
HOL with Definitions: Semantics, Soundness,
and a Verified Implementation

Ramana Kumar1, Rob Arthan2, Magnus O. Myreen1, and Scott Owens3

1 Computer Laboratory, University of Cambridge, UK
2 School of EECS, Queen Mary, University of London, UK

3 School of Computing, University of Kent, UK

Abstract. We present a mechanised semantics and soundness proof for
the HOL Light kernel including its definitional principles, extending Har-
rison’s verification of the kernel without definitions. Soundness of the
logic extends to soundness of a theorem prover, because we also show
that a synthesised implementation of the kernel in CakeML refines the
inference system. Our semantics is the first for Wiedijk’s stateless HOL;
our implementation, however, is stateful: we give semantics to the stateful
inference system by translation to the stateless. We improve on Harri-
son’s approach by making our model of HOL parametric on the universe
of sets. Finally, we prove soundness for an improved principle of con-
stant specification, in the hope of encouraging its adoption. This paper
represents the logical kernel aspect of our work on verified HOL imple-
mentations; the production of a verified machine-code implementation
of the whole system with the kernel as a module will appear separately.

1 Introduction

In this paper, we present a mechanised proof of the soundness of higher-order
logic (HOL), including its principles for defining new types and new polymorphic
constants, and describe production of a verified implementation of its inference
rules. This work is part of a larger project, introduced in our rough diamond last
year [11], to produce a verified machine-code implementation of a HOL prover.
This paper represents the top half of the project: soundness of the logic, and a
verified implementation of the logical kernel in CakeML [7].

What is the point of verifying a theorem prover and formalising the seman-
tics of the logic it implements? One answer is that it raises our confidence in the
correctness of the prover. A prover implementation usually sits at the centre of
the trusted code base for verification work, so effort spent verifying the prover
multiplies outwards. Secondly, it helps us understand our systems (logical and
software), to the level of precision possible only via formalisation. Finally, a theo-
rem prover is a non-trivial piece of software that admits a high-level specification
and whose correctness is important: we see it as a catalyst for tools and methods
aimed at developing complete verified systems, readying them for larger systems
with less obvious specifications.

The first soundness proof we present here is for Wiedijk’s stateless HOL [16],
in which terms carry their definitions; by formalising we hope to clarify the
semantics of this system. We then show that traditional stateful HOL, where
terms are understood in a context of definitions, is sound by a translation to the
stateless inference system.

We build on Harrison’s proof of the consistency of HOL without defini-
tions [4], which shares our larger goal of verifying concrete HOL prover im-
plementations, and advance this project by verifying an implementation of the
HOL Light [5] kernel in CakeML, an ML designed to support fully verified appli-
cations. We discuss the merits of Harrison’s model of set theory defined within
HOL, and provide an alternative not requiring axiomatic extensions.

Our constant specification rule generalises the one found in the various HOL
systems, adding support for implicit definitions with fewer constraints and no
new primitives. We lack space here to justify its design in full detail, but refer
to a proposal [2] by the second author. We hope our proof of its soundness will
encourage its adoption.

The specific contributions of this paper are:

– a formal semantics for Wiedijk’s stateless HOL (§4), against a new specifi-
cation of set theory (§3),

– a proof of soundness (§4.2) for stateless HOL, including type definitions, a
new rule for constant specification, and the three axioms used in HOL Light,

– a proof of soundness for stateful HOL by translation to stateless (§5), and
– a verified implementation of the HOL Light kernel in CakeML (§6) that

should be a suitable basis for a verified implementation of the prover in
machine-code.

All our definitions and proofs have been formalised in the HOL4 theorem prover [14]
and are available from https://cakeml.org.1

2 Approach

At a high level, our semantics and verified implementation fit together as follows.

Set Theory Specification

Stateless HOL Inference Rules

Stateful HOL Inference Rules

Monadic Kernel Functions

Implementation in CakeML

HOL semantics soundness proof

translation containment proof

refinement proof

automatic refinement proofsynthesis

1 Specifically, the hol-light directory of https://github.com/xrchz/vml.

2

The overall theorems we obtain are about evaluating the CakeML implemen-
tations of the HOL Light kernel functions in CakeML’s operational semantics.
For each kernel function, we prove that if the function is run in a good state
on good arguments, it terminates in a good state and produces good results.
Here “good” refers to our refinement invariants. In particular, a good value of
type “thm” must refine a sequent in stateful HOL that translates to a sequent
in stateless HOL that is valid according to the set-theoretic semantics.

We prove these results by composing the four proof layers in the diagram.
Starting from the top, the HOL semantics interprets stateless HOL sequents in
set theory, from which we obtain a definition of validity. The soundness proof
says that each of the stateless HOL inference rules preserves validity of sequents.

