C functions. This correspondence between signatures is impor-
tant because it allows us to modularise the verification problem.
However, when compiling with gcc -O2 we noticed that this corre-
spondence breaks down in certain places. Sometimes gcc optimises
function signatures, e.g. removing unused arguments where it can.
This required special care. In the verification, we avoid these ‘bro-
ken’ function boundaries by inlining (in the logic) these problem-
atic functions, i.e. such function boundaries disappear.

The loop heuristic presented in Section 3.3 depends on the
existence of a split point pair, a point in the loop in the compiled
binary code at which execution synchronises with a point in the
C loop. There is no logical reason such a point need exist. In the
case where a memory write is moved before or after an entire loop,
no such point exists, and a more general formulation of problem
splitting is required. This heuristic has proved sufficient at low
optimisation levels, however such generalisations will be needed
at higher levels of optimisation.

The loop heuristic presented here also does not handle nested
loops, which do not occur in the previously verified part of seL4.
To deal with nested loops, or with the compilation of loops with
very complex control structure, it may be necessary to search for
multiple split point pairs. This could be attempted in roughly the
same manner as searching for a single split point pair, although the
computational cost is likely to be high. Again, embedded systems
code usually does not exhibit such complex control flow within
loops, even though simple nested loops may occur. We aim to
handle these in future work.

4.3 Workarounds
While we aim to support all situations as automatically as possible,
we had to make a small number of changes to seL4 for the proof to
work. As mentioned above, we choose not to handle the situation
where the compiler is given a genuine choice in data layout. The
most common cause of this in seL4 was C enumeration constants,
which the C standard defines as being of a type of the compiler’s
choice, which must accommodate all the enumerated values. It
happens that gcc on ARM picks the shortest type available, leading
to padding in many structures. Furthermore the C parser guessed
incorrectly that these types would be 32-bit. In principle the parser
could make this flexible, but in practice in Isabelle/HOL it is more
difficult to have unknown types than it is to have unknown terms.

We worked around this issue by changing the typedef state-
ments used to define the types actually used in seL4 to uint 32t
rather than any enum types or uint 8t. This eliminates all padding.
There is a slight memory cost in a small number of structure types,
but most structure types remain the same size.

We also adjusted a single function which loops over a short
array stored in a struct in a stack variable, it being difficult for
the stack heuristic to compute the bounds on the offset used in
the array. Finally, we optimised a function which called a number
of generic seL4 capability queries on capabilities of known type
within a loop. The switch statement on the capability type appeared
in every unrolling of the loop and led to an explosion in the number
of possible paths causing the SMT solvers to diverge. Calling the
query function specific to the capability type solved the problem.

4.4 Issues Found
We did not find any genuine compiler flaws during this analysis.
The seL4 team has reported experience with compiler defects in
the past and fixed all known issues by rearranging code, selecting
appropriate compiler versions and disabling some compiler flags,
such as -fwhole-program.

We did, however, find a number of small mismatches between C
semantics and compiler. None of them were serious, but some effort
was expended in removing them. These include the treatment of the
strict-aliasing rule and the handling of reserved sections.

The existing proof for seL4 did not specifically address the
strict-aliasing condition. It is one of the standard violations that sys-
tems code must make at some point. The C parser generated guards
asserting that pointers dereferenced were aligned and not NULL,
but no more. We strengthened these guards to assert that the point-
ers were to objects given the correct type in the heap type descrip-
tion to make use of that information in our SMT refinement proofs.
The verification proof can be replayed essentially unchanged, since
this fact was nearly always used as a step in proving the align-
ment conditions where they occurred anyway. Two problems re-
main where this strict-aliasing condition is broken.

Firstly, as a microkernel, seL4 does not use malloc and free, in-
stead implementing its own retype mechanism. The heap type de-
scription changes during retypes, potentially invalidating the strict-
aliasing condition, and there is no way to inform the compiler of
this. Fortunately this will never create a problem since objects are
never both accessed and retyped in the one system call.

Secondly, like standard C libraries, the kernel contains an op-
timised word-at-a-time memset function which is used during this
retype operation. This word-wise access in memset is not compati-
ble with the later type of these allocated objects. We had to tweak
our C parser guard strengthening to explicitly omit these writes.
In principle the compiler might produce unwanted code if it suffi-
ciently inlined and reordered these functions. The fact that we prove
refinement in these functions is evidence this has not happened.

