
A Minimalistic Verified Bootstrapped Compiler
(Proof Pearl)

Magnus O. Myreen
Chalmers University of Technology

Gothenburg, Sweden

Abstract
This paper shows how a small verified bootstrapped compiler
can be developed inside an interactive theorem prover (ITP).
Throughout, emphasis is put on clarity and minimalism.

CCS Concepts: • Theory of computation→ Program ver-
ification; Higher order logic; Automated reasoning.

Keywords: compiler verification, compiler bootstrapping,
interactive theorem proving
ACM Reference Format:
Magnus O. Myreen. 2021. A Minimalistic Verified Bootstrapped
Compiler (Proof Pearl). In Proceedings of the 10th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP ’21),
January 18–19, 2021, Virtual, Denmark. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3437992.3439915

1 Introduction
Bootstrapping is a milestone in any compiler development.
We say that a compiler bootstraps itself when it can generate
its own low-level implementation by applying itself to its
own source code [8, 14].
In traditional compiler development, the bootstrapping

milestone means that the compiler can, from then on, be
expressed in its own source language and no longer needs
to rely on another compiler for development. Due to this
independence, bootstrapped compilers are called self hosting.

In the context of verified compilation, compiler bootstrap-
ping also means that one can arrive at a low-level executable
implementation of the compiler without the use of another
code-generation path. Verified compilers live within the logic
of interactive theorem provers (ITPs), and, even though com-
pilers can be run in this setting, it is often more convenient
to have a way to use them outside of ITPs. By evaluating the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’21, January 18–19, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8299-1/21/01. . . $15.00
https://doi.org/10.1145/3437992.3439915

compiler on itself within the ITP (i.e. bootstrapping it), one
can arrive at an implementation of the compiler inside the
ITP and get a proof about the correctness of each step [13].
From there, one can export the low-level implementation of
the compiler for use outside the ITP, without involving any
complicated unverified code generation path.

The concept of applying a compiler to itself inside an ITP
can be baffling at first, but don’t worry: the point of this paper
is to clearly explain the ideas of compiler bootstrapping on
a simple and minimalistic example.
To the best of our knowledge, compiler bootstrapping

inside an ITP has previously only been done as part of the
CakeML project [29]. The CakeML project has as one of
its aims to produce a realistic verified ML compiler and,
as a result, some of its contributions, including compiler
bootstrapping, are not as clearly explained as they ought to
be: important theorems are cluttered with real-world details
that obscure some key ideas.
The contribution of this paper is a new verified boot-

strapped compiler that is designed to clearly explain the
concept of compiler bootstrapping inside an ITP. This paper
is not aiming for generality, realism or good performance,
but instead strives for clarity and minimalism.

The result of this effort is a mechanised proof development
that produces verified x86-64 assembly code implementing
our new verified compiler. Crucially, the assembly imple-
mentation of the compiler is produced via bootstrapping
inside the logic of an ITP. That is, the compiler is run on
itself within the logic to produce its own implementation
in assembly. This is all done with proof, and, as a result, we
arrive at a theorem which guarantees correct behaviour of
the assembly implementation of the compiler.
This work has been carried out in the HOL4 theorem

prover [25] but the ideas ought to translate to other provers
such as Coq [17], Isabelle [30] and ACL2 [18]. Our proof
scripts are under examples/bootstrap in the sources of HOL4.

2 Idea of Bootstrapping in the Logic
In this section, we start with a look at how the idea of com-
piler bootstrapping works for our new verified compiler. This
section focuses on how all the different parts fit together,
while subsequent sections explain the definitions and theo-
rems that we build on in this section.

The text below describes the top-level compiler definition
for our new little compiler; the relevant correctness theorem

https://doi.org/10.1145/3437992.3439915
https://doi.org/10.1145/3437992.3439915
https://github.com/HOL-Theorem-Prover/HOL/tree/a4312426afc04b5e4d7aa33a72ef1fb535e4cf6a/examples/bootstrap
https://github.com/HOL-Theorem-Prover/HOL/tree/a4312426afc04b5e4d7aa33a72ef1fb535e4cf6a

CPP ’21, January 18–19, 2021, Virtual, Denmark Magnus O. Myreen

for the code generator that the compiler contains; how one
can apply the compiler to itself; and what theorems come
out at the end of bootstrapping inside an ITP.

Compiler definition. Our new compiler is defined as
functions in logic. The top-level function is the following:

compiler input
def
=

asm2str (codegen (parser (lexer input)))

This compiler function has type string → string, and the
internal functions have the following types:

lexer : string→ token list
parser : token list→ prog

codegen : prog→ asm
asm2str : asm→ string

Here prog is a datatype for the abstract syntax tree (AST) of
source programs (which we will see in Section 3), and asm
is the AST for x86-64 assembly (to be seen in Section 5).
In addition to the compiler functions, we also define a

pretty printing function that converts a source program to a
string. The second argument (of type string list) is a list of
comments to inject into the generated string.

prog2str : prog → string list → string

We have proved that the lexer followed by the parser inverts
prog2str, regardless of the comments coms :

⊢ parser (lexer (prog2str p coms)) = p

Correctness of code generation. The in-logic compiler
bootstrapping that we do requires a correctness theorem for
the code generator, codegen. The required correctness theo-
rem relates terminating executions of the source language
with the terminating executions of the target language.

Before we can show the codegen correctness theorem, we
need to introduce how we make statements about program
execution in the source and target languages. For source-
level programs (of type prog), we write:

(input ,p) ⇓prog output

to say that, with input available on stdin, source program
p terminates and produces output on stdout. Similarly, for
target-level assembly programs (of type asm), we write:

(input ,a) ⇓asm output

to say that, with input to be read on stdin, target program a
successfully terminates and produces output on stdout.
We use the following correctness theorem for codegen

in our compiler bootstrapping. This theorem states that, if
execution of source program p terminates and target-level
execution of assembly program codegen p terminates, then
the outputs produced by the two executions must be equal.

⊢ (input ,p) ⇓prog output1 ∧
(input ,codegen p) ⇓asm output2 ⇒
output1 = output2

The operational semantics mentioned above, i.e. ⇓prog and
⇓asm, are explained in Section 3 and 5. The proof of the
correctness theorem above is the topic of Section 6.

While the correctness theorem shown above is sufficient
for compiler bootstrapping, it is not quite satisfactory in
general. For example, it does not say anything about non-
terminating executions. Section 7 shows how preservation
of non-terminating behaviour can be proved for codegen.

The compiler in AST form. In order to apply the com-
piler to itself, we need to somehow get the compiler into a
form that fits with what the compiler function takes as input.

The compiler function has a function type: string→ string.
It would be type incorrect to attempt to apply compiler di-
rectly to compiler, since the input type, string, does not
match the type of the argument, string→ string.

The key to this puzzle is to define a new constant, which
we call compiler_prog, that is the compiler represented as
source AST, i.e. a value of type prog:

compiler_prog : prog

We define compiler_prog in such a way that we can prove
that it implements the compiler function:

⊢ (input ,compiler_prog) ⇓prog compiler input

One should read the theorem above as saying: for any input ,
execution of the compiler_prog program will always termi-
nate and the output on stdout is the string produced by
applying the compiler function to input .
Section 4 describes how we produce compiler_prog and

prove the correctness theorem above for it.

Applying the compiler to itself. Using compiler_prog,
we can define a concrete-syntax version of it, compiler_str; a
version expressed in assembly, compiler_asm; and the string
representation of the assembly version, compiler_asm_str:

compiler_str
def
= prog2str compiler_prog coms

compiler_asm
def
= codegen compiler_prog

compiler_asm_str
def
= asm2str compiler_asm

Note that compiler_asm is applying part of the compiler,
namely codegen, to the compiler itself.
From the definition of compiler, the definitions above,

and the correctness of prog2str, we can prove an equation
describing the result of applying the entire compiler to itself:

⊢ compiler compiler_str = compiler_asm_str

This result is reassuring, but it is not on the critical path to
the main bootstrap theorem, which we will explain next.