In stateless HOL, defined types and terms carry syntactic tags describing
their definitions, whereas in stateful HOL there is a context of definitions that
is updated when a new definition is made. Our translation from stateful to
stateless takes the definitions from the context and inlines them into the tags.
Our containment proof then shows that whenever the stateful system proves a
sequent, the stateless system proves the translation of the sequent.

As outlined in our rough diamond [11], we define shallowly-embedded HOL
functions, using a state-exception monad, for each of the HOL Light kernel
functions. These “monadic kernel functions” are written following the original
OCaml code closely, then we prove that they implement the stateful inference
rules. Specifically, if one of these functions is applied to good arguments, it
terminates with a good result; any theorem result must refine a sequent that is
provable in the stateful system.

Finally, using the method developed by Myreen and Owens [10] we synthe-
sise CakeML implementations of the monadic kernel functions. This automatic
translation from shallowly- to deeply-embedded code is proof-producing, and we
use the certificate theorems to complete the refinement proof.

In the context of our larger project, the next steps include: a) proving, against
CakeML’s semantics, that our implementation of the kernel can be wrapped in
a module to protect the key property, provability, of values of type “thm”; and
b) using CakeML’s verified compiler to generate a machine-code implementation
of the kernel embedded in an interactive read-eval-print loop that is verified to
never print a false theorem.

3 Set Theory

A rigorous but informal account of the semantics of HOL, due to Pitts, is given
in the HOL4 documentation [12]. It assigns meanings to HOL constructs in a
universe of sets satisfying Zermelo’s axioms. We wish to do the same with a
semantics developed using conservative extensions in HOL. Gödel’s second in-
completeness theorem implies that we cannot actually define a model of Zermelo
set theory. However, we can define what properties such a model must have and
for us this is sufficient. It is convenient to separate out the axioms of choice

3

and infinity. A specification along these lines was developed previously by one
of us [1] but without any formal proofs. We begin by defining a predicate

is_set_theory (mem :U -> U -> bool)

that says whether a membership relation defined on some universe U (repre-
sented by a type variable) satisfies the Zermelo axioms other than choice and
infinity, namely the axioms of extensionality, separation (a.k.a. comprehension or
specification), power set, union, and pairing. As we are working in HOL, we can
use propositional functions in place of the metavariables required in a first-order
presentation:

Definition 1 (Specification of Set Theory Axioms).

is_set_theory mem ⇐⇒
extensional mem ∧ (∃ sub. is_separation mem sub) ∧
(∃ power. is_power mem power) ∧ (∃ union. is_union mem union) ∧
∃ upair. is_upair mem upair

extensional mem ⇐⇒
∀ x y. x = y ⇐⇒ ∀ a. mem a x ⇐⇒ mem a y

is_separation mem sub ⇐⇒
∀ x P a. mem a (sub x P) ⇐⇒ mem a x ∧ P a

is_power mem power ⇐⇒
∀ x a. mem a (power x) ⇐⇒ ∀ b. mem b a ⇒ mem b x

is_union mem union ⇐⇒
∀ x a. mem a (union x) ⇐⇒ ∃ b. mem a b ∧ mem b x

is_upair mem upair ⇐⇒
∀ x y a. mem a (upair x y) ⇐⇒ a = x ∨ a = y

A relation mem satisfying the above axioms is sufficient to define the se-
mantics of HOL without Hilbert choice or the axiom of infinity, that is, for the
(polymorphic) simply typed λ-calculus with equality. For the remaining features
of HOL, we need two more parameters: a choice function, and a distinguished
infinite set for the individuals. We specify a complete model as follows.2

Definition 2 (Specification of a Model for HOL).

is_model (mem,indset,ch) ⇐⇒
is_set_theory mem ∧ is_infinite mem indset ∧ is_choice mem ch

is_choice mem ch ⇐⇒ ∀ x. (∃ a. mem a x) ⇒ mem (ch x) x
is_infinite mem s ⇐⇒ infinite {a | mem a s }

3.1 Derived Concepts

In order to reuse Harrison’s proofs [4] as much as possible, we define various
constructions above our set theory model and prove the same theorems he did
to characterise them. These theorems form the interface to set theory above
which one can give a semantics to HOL. To save space, we do not list them all.

2 infinite (p :α -> bool) abbreviates ¬FINITE p, with finiteness defined induc-
tively for sets-as-predicates in HOL4’s library.

4

For function spaces, function application, and abstraction of a HOL function,
we use the standard set-theoretic method of identifying functions with their
graphs. For Booleans we define a distinguished set of two elements and name its
members. We often use abbreviations to hide the mem argument to a function,
for example funspace s t below actually abbreviates funspace0 mem s t .

` is_set_theory mem ⇒
(∀ f s t.