Reserved sections are regions of memory which should not be
adjusted by normal operations. These include the code, constant
global objects and certain lookup tables generated by the compiler.
With the strict stack/heap separation mandated by the C parser, this
also includes the stack. The existing verification did not provide
sufficient mechanisms for proving such regions were not adjusted.
To include them, we once again strengthened C parser guards for
the heap type description, making it clear at all locations in the C
code that a given set of addresses is not covered by any type and
thus unused. This set of addresses models the reserved regions.

We then produce assumptions within the SMT proof that the
code and data sections created by the compiler live within this set
of reserved addresses, as does the stack. While we can prove this
condition is maintained, we have to assume it for the initial state. It
would be desirable to make this assumption into a proof in future
work, which would essentially extend the verification to the binary
image as loaded in memory, as opposed to the binary image in
the ELF file, i.e. it would further remove loading and in-memory
relocation from the trusted computing base.

5. Related Work
Pnueli et al [24] proposed translation validation as a pragmatic al-
ternative to compiler verification. Over a decade of competition be-
tween these two approaches has yielded a collection of translation
validation experiments [4, 9, 12, 19, 26, 30, 35, 36] as well as a few
verified compilers [5, 13]. This distinction is frequently blurred:
some phases of the CompCert C compiler use translation valida-
tion whereas others are directly verified.

Our approach is yet another variation within the space of possi-
ble translation validations. Like Tristan et al [30], we do not make
use of any hints from the compiler. Like Ryabtsev [26], we tar-
get the end-to-end transformation rather than any internal compiler
step. Furthermore we do not accept any failures or false positives
in the process. However, unlike other authors, we are prepared to
make small adjustments to our source code if necessary.

What differentiates this approach is that it is strongly grounded
in existing semantics at both ends, rather than the compiler’s view
of its input and output. At the binary level we connect to the
extensively validated Cambridge ARM semantics, and at the source
level we connect to the verifier’s view of the C language which has
been validated as useful through the existing seL4 proofs.

The Verisoft project [1] also uses a verified source to binary con-
version to produce a verified binary. The project developed a veri-
fied compiler for a Pascal-like language with C-like syntax which
shared its semantic framework with the verification environment.
While the project clearly showed that end-to-end theorems to the
binary level are feasible, practical considerations such as perfor-
mance were not goals of the project.

The CompCert [13] verified C compiler could also be used to
transport source-level proofs to the binary, by building a program
logic on the semantics associated with the compiler’s specifica-
tion [2]. In our case those semantics are presented differently to
those assumed in seL4’s verification, and in an incompatible logic.

An alternative approach to binary verification is to prove results
directly on the binary semantics with interactive tools. For instance,
Bevier’s KIT [3] was the first operating system to be completely
verified at the assembly level. However, it measured only a few
hundred lines of assembly in total. More recently, Ni et al [20] ver-
ified modern context switching code using the XCAP x86 model.
Chlipala [6] presents a more sophisticated suite of tools for au-
tomating most of such reasoning.

Yang and Hawblitzel [33] used binary verification on a mini-
mal type safe language runtime, including garbage collection, to
implement an OS kernel. The verification establishes type safety
for user-level programs, but forces all applications into the same
language framework. Our verification achieves full functional cor-
rectness of the kernel instead, and seL4 uses hardware mechanisms
to enforce isolation for arbitrary application programs.

6. Conclusion
We have extended the existing formal functional correctness proof
of the seL4 microkernel from the C source code down to the
binary level. This means, the seL4 binary conforms to its high level
correctness properties stated in Isabelle/HOL. The C source, its
semantics, and the compiler need no longer be trusted.

Our approach validates the output of compiler and linker by
proving refinement between the formal semantics of a program on
the C source level and its formal semantics on the binary level.
Our refinement theorem composes with further refinement stacks
on top of the source code such as in seL4, and transports Hoare-
logic properties proved on the source code down to the binary.

We achieved this by building on an existing well-established C
semantics and strongly validated ARM semantics and decompila-
tion framework, extending both frameworks and translating them
to a common intermediate format particularly amenable to modern
high-performance SMT solvers.