The bootstrap theorem. The result of bootstrapping a
compiler inside an ITP is a theorem stating that the low-
level implementation of the compiler correctly implements

A Minimalistic Verified Bootstrapped Compiler (Proof Pearl) CPP ’21, January 18–19, 2021, Virtual, Denmark

the compiler algorithm. In our case, the low-level implemen-
tation is the compiler expressed in assembly, compiler_asm,
and the compilation algorithm is the compiler function.

We can easily arrive at the desired theorem by combining
the correctness theorems for codegen and compiler_prog to
prove the following statement. This final theorem states that
compiler_asm implements the compiler function.

⊢ (input ,compiler_asm) ⇓asm output ⇒
output = compiler input

Here it is worth noting that there is a hidden form of
partiality in this theorem. This partiality stems from the as-
sumption expressed in terms of ⇓asm. The precise reading of
the statement above is: if evaluation of compiler_asm suc-
cessfully terminates, then the output has the desired content.
We know that compiler_asm avoids diverging, but we do not
know whether it will call the system exit function with a
zero exit code. Our semantics (to be defined in Section 5) con-
siders an execution successful if it has zero as the exit code.
The codegen function emits code that resorts to a non-zero
exit code when memory has been exhausted during execu-
tion, e.g. when the code for allocating a new heap object is
called in a state where there is no heap space left. Due to the
dynamic way most compilers tend to use memory, it seems
unlikely that we can prove memory bounds that would allow
us to stay clear of this partiality.

Evaluation. Finally, we want to get our hands on the con-
crete low-level implementation of the compiler. From the de-
velopment described above, we know that compiler_asm_str
is the string representation of the verified assembly pro-
gram. However, to run this assembly outside of the logic, we
need to have it as a concrete string that we can print to a
file. In order to get this string, we simply evaluate the term
“compiler_asm_str” inside the ITP using the ITP’s rewrite
engine. For our case, this evaluation takes less than two min-
utes and results in a string consisting of 200 815 characters.
Once we have this string, we can put it in a textfile, pass

that textfile as input to the GNU assembler, then link the
resulting object, and finally run the compiler from the Linux1
command-line like any other program, see Section 8.

3 Source Language and Its Semantics
Wenowmove on to the technical details. This section presents
the definition of the source language.

Design. The source language is designed to be as small as
possible under the constraint that an entire compiler needs
to be implemented in the source language. We decided to
take inspiration from simple Lisp languages since their im-
plementation can be kept small and they can quite naturally
express the AST traversals that a compiler performs.

1Our definition of asm2str is specific to the syntax used by the GNU assem-
bler and the Linux execution environment for the x86-64 architecture.

Values. We define the source language to operate over
values that are binary trees with natural numbers at the
leaves. In our formal semantics, we define the semantic value
type v as the following recursive datatype.

v = Pair v v | Num nat

Abstract syntax. The AST for the source language is the
following. A complete program (prog) is a list of function
declarations (dec list) followed by a main expression (exp):

prog = Program (dec list) exp

dec = Defun fname (vname list) exp

Note that fname and vname are abbreviations for nat, i.e. all
names are represented as natural numbers in the AST. The
concrete syntax allows for alphanumeric names, but those
are read by the lexer as natural numbers written in base 256.

The expression type exp, the primitive operations op, and
the comparisons test are defined as follows.

exp = Const nat natural number
| Var vname variable
| Op op (exp list) primitive op.
| If test (exp list) exp exp if-expression
| Let vname exp exp let-binding
| Call fname (exp list) function call

op = Add | Sub | Div +, -, div for nat
| Cons | Head | Tail heap operations
| Read | Write char-based I/O

test = Less | Equal comparisons

We did not need a primitive for multiplication.

Semantics. We define ⇓prog to say that a whole program
terminates with output , if evaluation of the main expression,
using ⇓exp, produces that output in its state: s .output.

(input ,Program funs main) ⇓prog output
def
=

∃ s r .
(empty_env,[main],init_state input funs) ⇓exp (r ,s) ∧
output = s .output

Our big-step relational semantics for expression evalua-
tion, ⇓exp, relates an environment env , a list of expressions
exps and a starting state s to a list of values vals and a final
state s ′ that are the result of fully evaluating exps .

(env ,exps ,s) ⇓exp (vals ,s ′)

The type of states is defined as follows. States carry the
input as a potentially infinite list of characters; the output
is a string (i.e. a finite list of characters); and the state also
contains all function declarations. The purpose of the clock
field will be explained in Section 7.

state = ⟨| input : char llist; output : string;
funs : dec list; clock : nat |⟩

CPP ’21, January 18–19, 2021, Virtual, Denmark Magnus O. Myreen

The initial state, init_state, has output set to the empty string.

init_state input funs
def
= ⟨| input := input ; output := “”;

funs := funs; clock := 0 |⟩

The ⇓exp relation is defined inductively and is not particu-
larly surprising. The rule for Const is:

(env ,[Const n],s) ⇓exp ([Num n],s)

Similarly, the rule for Var is simple:
env n = Some v

(env ,[Var n],s) ⇓exp ([v],s)

The rule defining Call is expressed with the help of an auxil-
iary relation app (to be used in the next section).

(env ,xs ,s1) ⇓exp (vs ,s2) app fname vs s2 (v ,s3)
(env ,[Call fname xs],s1) ⇓exp ([v],s3)

The app relation is defined as follows.
env_and_body fname vs s1 = Some (env ,body)

(env ,[body],s1) ⇓exp ([v],s2)

app fname vs s1 (v ,s2)

The final rule that we include here is that of Op:
(env ,xs ,s1) ⇓exp (vs ,s2) eval_op f vs s2 = (Res v ,s3)

(env ,[Op f xs],s1) ⇓exp ([v],s3)

Evaluation of the primitives is defined by eval_op. Below are
some of the equations of its definition.

eval_op Cons [x ; y] s
def
= (Res (Pair x y),s)

eval_op Head [Pair x y] s
def
= (Res x ,s)

eval_op Tail [Pair x y] s
def
= (Res y ,s)

eval_op Div [Num n1; Num n2] s
def
=

if n2 , 0 then (Res (Num (n1 div n2)),s)
else (Err Crash,s)

Applying a primitive incorrectly, e.g. applying Tail to a num-
ber Num, results in Err Crash.

4 The Compiler Expressed in AST
Section 2 made use of a constant, compiler_prog, of type
prog for which we have the following theorem.

⊢ (input ,compiler_prog) ⇓prog compiler input

This section explains how we produce this constant and how
we prove that theorem.

Approach. There are two directions one can take to pro-
duce such a constant: one can (D1:) generate AST from con-
crete syntax using the lexer and parser, and then verify it
interactively against the source semantics ⇓prog or in a pro-
gram logic that is built on top of the source semantics; or
(D2:) use a tool (like [19]) that synthesises source AST from
the definition of compiler function and automatically proves
that the generated AST is correct w.r.t. ⇓prog (and ⇓exp).

We decided to take a hybrid approach where the AST for
all pure functions is produced using method D2 and the AST
representation of all impure functions (i.e. I/O functions)
is produced using method D1. Our implementation of the
compiler function only touches I/O in the implementation
of the lexer, which reads characters from stdin, and a simple
print routine, which prints a list of characters to stdout.

Automation for code synthesis. Weexplain the approach
we use for code synthesis using an example. Our example is
the synthesis of AST for the following definition of even.

even n
def
= if n = 0 then T else ¬even (n − 1)

The workhorse of the proof-producing code synthesis
automation is a routine that builds theorems of the following
form. Here tm is the HOL term that we are synthesising AST
for, x is the AST expression that we have generated, and
encoding is an appropriate function for encoding the HOL
term into the value type v of the source semantics.

(env ,x ,s) ⇓exp (encoding tm ,s)

Wewant to apply this routine to the right-hand side of the
definition for even, i.e. if n = 0 then T else ¬even (n − 1).
Before we can apply it, we need to have encoding functions
for all the types that appear in this term. The types that ap-
pear are nat and bool. The Num constructor function works
for the nat type. For the bool type, we define a function,
called Bool, that maps true (T) to 1 and false (F) to 0.