((∀ x. mem x s ⇒ mem (f x) t) ⇒
mem (abstract s t f) (funspace s t)) ∧

∀ x. mem x s ∧ mem (f x) t ⇒ apply (abstract s t f) x = f x) ∧
∀ x. mem x boolset ⇐⇒ x = true ∨ x = false

3.2 Consistency

We wish to know that is_model is not an empty predicate, to protect against
simple mistakes in the definition, and because the existence of a model will be
an assumption on our soundness theorems. Since actually building a model in
HOL would allow HOL to prove its own consistency, we will have to settle for
something less. However, we wish to avoid axiomatic extensions if possible.

We tried using Harrison’s construction [4] as witness, but unfortunately it
uses what amounts to a type system to define a coherent notion of membership
in terms of injections into a universe. (Harrison calls the types “levels”.) For
simplicity and familiarity our is_set_theory characterises an untyped set the-
ory. In particular, we need extensionality to hold for all sets, while in Harrison’s
model empty sets of distinct types are distinct.

So instead we use a standard encoding of the hereditarily finite sets in HOL
as natural numbers, which takes the universe to be the natural numbers, and
mem n m to hold if the mth bit in the binary numeral for n is 1. With this
model, we can introduce, by conservative extension, a universe type that satisfies
is_set_theory, and, under the assumption that it contains an infinite set, that
it satisfies is_model too. To be able to consistently assume the existence of
infinite sets, the universe type has a free type variable.

Specifically, we define the universe as an arbitrary subset of α + num for
which a suitable membership relation exists. We prove the existence of such a
subset, namely all the numbers in the right of the sum, by using the standard
encoding, which it is straightforward to show satisfies the set-theoretic axioms.
Thus, we prove the following:

` ∃ (P :α + num -> bool) (mem :α + num -> α + num -> bool).

is_set_theory_pred P mem

where is_set_theory_pred P is like is_set_theory but with all quantifica-
tion relativised to P . We then feed this theorem into HOL4’s constant and type
specification machinery to derive a new type α V for our universe, and its mem-
bership relation V_mem. Our main lemma follows directly:

` is_set_theory V_mem

5

There is a natural choice function for non-empty sets in the standard encoding
of finite sets, namely, the most significant bit in the binary numeral. But there
are no infinite sets, so, as we would expect from Gödel’s second incompleteness
theorem at this point, no model for the set of individuals.

Now we use the facts that our specification of (V_mem :α V -> α V -> bool)

is loose—the only things that can be proved about it come from is_set_theory

and not the specific construction of the model—and the type α V, being para-
metric, has no provable cardinality bound. Hence if τ is an unspecified type, it is
consistent to assume that τ V includes infinite sets. We specify V_indset as an
arbitrary infinite set under the assumption that one exists. We can then prove
our desired theorem:

Theorem 1 (Example Model).

` (∃ I . is_infinite V_mem I) ⇒
is_model (V_mem,V_indset,V_choice)

An alternative to the general is_model characterisation of a suitable set-
theoretic model is to define a particular universe of sets and then prove that
it has all the desired properties. This is the approach taken by Harrison [4],
who constructs by conservative extension a monomorphic type V equipped with
a membership relation satisfying a typed analogue of our is_set_theory. V is
countably infinite and it would be inconsistent to assert that it is a model of
the axiom of infinity. Harrison observes that one could adapt his formalisation
to give a model of the axiom of infinity using a non-conservative extension. Our
approach allows us to work by conservative extension while remaining consistent
with an assumption of the axiom of infinity.

4 Stateless HOL

Traditional implementations of HOL are stateful because they support the defini-
tion of new type and term constants by updating a context. Wiedijk [16] showed
that this is not necessary if defined constants carry their definitions with them.
Since there is no state, it was an appealing target for extension of Harrison’s
definitionless semantics [4].

4.1 Inference System

The distinguishing feature of stateless HOL syntax is the presence of tags,
const_tag and type_op, on constants and types, containing information about
how they were defined or whether they are primitive. Because of these tags, the
datatypes for terms and types are mutually recursive.

term = Var of string * type

| Const of string * type * const_tag

| Comb of term * term

| Abs of string * type * term

6

type = Tyvar of string | Tyapp of type_op * type list

type_op = Typrim of string * num | Tydefn of string * term

const_tag = Prim

| Defn of num * (string × term) list * term

| Tyabs of string * term

| Tyrep of string * term

With the Typrim name arity and Prim tags we can build up HOL’s primi-
tive type operators and constants without baking them into the syntax, as the
following abbreviations show.

Bool for Tyapp (Typrim "bool" 0) []

Ind for Tyapp (Typrim "ind" 0) []

Fun x y for Tyapp (Typrim "fun" 2) [x; y]
Equal ty for Const "=" (Fun ty (Fun ty Bool)) Prim

Select ty for Const "@" (Fun (Fun ty Bool) ty) Prim

s === t for Comb (Comb (Equal (typeof s)) s) t

We will explain the tags for non-primitives when we describe the definitional
rules, after introducing the inference system. We use similar notation to Har-
rison [4] wherever possible, for example we define well-typed terms and prove
` welltyped tm ⇐⇒ tm has_type (typeof tm), and we define the fol-

lowing concepts: closed tm, indicating that tm has no free variables; tvars tm
and tyvars ty collecting the type variables appearing in a term or type, and
tyinst tyin ty instantiating type variables in a type.