While our main target was the seL4 microkernel, we believe
that this approach in principle generalises to other C verifications,
to other compilers, and even to other similar programming lan-
guages. We think that the limitations of the C parser front-end and
the prover back-end, such as nested loops, can be overcome in fu-
ture work to result in a tool chain for fully automatically extending
formal C verification down to the binary level. This removes com-
pilers from the trusted computing base of high-assurance systems,
while still enabling the use of off-the-shelf compilation tool chains.

Acknowledgements
NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of Excellence

program. The second author is funded by the Royal Society, UK. This work
was partially supported by EPSRC Research Grant EP/G007411/1.

References
[1] E. Alkassar, W. Paul, A. Starostin, and A. Tsyban. Pervasive verifi-

cation of an OS microkernel: Inline assembly, memory consumption,
concurrent devices. In P. O’Hearn, G. T. Leavens, and S. Rajamani,
editors, VSTTE 2010, volume 6217 of LNCS, pages 71–85, Edinburgh,
UK, Aug 2010. Springer.

[2] A. W. Appel. Verified software toolchain—(invited talk). In
G. Barthe, editor, Proc. 20th ESOP, volume 6602 of LNCS, pages 1–
17, Saarbrücken, Germany, Mar. 2011. Springer.

[3] W. R. Bevier. Kit: A study in operating system verification. IEEE
Trans. Softw. Engin., 15(11):1382–1396, 1989.

[4] J. O. Blech, I. Schaefer, and A. Poetzsch-Heffter. Translation valida-
tion of system abstractions. In Proc. 7th Int. Conf. on Runtime verifi-
cation, RV’07, pages 139–150, Vancover, Canada, 2007. Springer.

[5] A. Chlipala. A certified type-preserving compiler from lambda calcu-
lus to assembly language. In J. Ferrante and K. S. McKinley, editors,
Proc. PLDI’07, pages 54–65. ACM, 2007.

[6] A. Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In Proc. 32nd PLDI, pages 234–245,
San Jose, California, USA, 2011. ACM.

[7] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
C. R. Ramakrishnan and J. Rehof, editors, 14th TACAS, volume 4963
of LNCS, pages 337–340, Budapest, Hungary, Mar. 2008. Springer.

[8] A. Fox and M. Myreen. A trustworthy monadic formalization of
the ARMv7 instruction set architecture. In M. Kaufmann and L. C.
Paulson, editors, 1st Int. Conf. Interactive Theorem Proving, volume
6172 of LNCS, pages 243–258, Edinburgh, UK, July 2010. Springer.

[9] B. Goldberg, L. D. Zuck, and C. W. Barrett. Into the loops: Practical
issues in translation validation for optimizing compilers. Proc 3rd
Int. Workshop on Compiler Optimization Meets Compiler Verification
(COCV ’04). Electr. Notes Theor. Comput. Sci., 132(1):53–71, 2005.

[10] ISO/IEC. Programming languages — C. Technical Report 9899:TC2,
ISO/IEC JTC1/SC22/WG14, May 2005.

[11] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel.
In Proc. 22nd SOSP, pages 207–220, Big Sky, MT, USA, 2009. ACM.

[12] S. Kundu, S. Lerner, and R. K. Gupta. Translation validation of high-
level synthesis. Trans. Comp.-Aided Des. Integ. Cir. Sys., 29(4):566–
579, Apr. 2010.

[13] X. Leroy. Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant. In J. G. Morrisett and S. L. P.
Jones, editors, Proc. 33rd POPL, pages 42–54. ACM, 2006.

[14] X. Leroy. A formally verified compiler back-end. J. Automated
Reasoning, 43(4):363–446, 2009.

[15] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. seL4: from general pur-
pose to a proof of information flow enforcement. In IEEE Symp. Se-
curity & Privacy, Oakland, CA, May 2013.

[16] M. O. Myreen. Formal verification of machine-code programs. PhD
thesis, University of Cambridge, 2009.

[17] M. O. Myreen, M. J. C. Gordon, and K. Slind. Machine-code ver-
ification for multiple architectures - an application of decompilation
into logic. In A. Cimatti and R. B. Jones, editors, Formal Methods in
Computer-Aided Design (FMCAD), pages 1–8. IEEE, 2008.

[18] M. O. Myreen, M. J. C. Gordon, and K. Slind. Decompilation into
logic — improved. In G. Cabodi and S. Singh, editors, Formal
Methods in Computer-Aided Design (FMCAD), pages 78–81. IEEE,
2012.