Bool T
def
= Num 1

Bool F
def
= Num 0

Furthermore, we need to have lemmas for all of the func-
tions and constants that appear in the term. Below are some
of the lemmas that this application of the automation uses.
The lemma for producing code for T is:

⊢ (env ,[Const 1],s) ⇓exp ([Bool T],s)

and the lemma for producing Boolean negation (¬) is:

⊢ (env ,[x],s) ⇓exp ([Bool b],s) ⇒
(env ,[Op Sub [Const 1; x]],s) ⇓exp ([Bool (¬b)],s)

Given the lemmas above, our automation can, e.g., process
input¬T. For this input, it proves the following ⇓exp-theorem
which shows how ¬T can be implemented in AST.

⊢ (env ,[Op Sub [Const 1; Const 1]],s) ⇓exp ([Bool (¬T)],s)

Equipped with enough such lemmas, the workhorse of the
automation derives the following theorem for the right-hand
side of even. We have abbreviated the generated AST in a
constant called even_code and replaced the right-hand side
of evenwith its left-hand side, i.e. even n . The assumption on
the theorem below includes an app because of the recursive

A Minimalistic Verified Bootstrapped Compiler (Proof Pearl) CPP ’21, January 18–19, 2021, Virtual, Denmark

call. Here N and EVEN abbreviate the respective natural
number representations of strings “n” and “even”.
⊢ env N = Some (Num n) ∧
(n , 0⇒
app EVEN [Num (n − 1)] s (Bool (even (n − 1)),s)) ⇒
(env ,[even_code],s) ⇓exp ([Bool (even n)],s)

From the theorem above, one can easily derive a new ver-
sion where the last line is phrased like the app-assumption:
⊢ lookup_fun EVEN s .funs = Some ([N],even_code) ∧
(n , 0⇒
app EVEN [Num (n − 1)] s (Bool (even (n − 1)),s)) ⇒
app EVEN [Num n] s (Bool (even n),s)

We can remove the app-assumption by applying the in-
duction that arises from the termination proof of even, i.e.
⊢ (∀n . (n , 0⇒ P (n − 1)) ⇒ P n) ⇒ ∀ v . P v

and arrive at:
⊢ lookup_fun EVEN s .funs = Some ([N],even_code) ⇒

app EVEN [Num n] s (Bool (even n),s)

which is the theorem returned by our proof automation as a
certificate that even_code is a correct implementation of the
function we gave as input, i.e. even.

Most of the functions in the compiler aremore complicated
than the even function, but the steps taken by the automa-
tion are still the same. For more complicated functions, many
of the details are instead more verbose: the encoding func-
tions are more complicated; the lemmas are longer; and the
induction applied at the end is messier. Below is an example
of one of the equations of the encoding function Exp for the
exp type. The point of Exp is to define how the recursive exp
type is represented in our Lisp’s values. Here we use LET to
abbreviate the number representation of the string “Let”.

Exp (Let n x y)
def
= Pair (Num LET)

(Pair (Num n)
(Pair (Exp x)
(Pair (Exp y) (Num 0))))

The lemmas used by the automation are also more com-
plicated, particularly lemmas used for code generation for
let-expressions and case-expressions where new variable
bindings are introduced in the generated AST.

Impure functions. No proof automation was developed
for the impure functions because there are only a few of
them. The print function (displayed below in Lisp-inspired
concrete syntax) is one of the few impure functions. It prints
a list of characters to stdout and treats 0 as indication of the
end of the list. Here let is used for sequencing.

(defun print (s)

(if (= s ’0) ’0

(let (v (write (head s)))

(print (tail s)))))

We verifed all of the impure functions by interactive proof
directly over the definition of the source semantics (D1).

The main expression. Programs in our source semantics
end in a main expression. The main expression for the com-
piler implementation is the following. Here the innermost
call to the lexer function takes no arguments, since it reads
its input from stdin directly, and the output is written to
stdout using the print function shown above.

(print (asm2str (codegen (parser (lexer)))))

Given a main expression, our automation assembles all of
the generated pure functions and all of the parsed impure
functions, and then defines the compiler_prog constant.
Once the constant compiler_prog is defined, we interac-

tively prove the following correctness theorem for it using
the app-theorems for each function used in the main expres-
sion. Note that there is no precondition on input here, i.e.
compiler_prog will always do whatever compiler does.

⊢ (input ,compiler_prog) ⇓prog compiler input

5 Target Language and Its Semantics
This section takes a look at the target language of the code
generator. The target language is a very small subset of the
assembly language for the x86-64 architecture.

Design. We had two main goals when picking and formal-
ising the target language: (1) we wanted to pick an assembly
language that allows us to easily run the resulting programs
on readily available hardware, and (2) to keep the formalised
language subset as minimal as possible w.r.t. what the code
generator needs. For (1), we chose x86-64 assembly because
most personal computers run x86-64 programs. For (2), we
chose to focus on a very narrow subset of x86-64 assembly.

Abstract syntax. In our formalisation, an assembly pro-
gram asm is a list of instructions inst, defined below. In these
type definitions, 64 word is a 64-bit word immediate value
and 4 word is a 4-bit word address offset.

asm = inst list

inst = Const reg (64 word) | Mov reg reg
| Add reg reg | Sub reg reg | Div reg
| Jump cond nat | Call nat | Ret
| Pop reg | Push reg
| Add_RSP nat | Load_RSP reg nat
| Load reg reg (4 word)
| Store reg reg (4 word)
| GetChar | PutChar | Exit
| Comment string

reg = RAX | RDI | RBX | RBP | RDX
| R12 | R13 | R14 | R15

cond = Always | Less reg reg | Equal reg reg

CPP ’21, January 18–19, 2021, Virtual, Denmark Magnus O. Myreen

The inst type covers only a tiny subset of the instructions,
some of the registers and a few of the jump conditions that
are available on x86-64. The GetChar, PutChar and Exit in-
structions expand to external calls. Here Comment expands
to a comment /* . . . */ in the generated assembly; it aids
readability and has no semantics, more specifically: execu-
tion gets stuck at the Comment instruction.
The stack pointer, i.e. register RSP, is not included in the

reg type, because the stack is modelled abstractly in our
formalisation of the semantics, which is explained next.

Semantics. Our semantics for x86-64 assembly models
the state of the x86-64 machine using the following record
type. Registers either map to a Some-value or None. We
use None to model the case when a value is unknown due
to a call to an external function. The stack is modelled as
a mathematical list where each element is either a 64-bit
word or a return address. The program counter is a natural
number and the code of the assembly program is a list of
instructions in the instructions field. Memory will be ex-
plained further down and I/O follows the approach used for
the source semantics.

state = ⟨|
instructions : asm;
pc : nat;
regs : reg → 64 word option;
stack : word_or_ret list;
memory : 64 word → 64 word option option;
input : char llist;
output : string
|⟩

α option = None | Some α

word_or_ret = Word (64 word) | RetAddr nat

The semantics of instruction fetching is to lookup the
index of the program counter in the list of instructions.

fetch s
def
= lookup s .pc s .instructions

lookup n []
def
= None

lookup n (x ::xs)
def
=

if n = 0 then Some x else lookup (n − 1) xs

The semantics of each instruction is given by a single-step
relation, step, which has the following type in HOL:2

step : s_or_h → s_or_h → bool

where values of the s_or_h type are either a state or a Halt
value indicating termination. Our semantics only allows ter-
mination by calls to the C function exit. Here Halt carries a
64-bit exit code and the string holding the output that was
produced during program execution.

s_or_h = State state | Halt (64 word) string

2In Coq, the type of step would be: s_or_h → s_or_h → Prop

The semantics of the Const instruction is defined by the
following rule. Herewrite_reg updates the value of a register
in the state and inc adds one to the pc in the state.

fetch s = Some (Const r w)

step (State s) (State (write_reg r w (inc s)))

The rules for the other register operations are similar in style.
For example, the rule giving semantics to Add is:

fetch s = Some (Add r1 r2)
s .regs r1 = Some w1

s .regs r2 = Some w2

step (State s) (State (write_reg r1 (w1 + w2) (inc s)))

The semantics of Call and Ret, respectively, push and pop
the return value to and from the stack.

fetch s = Some (Call n)

step (State s)
(State (set_pc n

(set_stack (RetAddr (s .pc + 1)::s .stack) s)))

fetch s = Some Ret
s .stack = RetAddr n ::rest

step (State s) (State (set_pc n (set_stack rest s)))

Our last example is the Exit instruction. It illustrates how
we formalise the 16-byte stack alignment requirement of
the x86-64 calling convention: we require that the stack has
even length. The Exit instruction terminates the assembly
program with an exit_code that is passed in the RDI register.

fetch s = Some Exit
s .regs RDI = Some exit_code

even (length s .stack)

step (State s) (Halt exit_code s .output)

The semantics of an entire execution is described by the
reflexive-transitive closure, step∗, of the step relation. The
semantics of terminating assembly programs is the follow-
ing. Here we require that there is some initial state t which
satisfies init_state_ok. The last line below requires Halt 0 to
be reachable from the initial state.