We were able to reuse most of Harrison’s stateful HOL rules for the stateless
HOL inference system, defining provable sequents3 inductively with a few sys-
tematic modifications. Changes were required to handle the fact that stateless
syntax permits terms whose definitions are unsound because their tags do not
meet the side-conditions required by the definitional principles. Therefore, we
also define predicates picking out good types and terms, in mutual recursion
with the provability relation.

For the most part, we define good terms implicitly as those appearing in
provable sequents. We also need rules for the primitives, and for (de)constructing
good terms and types. A few examples are shown:

hs |- c
member t (c::hs)

term_ok t

type_ok ty1
type_ok ty2

type_ok (Fun ty1 ty2)

term_ok (Comb t1 t2)

term_ok t1

term_ok tm
tm has_type ty

type_ok ty

We continue by specifying the inference rules as in [4], but restricted to good
terms and types. For example, REFL, ASSUME, and INST TYPE:

term_ok t

[] |- t === t

term_ok p
p has_type Bool

[p] |- p

hs |- c
every type_ok (map fst tyin)

map (INST tyin) hs |- INST tyin c

3 We write the relation we define as hs |- c. By contrast ` p refers to theorems
proved in HOL4.

7

To finish the inference system, we add the rules that extend Harrison’s system
– the principles of definition and the axioms.

Type Definitions To define a new type in HOL, one chooses an existing type,
called the representing type, and defines a subset via a predicate. HOL types are
non-empty, so the principle of type definition requires a theorem as input that
proves that the chosen subset of the representing type is non-empty.

In the stateless syntax for types, the tag Tydefn name p is found on a
defined type operator. It contains the name of the new type and the predicate
for which a theorem of the form [] |- Comb p w was proved as evidence that
the representing type is inhabited.

The rule for defining new types also introduces two new constants represent-
ing injections between the new type and the representing type. In the syntax,
these constants are tagged by Tyabs name p or Tyrep name p, with the name
of the new type and the predicate as above defining the subset of the repre-
senting type. To show that these constants are injections and inverses, the rule
produces two theorems. We show the complete provability clause for one of the
theorems below.

closed p ∧ [] |- Comb p w ∧ rty = domain (typeof p) ∧
aty = Tyapp (Tydefn name p) (map Tyvar (sort (tvars p))) ⇒
[] |-

Comb (Const abs (Fun rty aty) (Tyabs name p))
(Comb (Const rep (Fun aty rty) (Tyrep name p))

(Var x aty)) === Var x aty

Because the new type and the two new constants appear in this theorem, there
is no need to explicitly give rules showing that they are type_ok and term_ok.

Constant Specifications Wiedijk [16] follows HOL Light in only admitting
an equational definitional principle as a primitive, unlike other implementations
of HOL which also provide a principle of constant specification that takes a
theorem of the form ∃x1, . . . , xk·P and introduces new constants c1, . . . , ck with `
P [c1/x1, . . . , ck/xk] as their defining axiom. This is subject to certain restrictions
on the types of the ci. (The constant specification principle is supported in HOL
Light, but as a derived rule, which, unfortunately, introduces an additional, less
abstract form of the defining axiom.)

A disadvantage of this principle is that it presupposes a suitable definition
of the existential quantifier, whereas we wish to give the semantics of the HOL
language and use conservative extensions to define the logical operators. Our
new constant specification mechanism overcomes this disadvantage and is less
restrictive about the types of the new constants. See [2] for a fuller discussion of
the new mechanism and the motivation for it. We describe it in mathematical
notation rather than HOL4 syntax because the formalisation makes unwieldy
but uninsightful use of list operations, since the rule may introduce multiple
constants.

8

Given a theorem of the form {x1 = t1, . . . , xn = tn} |- p, where the free
variables of p are contained in {x1, . . . , xn}, we obtain new constants {c1, . . . , cn}
and a theorem |- p[c1/x1, . . . , cn/xn]. The side-conditions are that the variables
x1, . . . , xn are distinct and the type variables of each ti are contained in its type.

In the stateless syntax, we use the tag Defn i xts p for the ith constant
introduced by this rule when it is applied to the theorem with hypotheses
map (λ (x,t). Var x (typeof t) === t) xts and conclusion p,

Since the rule allows new constants to be introduced without appearing
in any new theorems, we also add a clause for the new constants asserting
term_ok (Const x ty (Defn i xts p)).