[19] G. C. Necula. Translation validation for an optimizing compiler. In
Proc. PLDI’00, pages 83–94, Vancouver, BC, Canada, 2000. ACM.

[20] Z. Ni, D. Yu, and Z. Shao. Using XCAP to certify realistic systems
code: machine context management. In Proc. 20th TPHOLs, volume
4732 of LNCS, pages 189–206. Springer, 2007.

[21] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[22] Open Kernel Labs. seL4 research and evaluation download. http:
//ertos.nicta.com.au/software/seL4/, 2011.

[23] J. Peleska, E. Vorobev, and F. Lapschies. Automated test case gen-
eration with SMT-solving and abstract interpretation. In Proc 3rd
Int. Conf. NASA Formal methods, NFM’11, pages 298–312, Pasadena,
CA, 2011. Springer.

[24] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In
B. Steffen, editor, Proc. 4th TACAS, volume 1384 of LNCS, pages
151–166. Springer, 1998.

[25] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Logic in Computer Science (LICS), pages 55–74. IEEE
Computer Society, 2002.

[26] M. Ryabtsev and O. Strichman. Translation validation: From Simulink
to C. In Proc. 21st Int. Conf. on Computer Aided Verification, CAV
’09, pages 696–701, Grenoble, France, 2009. Springer.

[27] N. Schirmer. Verification of Sequential Imperative Programs in Is-
abelle/HOL. PhD thesis, Technische Universität München, 2006.

[28] T. Sewell, S. Winwood, P. Gammie, T. Murray, J. Andronick, and
G. Klein. seL4 enforces integrity. In M. C. J. D. van Eekelen,
H. Geuvers, J. Schmaltz, and F. Wiedijk, editors, 2nd Int. Conf. on
Interactive Theorem Proving, volume 6898 of LNCS, pages 325–340,
Nijmegen, The Netherlands, Aug. 2011. Springer.

[29] K. Slind and M. Norrish. A brief overview of HOL4. In 20th Int. Conf.
on Theorem Proving in Higher Order Logics, pages 28–32, Montreal,
Canada, Aug. 2008.

[30] J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-graph
translation validation for llvm. In Proc. 32nd PLDI, pages 295–305,
San Jose, CA, USA, 2011. ACM.

[31] H. Tuch. Formal verification of C systems code: Structured types, sep-
aration logic and theorem proving. J. Automated Reasoning: Special
Issue on OS Verification, 42(2–4):125–187, Apr. 2009.

[32] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic.
In M. Hofmann and M. Felleisen, editors, Proc. 34th POPL, pages
97–108, Nice, France, Jan. 2007. ACM.

[33] J. Yang and C. Hawblitzel. Safe to the last instruction: automated
verification of a type-safe operating system. In Proc. PLDI’10, pages
99–110, Toronto, Canada, 2010. ACM.

[34] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In M. W. Hall and D. A. Padua, editors, Proc.
32nd PLDI, pages 283–294, San Jose, CA, USA, June 2011. ACM.

[35] L. D. Zuck, A. Pnueli, Y. Fang, B. Goldberg, and Y. Hu. Translation
and run-time validation of optimized code. Runtime Verification 2002
(RV’02). Electr. Notes Theor. Comput. Sci., 70(4):179–200, 2002.

[36] L. D. Zuck, A. Pnueli, and B. Goldberg. VOC: A methodology for the
translation validation of optimizing compilers. J. UCS, 9(3):223–247,
2003.

http://ertos.nicta.com.au/software/seL4/
http://ertos.nicta.com.au/software/seL4/

	Introduction
	Background
	The seL4 microkernel verification
	Decompilation from ARM into Higher-Order Logic

	Correctness Proof
	Conversion from C Semantics to the Graph Language
	Decompiling Compiler Output into Logic
	Simple Decompilation Example
	C-Compatible (Stack Aware) Decompilation
	Converting Extracted Functions into Graph Format

	Proof of Refinement
	Inlining and The Problem Space
	Conversion to SMT
	Simple Cases and the Leaf Rule
	Path Restrictions and the Restrict Rule
	Split Induction
	Assertions

	Evaluation and Discussion
	Results
	Constraints of the Approach
	Workarounds
	Issues Found

	Related Work
	Conclusion