(input ,asm) ⇓asm output
def
=

∃ t .
init_state_ok t input asm ∧
step∗ (State t) (Halt 0 output)

We define init_state_ok as follows. We will explain our re-
quirement on memory, memory_writable, further below.

init_state_ok t input asm
def
=

∃ r14 r15.
t .pc = 0 ∧ t .instructions = asm ∧ t .input = input ∧
t .output = “” ∧ t .stack = [] ∧ t .regs R14 = Some r14 ∧
t .regs R15 = Some r15 ∧
memory_writable r14 r15 t .memory

A Minimalistic Verified Bootstrapped Compiler (Proof Pearl) CPP ’21, January 18–19, 2021, Virtual, Denmark

Note that we use this ⇓asm as an assumption in our com-
piler correctness theorems. As a result, the existential inside
⇓asm can be read as a universal quantifier in these theorems:

⊢ ((input ,asm) ⇓asm output ⇒ prop)
⇐⇒

∀ t . init_state_ok t input asm ∧
step∗ (State t) (Halt 0 output) ⇒ prop

Memory model. Finally, we will describe our memory
model and, in particular, how we made it unusually restric-
tive in order to slightly simplify3 the proofs about the code
generator, which is the topic of the next section.

The memory field of the state record is the following:

memory : 64 word → 64 word option option

The memory is word-addressed and each memory location
contains one of:None for not available; Some None for avail-
able but not yet initialised; and Some (Some w) for this ad-
dress contains word w . Our semantics gets stuck (i.e., rejects)
assignments to memory locations that are not Some None.
In other words, once something has been stored to memory,
it will be there forever. This property of our x86-64 semantics
saves us some effort in the proof for codegen because we
do not need to worry about an intermediate computation
changing what has previously been stored to memory.

Our assembly semantics assumes that it starts from a state
where every 8-byte-aligned memory location between the
address held in R14 and the address held in R15 is writable,
i.e. is Some None. We require that R14 and R15 are 16-byte
aligned, i.e. their four least significant bits are 0.

memory_writable r14 r15 m
def
=

r14 ≤+ r15 ∧ aligned16 r14 ∧ aligned16 r15 ∧ r14 , 0 ∧
∀ a . r14 ≤+ a <+ r15 ∧ aligned8 a ⇒ m a = Some None

Here ≤+ and <+ are unsigned comparisons for words.
In the definition above, we forbid the zero word, i.e. 0, from

being in the writable part of memory. This restriction lets us
determine that no pointer to a representation of Pair is equal
to the empty list, i.e. Num 0 which we represent as word 0.
Our source semantics allows Pair values to be compared with
Num 0, and this restriction on the zero address is required
for the verification of compilation of comparison (Equal).

6 Verification of the Code Generator
This section outlines how the code generator, codegen, was
defined and how the following key theorem was proved.

⊢ (input ,p) ⇓prog output1 ∧
(input ,codegen p) ⇓asm output2 ⇒
output1 = output2

This section omits definitions that do not fit here.
3If we were to drop this restriction, then we would need to establish a
separation (e.g. using separation logic’s separating conjunction) between
unused memory and memory already used for Pair representations.

Design. We attempted to keep the code generator as sim-
ple as possible. In particular, this lead to decisions such as:
• to not implement or use any form of garbage collector,
• to not worry about generating verbose code, and
• to use the x86-64 machine as a stack machine.

However, there were also parts for which we felt that a
bit of complexity in the code generator had to be tolerated:
• We ensure the code generator handles tail-calls prop-
erly, i.e. it generates a Jump instruction instead of a
Call instruction for every function call in tail position.
• The assembly semantics forces us to ensure that the
stack is of even length at the points where external
functions GetChar, PutChar and Exit are called.
• To avoid terrible performance, we wrote the code gen-
erator in terms of a type (app_list shown below) that
allows us to avoid suboptimal nesting of list append.

Implementation. The definition of the entire codegen
function does not fit here. However, we will illustrate the
style of definition by showing how code for Add is generated.

As mentioned above, we use an append-friendly type:

α app_list =
List (α list)
| Append (α app_list) (α app_list)

We collapse values of this type into normal lists using the
flatten function below. This function ensures that all list
appends (++) are evaluated as if they were right-associated.

flatten (List xs) acc
def
= xs ++ acc

flatten (Append l1 l2) acc
def
= flatten l1 (flatten l2 acc)

The c_defun function, shown below, generates code for
declarations. The generated code consists of a function pre-
amble, generated by c_pushes, followed by the code for the
body of the function, generated by c_exp.
Most of our code generator functions take an assembly

location l as input and produces one as output. On input, it
is the location where the generated code will be. On output,
this location is where the next generated instruction will be.
Here fs is a mapping from source-level function names to
corresponding assembly level locations (as will be clear from
the definition of code_rel in Fig. 2).

c_defun l fs (Defun n vs body)
def
=

let (c0,vs ,l0) = c_pushes vs l in
let (c1,l1) = c_exp T l0 vs fs body in
(Append c0 c1,l1)

The function c_defun calls c_exp with T as the first argu-
ment. This indicates that the expression is to be compiled
in tail-position. For the Op case, c_exp T calls the non-tail
version, i.e. c_exp F. Below c_exps is a list version of c_exp

CPP ’21, January 18–19, 2021, Virtual, Denmark Magnus O. Myreen

that is defined in mutual recursion with c_exp.

c_exp T l vs fs (Op op xs)
def
=

make_ret vs (c_exp F l vs fs (Op op xs))

c_exp F l vs fs (Op op xs)
def
=

let (c,l ′) = c_exps l vs fs xs in
let insts = c_op op vs l ′ in
(Append c (List insts),l ′ + length insts)

If the primitive operation op is Add then the definitions
lead us to the following code.

c_op Add vs l
def
= c_add vs

c_add vs
def
=

[Pop RDI;
Add RAX RDI;
Jump (Less R13 RAX) (give_up (even_len vs))]

give_up b
def
= if b then 14 else 15

We can see that Add is implemented by three instructions:
a stack pop, an addition and a conditional jump. The con-
ditional jump checks whether the result of the addition is
greater than the content of register R13, which is accroding
to our invariant (see state_rel in Fig. 2) always contains the
largest number (i.e. 263−1) that our generated code allows. If
the result of the addition exceeds this maximum value, then
the code jumps to either code location 14 or 15, depending
on the length of the list vs . The code at those locations call
Exit with exit code 1. The destination of the jump is adjusted
so that the stack has even length when Exit is called.

The implementation of Addmust resort to an early exit in
some cases, because the assembly language can only hold 64-
bit values in its registers, but the source semantics allows for
arbitrarily large natural numbers. As a result, the generated
code sometimes has to give up. Our implementation allows
numbers up to 63 bits in size so that the final bit can be used
to check overflow.

Cons is the other primitive that can resort to an early exit.
It exits with exit code 1 when heap space is exhausted.

Verification. Proving the correctness of the codegen func-
tion requires showing that a simulation relation holds be-
tween the evaluation of the source program and execution
of the generated assembly program. More specifically, both
executions must agree on the externally observable events,
namely, output and termination/non-termination.
Our source and target languages are deterministic and,

as a result, it suffices to show a forward simulation theorem
even if other results are the final goal. A theorem stated as a
forward simulation has the shape: for any source evaluation,
the corresponding target execution is similar enough.
Figure 1 shows a forward simulation result that we have

proved for the function that compiles expressions, i.e. c_exp.