Axioms We include the three mathematical axioms—ETA AX (not shown),
SELECT AX, and INFINITY AX—in our inference system directly:

p has_type (Fun ty Bool) ∧ h |- Comb p w ⇒
h |- Comb p (Comb (Select ty) p)

[] |-

EXISTS "f" (Fun Ind Ind)

(AND (ONE_ONE Ind Ind (Var "f" (Fun Ind Ind)))

(NOT (ONTO Ind Ind (Var "f" (Fun Ind Ind)))))

Here EXISTS, AND, and so forth are abbreviations for defined constants in stateless
HOL, and are built up following standard definitions of logical constants. For
example,

NOT =

Comb

(Const1 "~" (Fun Bool Bool)

(Abs "p" Bool (IMPLIES (Var "p" Bool) FALSE)))

where Const1 name ty rhs abbreviates

Const name ty (Defn 0 [(name,rhs)] (Var name (typeof rhs) === rhs))

and shows how the rule for new specification subsumes the traditional rule for
defining a constant to be equal to an existing term.

4.2 Semantics

Just as we reused much of the inference system, we were able to reuse most
of Harrison’s proofs in establishing soundness of the stateless HOL inference
system, again with systematic modifications. The main change, apart from our
extensions, is that our semantics uses inductive relations rather than functions.

The purpose of the semantics is to interpret sequents. Subsidiary concepts in-
clude valuations interpreting variables and semantic relations interpreting types
and terms. We differ from Harrison stylistically in making type and term val-
uations finite maps with explicit domains (he uses total functions). We briefly
describe the proposition expressed by each piece of the semantics as follows:

9

type_valuation τ τ maps type variables to non-empty sets
typeset τ ty mty (ty :type) is interpreted by (mty :U) in τ
term_valuation τ σ σ maps each variable to an element of the inter-

pretation of its type
semantics σ τ tm mtm (tm :term) is interpreted by (mtm :U) in τ

and σ
type_has_meaning ty ty has semantics in all closing valuations
has_meaning tm tm has semantics in all closing valuations, and

a pair of closing valuations exists
hs |= c c::hs are meaningful terms of type Bool, and,

in all closing valuations where the semantics of
each of the hs is true, so is the semantics of c

We prove that semantics σ τ and typeset τ are functional relations. Sup-
porting definitions led us to prefer relations for two reasons. First, the semantics
of defined constants in general requires type instantiation, and it is easier to
state the condition it should satisfy than to calculate it explicitly. Second, de-
fined types and constants are given semantics in terms of entities supplied by
side-conditions on the definitional rules, so it is convenient to assume they hold.
It made sense for Harrison to use total functions because without definitions, all
terms (including ill-typed ones) can be handled uniformly.

Our inductive relations are mutually recursive: Harrison’s had one-way de-
pendency because the meaning of equality, for example, depends on the type.
For definitions, we need the other way too because the meaning of a defined type
depends on the term used to define it.

Another difference stems from our semantics being parametric on the choice
of set theory model, (mem,indset,ch). We always use the free variables mem,
indset , and ch for the model, and we often leave these arguments implicit in our
notation. So, for example, typeset τ ty mty above is actually an abbreviation
for typeset0 (mem,indset,ch) τ ty mty .

A final addition we found helpful, especially for defined constants, is a treat-
ment of type instantiation and variable substitution that is not complicated by
the possibility of variable shadowing.

Now let us look at the new parts of the semantics in detail.

Semantics of Defined Types A type operator is defined by a predicate on
an existing type called the representing type. Its semantics is the subset of the
representing type where the predicate holds, which must be non-empty.

We define a relation inhab τ p rty mty to express that the subset of the
type rty carved out by the predicate p is non-empty and equal to mty . The
semantics of rty and p are with respect to τ (and the empty term valuation).
Then we formally define the semantics of an applied type operator as follows:

closed p ∧ p has_type (Fun rty Bool) ∧ length (tvars p) = length args ∧
pairwise (typeset τ) args ams ∧
(∀ τ.

10

type_valuation τ ∧ set (tvars p) ⊆ dom τ ⇒
∃mty. inhab τ p rty mty) ∧

inhab (sort (tvars p) ⇒ ams) p rty mty ⇒
typeset τ (Tyapp (Tydefn op p) args) mty

The purpose of the type arguments is to provide interpretations for type vari-
ables appearing in the predicate, hence in the first argument to inhab we bind4

sort (tvars p) to the interpretations of the arguments. The penultimate premise,
requiring that p carve a non-empty subset of rty for any closing τ , is necessary
to ensure that a badly defined type does not accidentally get semantics when
applied to arguments that happen to produce a non-empty set.

Type definition also introduces two new constants, and they are given se-
mantics as injections between the representing type and the subset carved out
of it. We only show the rule for the function to the new type, which makes an
arbitrary choice in case its argument is not already in the subset. (The other is
the inclusion function.)

typeset τ (Tyapp (Tydefn op p) args) maty ∧ p has_type (Fun rty Bool) ∧
pairwise (typeset τ) args ams ∧ τ i = sort (tvars p) ⇒ ams ∧
typeset τ i rty mrty ∧ semantics ⊥ τ i p mp ∧
tyin = sort (tvars p) ⇒ args ⇒
semantics σ τ
(Const s (Fun (tyinst tyin rty) (Tyapp (Tydefn op p) args))

(Tyabs op p))
(abstract mrty maty (λ x. if Holds mp x then x else ch maty))

The type definition rule returns two theorems about the new constants, as-
serting that they form a bijection between the new type and the subset of the
representing type defined by the predicate. It is straightforward to prove this
rule sound since the semantics simply interprets the new type as the subset to
which it must be in bijection.