1 ⊢ (env ,[x],s) ⇓exp ([v],s1) ∧
2 c_exp is_tail t .pc vs fs x = (code ,l1) ∧
3 state_rel fs s t ∧ env_ok env vs curr t ∧
4 has_stack t (curr ++ rest) ∧ odd (length rest) ∧
5 code_in t .pc (flatten code []) t .instructions⇒
6 ∃ outcome .
7 step∗ (State t) outcome ∧
8 case outcome of
9 State t1 ⇒
10 state_rel fs s1 t1 ∧
11 ∃w .
12 v_inv t1 v w ∧
13 if is_tail then
14 has_stack t1 (Word w ::rest) ∧
15 fetch t1 = Some Ret
16 else
17 has_stack t1 (Word w ::curr ++ rest) ∧
18 t1.pc = l1
19 | Halt ec output ⇒
20 output ≼ s1.output ∧ ec = 1

Figure 1. Correctness of c_exp

The theorem statement is long and requires some explana-
tion. The rest of this section explains this key lemma and
the definitions that it relies on.
We focus on this lemma about c_exp because it touches

on all noteworthy aspects of the verification of the code
generator. Proving the prog-level theorem is an exercise
in instantiating this lemma for the main expression of the
source program.
When looking at Figure 1, one should note that this is a

forward simulation because, on line 1, we assume that the
source semantics has evaluated to some result, and in the
conclusion we see, on line 7, that the assumptions above
imply the existence of an execution in the assembly language.

How does the assembly execution relate to the source exe-
cution? The answer is on line 2 and line 5. Line 2 states that
we assume that the compiler function, in this case c_exp, has
produced code . Line 5 assumes (using code_in below) that
the program counter points to the beginning of where code
is installed in the list of t .instructions. Thus the compiler
output dictates what will happen in the assembly execution.

code_in n [] insts
def
= T

code_in n (x ::xs) insts
def
=

lookup n insts = Some x ∧ code_in (n + 1) xs insts

Next we will look at how the source-level evaluation is
mimicked at the assembly level. We treat the x86-64 machine
as if it was a stack machine where the top of the stack is held
in register RAX and the rest of the stack is in the stack field
of the assembly state. We write has_stack t xs to say that

A Minimalistic Verified Bootstrapped Compiler (Proof Pearl) CPP ’21, January 18–19, 2021, Virtual, Denmark

state t represents such a stack xs .

has_stack t xs
def
=

∃w ws .
xs = Word w ::ws ∧ t .regs RAX = Some w ∧
t .stack = ws

In Figure 1, line 4 assumes that a stack is present that
can be divided into a current stack frame, curr , and the rest
of the stack, rest . On line 14, we see that the is_tail case
requires execution to finish in a state where the curr has
been dropped and only the return value w is left in front of
rest . In the non-tail case, on line 17, we see that the return
valuew has been pushed onto the stack, leaving curr ++ rest
untouched underneath.

Note that lines 6-8 and 19-20 of Figure 1 always allow the
assembly level execution to resort to Halt with exit code 1.
In such cases, we care only that the assembly level output is
a prefix ≼ of the source level output.
In case a Halt is avoided (line 9), then there exists some

assembly-level result word w (line 11) such that it is v_inv-
related to the source-level result value v (line 12). The defi-
nition of v_inv is shown below.

The v_inv t v w relation defines howwe represent source-
level value v at the assembly level by a word w w.r.t. an
assembly state t . A numeric value Num n is represented by
a word w if n is smaller than 263 and the word is equal to the
n converted to a machine word, which we write as n2w n .

v_inv t (Num n) w
def
= n < 263 ∧ w = n2w n

A Pair x1 x2 is represented by a word w if that word is a
pointer to the word w1 in memory that represents x1, and
similarly w + 8 is pointer to a word w2 in memory that
represents x2. (The offset is 8 since there are 8 bytes in a
64-bit word. Memory is byte addressed on x86-64.)

v_inv t (Pair x1 x2) w
def
=

∃w1 w2.
read_mem (w + 0) t = Some w1 ∧ v_inv t x1 w1 ∧

read_mem (w + 8) t = Some w2 ∧ v_inv t x2 w2 ∧

w , 0

The v_inv relation is used in definition of env_ok, which
relates the source semantics environment env , the current
stack frame curr , and the compiler’s model of the current
stack frame vs . We define env_ok to say that the model
of the stack frame vs must be exactly the same length as
the current stack frame curr . Furthermore, for any variable
binding that exists in the source-level environment env , it
must be possible to look up (using find) a position for this
variable in the model of the stack frame vs , and a load from
that position in the current stack frame must result in a
v_inv-related word.

state_rel fs s t
def
=

s .input = t .input ∧ s .output = t .output ∧
code_rel fs s .funs t .instructions ∧
∃ r14 r15.

t .regs R12 = Some 16 ∧ t .regs R13 = Some (263 − 1) ∧
t .regs R14 = Some r14 ∧ t .regs R15 = Some r15 ∧
memory_writable r14 r15 t .memory

code_rel fs funs instructions
def
=

init_code_in instructions ∧
∀n params body .
lookup_fun n funs = Some (params ,body) ⇒
∃ pos .
lookup fs n = Some pos ∧
code_in pos
(flatten
(fst (c_defun pos fs (Defun n params body))) [])

instructions

init_code_in instructions
def
=

∃ start . code_in 0 (init start) instructions

init start
def
=

[Const RAX 0; Const R12 16; Const R13 (263 − 1);
Call start ; Const RDI 0; Exit; Comment “cons”;
Jump (Equal R14 R15) 14; Store RDI R14 0;
Store RAX R14 8; Mov RAX R14; Add R14 R12; Ret;
Comment “exit 1”; Push R15; Const RDI 1; Exit]

Figure 2. The definition of the state relation state_rel and
its components: the code relation code_rel, and a predicate
init_code_in about existence of the initial code, init.

env_ok env vs curr t
def
=

length vs = length curr ∧
∀n v .
env n = Some v ⇒
find n vs 0 < length curr ∧
∃w . el (find n vs 0) curr = Word w ∧ v_inv t v w

find n [] k
def
= k

find n (None::vs) k
def
= find n vs (k + 1)

find n (Some v ::vs) k
def
=

if v = n then k else find n vs (k + 1)

Lines 3 and 10 of Figure 1 are still to be explained. Line 3 re-
quires that state_rel holds between the initial source state s
and the initial assembly state t , and that these are consis-
tent with fs . Here fs is a mapping from function names to
locations in the generated assembly code.

The definition of state_rel is shown in Figure 2. It requires
that the source and assembly states agree on the content

CPP ’21, January 18–19, 2021, Virtual, Denmark Magnus O. Myreen

of the input and output fields; it requires that the compi-
lation of each source function is present, at the right loca-
tions according to fs , in the assembly code; it requires that
registers R12–R15 have specific values; finally, it requires
memory_writable, see end of Section 5.
The definition of code_rel, shown in Figure 2, requires

that the initial code produced by init is present in memory.
This initial code has three parts: (1) the first few instructions
initialise registers RAX, R12 and R13 at the start of execution,
(2) it contains a helper routine (following Comment “cons”)
for memory allocation, and (3) it has a helper routine (fol-
lowing Comment “exit 1”) for aborting execution with Exit
applied to number 1, i.e. the exit code for failure.

The theorem shown in Figure 1 was proved by induction
on the semantics of expression evaluation. Our proof, which
was not particularly difficult once the correct theorem state-
ment was found, involves careful expansion of the step∗

relation for each snippet of generated assembly code.
In our formal development, we actually proved a slightly

more general statement than the one shown in Figure 1. The
reason is that we also wanted to prove divergence preserva-
tion for the code generator. The next section explains how
the statement was generalised.

7 Extra: Proof of Divergence Preservation
This section explains how we have proved that the code
generator preserves behaviour also for non-terminating, i.e.
diverging, programs. Proving divergence preservation is not
required for in-logic bootstrapping of a compiler, but we
include it here because we consider divergence preservation
to be an important part of compiler verification in general.

Theorem statement. Divergence preservationmeans that
the generated code agrees with the source semantics also
when the program diverges, i.e. when the program runs
forever. As pointed out earlier, we allow the generated as-
sembly to exit early due to running out of memory or some
number becoming too large to represent in a register. As a re-
sult, we state our divergence preservation as an implication
in only one direction: if the generated assembly program
diverges (⇑asm) and the source program is well-defined (i.e.
does not crash), then the source program also diverges (⇑prog).
Furthermore, the non-terminating execution agrees on the
potentially infinite stream of output that is produced.

⊢ prog_avoids_crash input prog ∧
(input ,codegen prog) ⇑asm output ⇒
(input ,prog) ⇑prog output

The new notation, i.e. ⇑asm and ⇑prog, will be defined below.

Divergence semantics for assembly. We say that an as-
sembly program runs forever from a state t if: for every k ,
one can take k transitions of step, written stepk , and still

successfully arrive at a new state t ′, without hitting Halt.

∀ k . ∃ t ′. stepk (State t) (State t ′)

We express the (potentially never ending) output stream
produced as a least upper bound, LUB, of all output traces
that all of the finite execution can produce.

LUB { t ′.output | step∗ (State t) (State t ′) }

Here LUB has type string set→ char llist, where llist is
either a finite list or an infinite list. This least upper bound
is well-defined here since step is deterministic and produces
output in a monotonic way.
With these formulations, we define the semantics of a

diverging assembly execution, (input ,asm) ⇑asm output , to
be true if there exists some initial state t with input and asm
installed such that execution from t will never stop and will
produce output described by output .

⊢ (input ,asm) ⇑asm output
def
=

∃ t .
init_state_ok t input asm ∧
(∀ k . ∃ t ′. stepk (State t) (State t ′)) ∧
output = LUB { t ′.output | step∗ (State t) (State t ′) }

Just like in Section 5, we note that the existential quantifier
on the initial state t ought to be read as a universal quan-
tification in the compiler correctness theorem since ⇑asm
appears on the left-hand side of an implication.

Divergence semantics for source. We use a functional
big-step semantics [21] to define the semantics for diverging
source programs, since the classical relational semantics of
Section 3 cannot express non-termination.

Figure 3 shows the expression evaluating function of our
functional big-step semantics. One can read the functional
big-step semantics as an interpreter for the language. In
this figure, we display it expressed in Haskell-inspired do-
notation using a state-and-exception monad, where normal
results are Res v , for some value v , and errors are Err e ,
where e is either Crash or TimeOut.

The TimeOut error has to do with the semantic clock
that the functional big-step semantics style requires. In Sec-
tion 3, we included a natural-number-valued clock field in
the state in order to be able to define a function big-step se-
mantics. Our functional big-step semantics decrements this
clock at every Call: in our semantics, get_env_and_body
decrements the clock by one. If the clock is zero on entry to
get_env_and_body, then this function return Err TimeOut.
This timeout error gets propagated to the top level.

We use these timeouts to define non-termination. First we
define eval_from k input p to be the evaluation of a whole
program from a given input and initial clock k .

eval_from k input (Program funs main)
def
=

eval empty_env main
(init_state input funs with clock := k)

A Minimalistic Verified Bootstrapped Compiler (Proof Pearl) CPP ’21, January 18–19, 2021, Virtual, Denmark

eval env (Const n)
def
= return (Num n)

eval env (Var n)
def
=

case env n of None⇒ fail | Some v ⇒ return v

eval env (Op f xs)
def
=

do vs ← evals env xs; eval_op f vs od
eval env (Let vname x y)

def
=

do v ← eval env x ;
eval env ⟨vname 7→ Some v⟩ y od

eval env (If test xs y z)
def
=

do vs ← evals env xs;
b ← take_branch test vs;
eval env (if b then y else z) od

eval env (Call fname xs)
def
=

do vs ← evals env xs;
(fenv ,body) ← get_env_and_body fname vs;
eval fenv body od

evals env []
def
= return []

evals env (x ::xs)
def
=

do v ← eval env x ;
vs ← evals env xs;
return (v ::vs) od

return v s
def
= (Res v ,s)

fail s
def
= (Err Crash,s)

monad_bind f g s
def
=

case f s of (Res v ,s1) ⇒ g v s1 | (Err e ,s1) ⇒ (Err e ,s1)

Figure 3. A functional big-step semantics for source expres-
sions. This is used for our proof of divergence preservation.

Using eval_from, we define a function that checks for time-
out and one that returns the output for a given initial clock.

prog_timesout k input prog
def
=

∃ s . eval_from k input prog = (Err TimeOut,s)

prog_output k input prog
def
=

let (res ,s) = eval_from k input prog in s .output

A source program diverges if the program times out for every
initial clock value k . The output is captured by the least upper
bound (LUB) of all partial outputs.

(input ,prog) ⇑prog output
def
=

(∀ k . prog_timesout k input prog) ∧
output = LUB { prog_output k input prog | k ∈ N }

Modifications to the verification of the code genera-
tor. Only a few minor adjustments need to be made to code
generator proofs to also make them support a final theo-
rem about divergence preservation. In the theorem shown

in Figure 1, we swap lines 1, 7 and 11 to the following.

1 eval env e x = (res ,s1) ∧ res , Err Crash ∧
· · ·
7 steps (State t , s .clock) (outcome, s1.clock) ∧
· · ·
11 ∀ v . res = Res v ⇒ ∃w .

Here steps (t1,n1) (t2,n2)
def
= ∃n . stepn t1 t2 ∧ n1 ≤ n+n2.

We use steps to ensure that sufficiently many execution
steps are taken by the assembly program. Note that when
eval returns res = Err TimeOut, then s1.clock is always 0. In
that case, line 7 states that the assembly program has taken
at least s .clock steps, i.e. as many steps as the number of
times Call was evaluated as part of eval on line 1. This loose
relationship between the number of execution steps between
source and assembly is sufficient for our proof.

As part of the top-level divergence preservation proof, we
encounter the following proof goal:

init_state_ok t input (codegen prog) ∧ . . . ⇒
LUB { t ′.output | step∗ (State t) (State t ′) } =
LUB { prog_output k input prog | k ∈ N }

We prove this goal with the help of the following lemma.

⊢ total s1 ∧ total s2 ∧ s1 within s2 ∧ s2 within s1 ⇒
LUB s1 = LUB s2

Here total requires that any two elements of the given set
must be related by the prefix ≼ relation; and within requires
each element of the first set to be a prefix≼ of some element
of the second set.

total s
def
= ∀ l1 l2. l1 ∈ s ∧ l2 ∈ s ⇒ l1 ≼ l2 ∨ l2 ≼ l1

s1 within s2
def
= ∀ l1. l1 ∈ s1 ⇒ ∃ l2. l2 ∈ s2 ∧ l1 ≼ l2

8 Bootstrapping Results and Proof Scripts
This section concludes our description of the bootstrapping
work by recapping the top-level results, showing some of
the generated artifacts and presenting some numbers.

Theorems. The two most important top-level theorems
of this paper are the following. The first is a theorem which
states that the compiler_asm assembly program correctly
implements the abstract compiler function:

⊢ (input ,compiler_asm) ⇓asm output ⇒
output = compiler input

The second theorem is an evaluation of the application of
the asm2str function to the compiler_asm assembly program
(where compiler_asm

def
= codegen compiler_prog).

⊢ asm2str compiler_asm = “. . . ”

Here “. . . ” is a concrete string that can be printed into a text
file. Figure 4 shows the initial and final part of that string.

CPP ’21, January 18–19, 2021, Virtual, Denmark Magnus O. Myreen

.bss

.p2align 3 /* 8-byte align */
heapS:

.space 8*1024*1024 /* bytes of heap space */

.p2align 3 /* 8-byte align */
heapE:

.text

.globl main
main:

subq $8, %rsp /* 16-byte align %rsp */
movabs $heapS, %r14 /* r14 := heap start */
movabs $heapE, %r15 /* r15 := heap end */

L0: movq $0, %rax
L1: movq $16, %r12
L2: movq $9223372036854775807, %r13
L3: call L10015
L4: movq $0, %rdi
. . .