Substitution and Instantiation In Harrison’s work, proving soundness for the
two inference rules (INST TYPE and INST) that use type instantiation and term
substitution takes about 60% of the semantics.ml proof script by line count.
These operations are complicated because they protect against unintended vari-
able capture, e.g. instantiating α with bool in λ (x :bool). (x :α) triggers
renaming of the bound variable. Since the semantics of defined constants uses
type instantiation, we sought a simpler implementation.

The key observation is that there is always an α-equivalent term—with dis-
tinct variable names—for which instantiation is simple, and the semantics should
be up to α-equivalence anyway. For any term tm and finite set of names s, we
define fresh_term s tm as an arbitrary α-equivalent term with bound variable
names that are all distinct and not in s.

We define unsafe but simple algorithms, simple_inst and simple_subst,
which uniformly replace (type) variables in a term, ignoring capture. Then, under

4 ks ⇒ vs is the finite map binding ks pairwise to vs

11

conditions that can be provided by fresh_term, namely, that bound variable
names are distinct and not in the set of names appearing in the substitution,
it is straightforward to show that simple_subst and simple_inst behave the
same as the capture-avoiding algorithms, VSUBST and INST.

The inference rules use the capture-avoiding algorithms since they must cope
with terms constructed by the user, but when we prove their soundness we first
switch to a fresh term then use the simple algorithms. The theorems enabling this
switch say that substitution (not shown) and instantiation respect α-equivalence:

` welltyped t1 ∧ ACONV t1 t2 ⇒ ACONV (INST tyin t1) (INST tyin t2)

To prove these theorems, we appeal to a variable-free encoding of terms using de
Bruijn indices. We define versions of VSUBST and INST that operate on de Bruijn
terms, and prove that converting to de Bruijn then instantiating is the same as
instantiating first then converting. The results then follow because α-equivalence
amounts to equality of de Bruijn terms.

Semantics of Defined Constants The semantics of the ith constant defined
by application of our principle for new specification on {x1 = t1, . . . , xn =
tn} |- p can be specified as the semantics of the term ti. This choice might
constrain the constant more than the predicate p does, but the inference sys-
tem guarantees that all knowledge about the constant must be derivable from p.
When ti is polymorphic, we need to instantiate its type variables to match the
type of the constant. The relevant clause of the semantics is as follows.

i < length eqs ∧ EL i eqs = (s,ti) ∧ t = fresh_term ∅ ti ∧ welltyped t ∧
closed t ∧ set (tvars t) ⊆ set (tyvars (typeof t)) ∧
tyinst tyin (typeof t) = ty ∧ semantics ⊥ τ (simple_inst tyin t) mt ⇒
semantics σ τ (Const s ty (Defn i eqs p)) mt

To prove our new constant specification principle sound, we may assume
{x1 = t1, . . . , xn = tn} |- p and need to show |- p[c1/x1, . . . , cn/xn]. Given the
semantics above and the interpretation of sequents, this reduces to proving the
correctness of substitution, which we need to prove anyway for the INST rule.

Axioms, Soundness and Consistency The axioms do not introduce new
kinds of term or type, so do not affect the semantics. We just have to characterise
the constants in the axiom of infinity using the semantics for defined constants.
Since our interpretation of functions is natural, mapping functions to their graphs
in the set theory, the soundness proofs for the axioms are straightforward.

We have described how we prove soundness for each of our additional infer-
ence rules (that is, for definitions and axioms). We prove soundness for all the
other inference rules by adapting Harrison’s proofs, with improvements where
possible (e.g. for substitution and instantation). Using the proofs for each rule,
we obtain the main soundness theorem by induction on the inference system.

Theorem 2 (Soundness of Stateless HOL).

12

` is_model (mem,indset,ch) ⇒
(∀ ty. type_ok ty ⇒ type_has_meaning ty) ∧
(∀ tm. term_ok tm ⇒ has_meaning tm) ∧
∀ hs c. hs |- c ⇒ hs |= c

It is then straightforward to prove that there exist both provable and un-
provable sequents (VARIANT here creates a distinct name by priming):

Theorem 3 (Consistency of Stateless HOL).

` is_model (mem,indset,ch) ⇒
[] |- Var x Bool === Var x Bool ∧
¬([] |- Var x Bool === Var (VARIANT (Var x Bool) x Bool) Bool)

5 From Stateful Back to Stateless

The previous sections have explained the semantics and soundness proof for
stateless HOL. Our overall goal is to prove the soundness of a conventional
stateful implementation, so we formalise a stateful version of HOL (our rough
diamond contains a brief overview [11]) and give it semantics by translation into
the stateless version.