/* main */
L10015: pushq %rax
L10016: call L4440
L10017: call L6407
L10018: call L3906
L10019: call L8494
L10020: addq $8, %rsp
L10021: jmp L9993

Figure 4. The initial and final part of the 10 188-line string
resulting from evaluating “asm2str compiler_asm” in logic.

Compiler in source syntax. We also evaluate prog2str
applied to compiler_prog to get hold of a string representa-
tion of the concrete source syntax for compiler_prog.

⊢ prog2str compiler_prog coms = “. . . ”
Parts of this string are shown in Figure 5.

Executable artefacts. We can run the compiler outside
of the logic, as a command-line program, as follows. If we
store the string representation of compiler_asm in a file
called compiler_asm.s, and the string for compiler_prog in
file compiler_prog.txt, then we can get an executable by
calling GCC to assemble and link the assembly file. We can
then run it as a normal program and use time to get some
measurement of its runtime:

$ gcc -o compiler compiler_asm.s
$ time ./compiler < compiler_prog.txt > output

real 0m0.011s
user 0m0.006s
sys 0m0.005s
$ diff output compiler_asm.s
$

The ./compiler command above applied compiler_asm to
compiler_prog and stored the output in a file called output.

This file is generated from the HOL4 theorem prover.

. . .

(defun append (v l)
(if (= v '0) l (cons (head v) (append (tail v) l))))

(defun flatten (v acc)
(case v ((List xs) (append xs acc))

((Append l1 l2) (flatten l1 (flatten l2 acc)))))

(defun even_len (v) (if (= v '0) '1 (odd_len (tail v))))

(defun odd_len (v) (if (= v '0) '0 (even_len (tail v))))

(defun give_up (b) (if (= b '1) '14 '15))

. . .

(defun c_add (vs)
(list (Pop RDI) (Add RAX RDI)

(Jump (Less R13 RAX) (give_up (even_len vs)))))

. . .

The main expression

(print (asm2str (codegen (parser (lexer)))))

Figure 5. Parts of the 542-line string resulting from evaluat-
ing “prog2str compiler_prog coms” in logic. Lines starting
with # are comments that are injected via coms.

We use diff to check that the output textfile is identical to
compiler_asm.s. We note that diff found no differences.

Proof scripts. A summary of line counts is shown below.
The files build in less than 5 minutes on an Intel Core i7.

group of HOL4 files # lines
source syntax, semantics, lemmas 1154
x64 assembly syntax, semantics, lemmas 609
code generator and its proofs 2225
parsing, printing and their proofs 1415
compiler_prog, automation and proofs 2166
top-level compiler, evaluation and proofs 79
total 7648

9 Related Work
Chirica andMartin [4] seem to have been the first to consider
the gap between compilation algorithm and executable com-
piler implementation, in the context of compiler verification.
Curzon [5] was the first to propose in-logic execution of

the compiler algorithm as a potential way of producing a
verified implementation of the compiler algorithm.

The VLISP project [9] was the first to apply compiler boot-
strapping in the context of a complier verification project.
However, their verification proofs were not mechanised in an
ITP, instead they were “rigorous, but not completely formal,
much in the style of ordinary mathematical discourse.”

A Minimalistic Verified Bootstrapped Compiler (Proof Pearl) CPP ’21, January 18–19, 2021, Virtual, Denmark

Dold et al. [7] describes the next milestone: a mechanically
verified compiler that was bootstrapped outside of an ITP
but thoroughly inspected. The verification was performed
inside the PVS ITP [22]. Bootstrapping was done outside, but
the result of the bootstrap underwent a rigorous a-posteriori
syntactic code inspection which took 3 months and produced
“approx. 1000 pages of code-inspection protocols.”

Next, Leroy published his seminal papers onCompCert [15,
16]. CompCert has not (yet) been bootstrapped, but it has
become a landmark in compiler verification. The CompCert
project showed that realistic compilers can be mechnically
verified, and this set off a flurry of activity that have explored,
e.g., compositionality [20, 26], concurrency [11, 23, 24] and
security [1–3] with regard to compiler verification.

Inspired by CompCert, the CakeML project [29] produced
a realistic verified compiler for an ML-like language. The
CakeML compiler is the first verified boostrapped compiler
for which boostrapping was done inside an ITP. CakeML’s
compiler boostrapping works in much the same way as the
method described in this paper. However, the CakeML boos-
trap theorems are much harder to understand [29, Sec. 11]
due to the CakeML project’s aim of realism. The pursuit of
realism causes clutter to creep into the compiler correctness
statements. Some of this clutter stems from, for example,
CakeML’s support for more general forms of I/O than the
simple I/O considered here and the fact that CakeML is com-
piled to several different machine languages.

Bootstrapping is self-application. Self-application has also
been considered for ITPs themselves [6, 10, 12, 27, 28].

10 Conclusions
This paper has described a small verified bootstrapped com-
piler development that we have tried to keep as free from
unnecessary clutter as possible. We hope that this develop-
ment makes the concept of bootstrapping clear and that it
inspires more use of compiler bootstrapping in ITPs.

Bootstrapping a less minimal compiler? Producing a
verified bootstrapped compiler consists of three major tasks:
(T1) verifying a code generator, (T2) producing the verified
deep embedding (here: compiler_prog), and (T3) evaluating
the code generator on the deep embedding in the logic.

The effort involved in task T1 increases as the source lan-
guage supported by the compiler becomes harder to compile.
However, note that a source language that fits compiler im-
plementation makes task T2 simpler. Any increase in the
size of the compiler causes task T3 (and to a lesser extent
T2) to become computationally heavier to run. For CakeML,
running tasks T2 and T3 takes several hours, while T2 and
T3 complete in minutes for the simple compiler of this paper.

Acknowledgments
Oskar Abrahamsson, Andreas Lööw, Michael Norrish and
Yong Kiam Tan kindly provided feedback on drafts of this

text. The anonymous reviewers also gave detailed and helpful
comments. This work was supported by funding from the
Swedish Foundation for Strategic Research.

References
[1] C. Abate, A. A. de Amorim, R. Blanco, A. N. Evans, G. Fachini, C. Hritcu,

T. Laurent, B. C. Pierce, M. Stronati, and A. Tolmach. When good
components go bad: Formally secure compilation despite dynamic
compromise. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors,
Computer and Communications Security (CCS), pages 1351–1368. ACM,
2018. doi:10.1145/3243734.3243745.

[2] C. Abate, R. Blanco, D. Garg, C. Hritcu, M. Patrignani, and J. Thibault.
Journey beyond full abstraction: Exploring robust property preser-
vation for secure compilation. In 32nd IEEE Computer Security
Foundations Symposium (CSF), pages 256–271. IEEE, June 2019.
doi:10.1109/CSF.2019.00025.

[3] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie,
and A. Trieu. Formal verification of a constant-time preserving
C compiler. Proc. ACM Program. Lang., 4(POPL):7:1–7:30, 2020.
doi:10.1145/3371075.

[4] L. M. Chirica and D. F. Martin. Toward compiler implementation
correctness proofs. ACM Trans. Program. Lang. Syst., 8(2):185–214,
Apr. 1986. ISSN 0164-0925. doi:10.1145/5397.30847.

[5] P. Curzon. Deriving correctness properties of compiled code. In
L. J. M. Claesen and M. J. C. Gordon, editors, Higher Order Logic Theo-
rem Proving and its Applications, Proceedings of the IFIP TC10/WG10.2
Workshop HOL’92, Leuven, Belgium, 21-24 September 1992, volume A-
20 of IFIP Transactions, pages 327–346. North-Holland/Elsevier, 1992.
doi:10.1016/B978-0-444-89880-7.50027-9.

[6] J. Davis and M. O. Myreen. The reflective Milawa theorem prover is
sound (down to the machine code that runs it). Journal of Automated
Reasoning (JAR), 2015. doi:10.1007/978-3-319-08970-6_27.