The only significant difference between the stateful and stateless versions is
that the stateless carries definitions of constants as tags on the terms and types.
The translation from the stateful version, which has an explicit global context,
simply inlines all the appropriate definitions into the terms and types.

We define this translation from stateful to stateless HOL using inductively
defined relations for translation of types and terms. The translation of stateful
sequents into stateless sequents is defined as the following relation.

seq_trans ((defs,hs ′),c′) (hs,c) ⇐⇒
pairwise (term defs) hs ′ hs ∧ term defs c′ c

Here defs is the global context in which the stateful theorem sequent has been
proved, and term is the translation relation for terms. The definition of term

(and type similarly) is straightforward and omitted due to space constraints.
We prove, by induction on the stateful inference system, that any sequent

that can be derived in the stateful version can be translated into a provable
stateless sequent.

Theorem 4 (Stateful HOL contained in stateless HOL).

` (type_ok defs ty ′ ⇒ ∃ ty. type defs ty ′ ty ∧ type_ok ty) ∧
(term_ok defs tm ′ ⇒ ∃ tm. term defs tm ′ tm ∧ term_ok tm) ∧
((defs,hs ′) |- c′ ⇒ ∃ hs c. seq_trans ((defs,hs ′),c′) (hs,c) ∧ hs |- c)

6 Verifying the Kernel in CakeML

To construct a verified CakeML implementation of the stateful HOL inference
rules, we take the implementation of the HOL Light kernel (extended with

13

our constant specification principle) and define each of its functions in HOL4
using a state-and-exception monad. Using previously developed proof automa-
tion [10], these monadic functions are automatically turned into deep embeddings
(CakeML abstract syntax) that are proved to implement the original monadic
functions.

It only remains to show the following connection between the computation
performed by the monadic functions, and the inference system for stateful HOL
from §5: any computation on good types, terms and theorems will produce good
types, terms and theorems according to stateful HOL. A type, term or theorem
sequent is “good” if it is good according to type_ok, term_ok, or (|-) from
stateful HOL. Here hol_tm, hol_ty and hol_defs translate into the implemen-
tation’s representations.

` TYPE defs ty ⇐⇒ type_ok (hol_defs defs) (hol_ty ty)
` TERM defs tm ⇐⇒ term_ok (hol_defs defs) (hol_tm tm)

` THM defs (Sequent asl c) ⇐⇒
(hol_defs defs,map hol_tm asl) |- hol_tm c

The prover’s state s implements logical context defs, if STATE s defs holds. We
omit the definition of STATE.

For each monadic function, we prove that good inputs produce good output.
For example, for the ASSUME function, we prove that, if the input is a good term
and the state is good, then the state will be unchanged on exit and if the function
returned something (via HolRes) then the return value is a good theorem:

` TERM defs tm ∧ STATE s defs ∧ ASSUME tm s = (res,s ′) ⇒
s ′ = s ∧ ∀ th. res = HolRes th ⇒ THM defs th

We prove a similar theorem for each function in the kernel, showing that they
implement the stateful inference rules correctly. As another example, take the
new rule for constant specification: we prove that if the state is updated then
the state is still good and the returned theorem is good.

` THM defs th ∧ STATE s defs ⇒
case new_specification th s of
(HolRes th,s ′) ⇒ ∃ d. THM (d ::defs) th ∧ STATE s ′ (d ::defs)

| (HolErr msg,s ′) ⇒ s ′ = s

By expanding the definition of THM in these theorems, then applying Theorems 4
and 2, we see that each monadic function implements a valid deduction according
to the semantics of HOL. We then compose with the automatically synthesised
certificate theorem for the CakeML implementation, to finish the proof about
the CakeML implementation of the kernel. The automatically proved certificate
theorem for the monadic new_specification function is shown below. These
certificate theorems are explained in Myreen and Owens [10].

` DeclAssum ml_hol_kernel_decls env ⇒
EvalM env (Var (Short "new_specification"))

((PURE HOL_KERNEL_THM_TYPE -M-> HOL_MONAD HOL_KERNEL_THM_TYPE)

new_specification)

14

7 Related Work

For classical higher-order logic, apart from Harrison’s mechanisation [4] of the
semantics that we extend here, Krauss and Schropp [6] have also formalised a
translation to set theory automatically producing proofs in Isabelle/ZF.

Considering other logics, Barras [3] has formalised a reduced version of the
calculus of inductive constructions, the logic used by the Coq proof assistant,
giving it a semantics in set theory and formalising a soundness proof in Coq itself.
The approach is modular, and Wang and Barras [15] have extended the frame-
work and applied it to the calculus of constructions plus an abstract equational
theory.

Myreen and Davis [9] formalised Milawa’s ACL2-like first-order logic and
proved it sound using HOL4. This soundness proof for Milawa produced a top-
level theorem which states that the machine-code which runs the prover will
only print theorems that are true according to the semantics of the Milawa
logic. Since Milawa’s logic is weaker than HOL, it fits naturally inside HOL
without encountering any delicate foundational territory such as the assumption
on Theorem 1.

Other noteworthy prover verifications include a simple first-order tableau
prover by Ridge and Margetson [13] and a SAT solver algorithm with many
modern optimizations by Marić [8].

8 Conclusion

CakeML In the context of the CakeML project overall (https://cakeml.org),
our verified implementation of the HOL Light kernel is an important milestone:
the first verified application other than the CakeML compiler itself. This vali-
dates both the methodology of working in HOL4 and using automated synthesis
to produce verified programs, and the usefulness of the CakeML language for a
substantial application. At this point we have a verified compiler, and a verified
application to run on it. What remains to be done is the creation of reasoning
tools for CakeML programs that do not fit nicely into the HOL4 logic. In par-
ticular, we want to establish that arbitrary – possibly malicious – client code
that constructs proofs using the verified HOL Light kernel cannot subvert the
module-system enforced abstraction that protects the kernel and create false
theorems.

Reflections on Stateless HOL Our choice to use stateless HOL was mo-
tivated by a desire to keep the soundness proof simple and close to Harrison’s
by avoiding introduction of a context for definitions. We avoided the context,
but stateless HOL did introduce some significant complications: the inference
system and semantics both become mutually recursive, and care must be taken
to avoid terms with no semantics. The dependence of typeset on semantics is
necessary for type definitions, but it could perhaps be factored through a con-
text. Similarly, the move to relations instead of functions seems reasonable given
the side-conditions on the definitional rules, but one could instead use a total
lookup function to get definitions from a context.

15

Overall it is not clear that stateless HOL saved us any work and it is clear
that it led to some loss of abstraction in our formalisation. Separating the context
from the representation of types and terms is closer to the standard approaches
adopted in the mathematical logic literature and would help to separate concerns
about the conservative extension mechanisms (which we expect to be loosely
specified) from concerns about the semantics of types and terms (which we expect
to be deterministic functions of the context). After submitting this paper, we
experimented with a formalisation of the semantics using a separate context,
and would now recommend the context-based approach as simpler and more
expressive.

Acknowledgements We thank Mike Gordon, John Harrison, Roger Jones,
Michael Norrish, Konrad Slind, and Freek Wiedijk for useful discussions and
feedback. The first author acknowledges support from Gates Cambridge. The
third author was funded by the Royal Society, UK.

References

1. Arthan, R.: HOL formalised: Semantics, http://www.lemma-one.com/

ProofPower/specs/spc002.pdf
2. Arthan, R.: HOL constant definition done right. In: Interactive Theorem Proving.

These proceedings, Springer (2014)
3. Barras, B.: Sets in Coq, Coq in sets. J. Formalized Reasoning 3(1) (2010)
4. Harrison, J.: Towards self-verification of HOL Light. In: International Joint Con-

ference on Automated Reasoning (IJCAR). LNCS, vol. 4130. Springer (2006)
5. Harrison, J.: HOL Light: An overview. In: TPHOLs. LNCS, vol. 5674. Springer

(2009), http://www.cl.cam.ac.uk/~jrh13/hol-light/
6. Krauss, A., Schropp, A.: A mechanized translation from higher-order logic to set

theory. In: ITP. LNCS, vol. 6172. Springer (2010)
7. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-

tation of ML. In: Principles of Prog. Lang. (POPL). ACM Press (2014)
8. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into

Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333–4356 (2010)
9. Myreen, M.O., Davis, J.: The reflective Milawa theorem prover is sound (down to

the machine code that runs it). In: ITP. LNCS, Springer (2014)
10. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into

pure and stateful ML. Journal of Functional Programming FirstView (1 2014)
11. Myreen, M.O., Owens, S., Kumar, R.: Steps towards verified implementations of

HOL Light. In: ITP. LNCS, vol. 7998. Springer (2013), “Rough Diamond” section
12. Norrish, M., Slind, K., et al.: The HOL System: Logic, 3rd edn., http://hol.

sourceforge.net/documentation.html
13. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem

prover for first order logic. In: TPHOLs. LNCS, vol. 3603. Springer (2005)
14. Slind, K., Norrish, M.: A brief overview of HOL4. In: Theorem Proving in Higher

Order Logics (TPHOLs). LNCS, vol. 5170. Springer (2008)
15. Wang, Q., Barras, B.: Semantics of intensional type theory extended with decidable

equational theories. In: CSL. LIPIcs, vol. 23. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2013)

16. Wiedijk, F.: Stateless HOL. In: Types for Proofs and Programs (TYPES). EPTCS,
vol. 53 (2009)

16