[7] A. Dold, F. W. von Henke, and W. Goerigk. A completely verified
realistic bootstrap compiler. Int. J. Found. Comput. Sci., 14(4):659, 2003.
doi:10.1142/S0129054103001947.

[8] J. Earley and H. Sturgis. A formalism for translator interac-
tions. Commun. ACM, 13(10):607–617, Oct. 1970. ISSN 0001-0782.
doi:10.1145/355598.362740. URL https://doi.org/10.1145/355598.362740.

[9] J. D. Guttman, J. D. Ramsdell, and M. Wand. VLISP: A verified imple-
mentation of scheme. LISP Symb. Comput., 8(1-2):5–32, 1995.

[10] J. Harrison. Towards self-verification of HOL light. In U. Furbach
and N. Shankar, editors, Proceedings of the third International Joint
Conference (IJCAR), volume 4130 of LNCS. Springer-Verlag, 2006.
doi:10.1007/11814771_17.

[11] H. Jiang, H. Liang, S. Xiao, J. Zha, and X. Feng. Towards certified
separate compilation for concurrent programs. In K. S. McKinley
and K. Fisher, editors, Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI
2019, Phoenix, AZ, USA, June 22-26, 2019, pages 111–125. ACM, 2019.
doi:10.1145/3314221.3314595.

[12] R. Kumar, R. Arthan, M. O. Myreen, and S. Owens. Self-formalisation
of higher-order logic - semantics, soundness, and a verified implemen-
tation. Journal of Automated Reasoning (JAR), 56(3):221–259, 2016.
doi:10.1007/s10817-015-9357-x.

[13] R. Kumar, E. Mullen, Z. Tatlock, and M. O. Myreen. Software verifica-
tion with ITPs should use binary code extraction to reduce the TCB -
(short paper). In J. Avigad and A. Mahboubi, editors, Interactive Theo-
rem Proving (ITP). Springer, 2018. doi:10.1007/978-3-319-94821-8_21.

[14] O. Lecarme, M. Pellissier, and M.-C. Thomas. Computer-aided pro-
duction of language implementation systems: A review and clas-
sification. Software: Practice and Experience, 12(9):785–824, 1982.
doi:10.1002/spe.4380120902.

http://dx.doi.org/10.1145/3243734.3243745
http://dx.doi.org/10.1109/CSF.2019.00025
http://dx.doi.org/10.1145/3371075
http://dx.doi.org/10.1145/5397.30847
http://dx.doi.org/10.1016/B978-0-444-89880-7.50027-9
http://dx.doi.org/10.1007/978-3-319-08970-6_27
http://dx.doi.org/10.1142/S0129054103001947
http://dx.doi.org/10.1145/355598.362740
https://doi.org/10.1145/355598.362740
http://dx.doi.org/10.1007/11814771_17
http://dx.doi.org/10.1145/3314221.3314595
http://dx.doi.org/10.1007/s10817-015-9357-x
http://dx.doi.org/10.1007/978-3-319-94821-8_21
http://dx.doi.org/10.1002/spe.4380120902

CPP ’21, January 18–19, 2021, Virtual, Denmark Magnus O. Myreen

[15] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, 2009. doi:10.1145/1538788.1538814.

[16] X. Leroy. A formally verified compiler back-end. J. Autom. Reasoning,
43(4):363–446, 2009. doi:10.1007/s10817-009-9155-4.

[17] The Coq development team. The Coq proof assistant reference manual,
2004. Version 8.0.

[18] J. S. Moore. Milestones from the pure Lisp theorem prover to ACL2.
Formal Asp. Comput., 31(6):699–732, 2019. doi:10.1007/s00165-019-
00490-3.

[19] M. O. Myreen and S. Owens. Proof-producing translation of higher-
order logic into pure and stateful ML. Journal of Functional Program-
ming (JFP), 24(2-3), 2014. doi:10.1017/S0956796813000282.

[20] G. Neis, C. Hur, J. Kaiser, C. McLaughlin, D. Dreyer, and V. Vafeiadis. Pil-
sner: a compositionally verified compiler for a higher-order imperative
language. In K. Fisher and J. H. Reppy, editors, International Conference
on Functional Programming (ICFP), 2015. doi:10.1145/2784731.2784764.

[21] S. Owens, M. O. Myreen, R. Kumar, and Y. K. Tan. Functional big-step
semantics. In P. Thiemann, editor, European Symposium on Program-
ming (ESOP), LNCS. Springer, 2016. doi:10.1007/978-3-662-49498-1_23.

[22] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In D. Kapur, editor, Automated Deduction (CADE), volume 607
of Lecture Notes in Computer Science, pages 748–752. Springer, 1992.
doi:10.1007/3-540-55602-8_217.

[23] T. Ramananandro, Z. Shao, S. Weng, J. Koenig, and Y. Fu. A compo-
sitional semantics for verified separate compilation and linking. In
X. Leroy and A. Tiu, editors, Certified Programs and Proofs (CPP), pages
3–14. ACM, 2015. doi:10.1145/2676724.2693167.

[24] J. Sevcík, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell.
CompCertTSO: A verified compiler for relaxed-memory concurrency.
J. ACM, 60(3):22:1–22:50, 2013. doi:10.1145/2487241.2487248.

[25] K. Slind and M. Norrish. A brief overview of HOL4. In O. A. Mohamed,
C. A. Muñoz, and S. Tahar, editors, Theorem Proving in Higher Order
Logics (TPHOLs), volume 5170 of Lecture Notes in Computer Science,
pages 28–32. Springer, 2008. doi:10.1007/978-3-540-71067-7_6.

[26] Y. Song, M. Cho, D. Kim, Y. Kim, J. Kang, and C. Hur. Com-
pCertM: CompCert with C-assembly linking and lightweight modular
verification. Proc. ACM Program. Lang., 4(POPL):23:1–23:31, 2020.
doi:10.1145/3371091.

[27] M. Sozeau, S. Boulier, Y. Forster, N. Tabareau, and T. Winterhalter. Coq
Coq Correct! verification of type checking and erasure for Coq, in Coq.
Proc. ACM Program. Lang., 4(POPL), Dec. 2019. doi:10.1145/3371076.

[28] P.-Y. Strub, N. Swamy, C. Fournet, and J. Chen. Self-certification:
Bootstrapping certified typecheckers in F* with Coq. In Principles of
Programming Languages (POPL). Association for Computing Machin-
ery, 2012. doi:10.1145/2103656.2103723.

[29] Y. K. Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, and M. Nor-
rish. The verified CakeML compiler backend. Journal of Functional
Programming, 29, 2019. doi:10.1017/S0956796818000229.

[30] M. Wenzel, L. C. Paulson, and T. Nipkow. The isabelle framework. In
O. A. Mohamed, C. A. Muñoz, and S. Tahar, editors, Theorem Proving
in Higher Order Logics (TPHOLs), volume 5170 of Lecture Notes in
Computer Science, pages 33–38. Springer, 2008. doi:10.1007/978-3-540-
71067-7_7.

http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1007/s10817-009-9155-4
http://dx.doi.org/10.1007/s00165-019-00490-3
http://dx.doi.org/10.1007/s00165-019-00490-3
http://dx.doi.org/10.1017/S0956796813000282
http://dx.doi.org/10.1145/2784731.2784764
http://dx.doi.org/10.1007/978-3-662-49498-1_23
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1145/2676724.2693167
http://dx.doi.org/10.1145/2487241.2487248
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1145/3371091
http://dx.doi.org/10.1145/3371076
http://dx.doi.org/10.1145/2103656.2103723
http://dx.doi.org/10.1017/S0956796818000229
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://dx.doi.org/10.1007/978-3-540-71067-7_7

	Abstract
	1 Introduction
	2 Idea of Bootstrapping in the Logic
	3 Source Language and Its Semantics
	4 The Compiler Expressed in AST
	5 Target Language and Its Semantics
	6 Verification of the Code Generator
	7 Extra: Proof of Divergence Preservation
	8 Bootstrapping Results and Proof Scripts
	9 Related Work
	10 Conclusions
	References

