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Abstract

Modern subgraph-finding algorithm implementations consist
of thousands of lines of highly optimized code, and this com-
plexity raises questions about their trustworthiness. Recently,
some state-of-the-art subgraph solvers have been enhanced
to output machine-verifiable proofs that their results are cor-
rect. While this significantly improves reliability, it is not a
fully satisfactory solution, since end-users have to trust both
the proof checking algorithms and the translation of the high-
level graph problem into a low-level 0–1 integer linear pro-
gram (ILP) used for the proofs.
In this work, we present the first formally verified toolchain
capable of full end-to-end verification for subgraph solving,
which closes both of these trust gaps. We have built encoder
frontends for various graph problems together with a 0–1 ILP
(a.k.a. pseudo-Boolean) proof checker, all implemented and
formally verified in the CAKEML ecosystem. This toolchain
is flexible and extensible, and we use it to build verified proof
checkers for both decision and optimization graph problems,
namely, subgraph isomorphism, maximum clique, and max-
imum common (connected) induced subgraph. Our experi-
mental evaluation shows that end-to-end formal verification
is now feasible for a wide range of hard graph problems.

1 Introduction
Combinatorial optimization algorithms have improved im-
mensely since the turn of the millennium, and are now rou-
tinely used to solve large-scale real-world problems, through
both general-purpose solving paradigms (Biere et al. 2021;
Bixby and Rothberg 2007; Garcia de la Banda et al. 2014)
and dedicated algorithms for more specialised problems
such as subgraph finding (McCreesh, Prosser, and Trimble
2020). Since these combinatorial solvers are used for an in-
creasingly wide range of applications, it becomes crucial
that the results they compute can be trusted. Sadly, this is
currently not the case (Cook et al. 2013; Akgün et al. 2018;
Gillard, Schaus, and Deville 2019; Bogaerts, McCreesh, and
Nordström 2022). Extensive testing, though beneficial, has
not been able to resolve the problem of solvers occasionally
producing faulty answers, and attempts to build correct-by-
construction software using formal verification run into the
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Figure 1: The full verification workflow. Without verified
proof checking, only the left-hand part of the diagram is
used. Our current work enables the additional shaded parts,
where the thick dashed box is the formally verified program
and thick arrows show its key input-output interfaces.

obstacle that current techniques cannot scale to the level of
complexity of modern solvers.

Instead, the most promising way to achieve verifiably
correct combinatorial solving seems to be proof logging,
meaning that solvers produce efficiently verifiable certifi-
cates of correctness that can be corroborated by an indepen-
dent proof checking program (McConnell et al. 2011). This
approach has been successfully used in the SAT community
(Heule, Hunt Jr., and Wetzler 2013a,b; Wetzler, Heule, and
Hunt Jr. 2014), which raises the question of whether sim-
ilar techniques could be employed in other settings such
as subgraph finding. For this it would seem that the proof
checker would need to understand graph concepts such as
vertices, edges, neighbourhoods, et cetera. Surprisingly, this
turns out not to be the case—instead, the solver can en-
code the graph problem using 0–1 linear inequalities (also
referred to as pseudo-Boolean constraints), and then justify



its complex high-level reasoning in terms of this low-level
representation. This approach has been used to add proof
logging with the VERIPB tool to state-of-the-art solvers
for subgraph isomorphism, clique, and maximum common
(connected) induced subgraph (Gocht, McCreesh, and Nord-
ström 2020; Gocht et al. 2020), as illustrated in the left-
hand part of Figure 1. We emphasize that although this ap-
proach uses reasoning with pseudo-Boolean constraints for
the proof logging, it is not limited to pseudo-Boolean solv-
ing. Rather, it can be used to certify the output of any un-
trusted solver—such as tools that operate natively on graph
representations—as long as the solver’s relevant reasoning
steps can be expressed with pseudo-Boolean proofs.

While this approach has been successful for debugging
solvers and providing convincing demonstrations that the
fixed solvers are producing correct answers, it is important to
observe that it crucially hinges on the assumption that three
components are correct: (1) the low-level encoding of the
problem, (2) the proof checker, and (3) the interpretation of
the final output. For example, if the maximum clique solver
in Gocht et al. (2020) produces a proof accepted by the
VERIPB checker, then one can conclude that if the 0–1 ILP
encoding of clique is implemented correctly, and if VERIPB
does not contain bugs, and if (say) a 200-vertex graph hav-
ing a maximum clique size of 13 corresponds to the optimal
objective value for the low-level encoding being 187 (be-
cause it minimises the number of vertices not in the clique),
then the maximum clique size is indeed 13. Such assump-
tions are not unreasonable—encodings have been chosen to
be as simple as possible and the code can be subjected to
extensive testing; the proof format is designed so that proof
checking should be easy; and verifying that proof outputs
correspond to solver outputs is not too cumbersome. Com-
pared to having to trust an extremely complex solver, this is
a vast improvement. However, if provably correct results are
the end goal, then this still leaves much to be desired.

1.1 Our Contribution
In this work, we resolve all the concerns discussed above
by presenting the first toolchain capable of end-to-end for-
mal verification for state-of-the-art algorithms for maxi-
mum clique, subgraph isomorphism, and maximum com-
mon (connected) induced subgraph problems. Although the
implementations of modern solvers for these problems are
far too complicated to be formally verified by current tech-
niques, we can still use formal verification to certify the cor-
rectness of the proof logging and proof checking process.
We do so by defining a solver-friendly augmented VERIPB
proof format; enhancing the VERIPB tool with a proof elab-
orator that can translate such augmented proofs to a more
explicit kernel format; and designing a formally verified
proof checker for the kernel format. This formally verified
checker is also capable of providing its own formally ver-
ified encodings from graph problems to 0–1 ILPs. Finally,
the output provided by the formally verified proof checker is
in terms of the original problem, not the low-level encoding.
This means that using the process illustrated in the right-
hand part of Figure 1, if the checking process outputs (say)

s VERIFIED MAX CLIQUE SIZE |CLIQUE| = 13

is clique vs (v ,e)
def
=

vs ⊆ { 0,1,...,v−1 } ∧
∀ x y . x ∈ vs ∧ y ∈ vs ∧ x ̸= y ⇒ is edge e x y

max clique size g
def
= maxset { card vs | is clique vs g }

has subgraph iso (vp ,ep) (vt ,et)
def
=

∃ f . inj f { 0,1,...,vp−1 } { 0,1,...,vt−1 } ∧
∀ a b. is edge ep a b ⇒ is edge et (f a) (f b)

Figure 2: HOL definitions for maximum clique size of a
graph with v vertices and edge set e (top), and existence of
a subgraph isomorphism from a pattern graph (vp, ep) to a
target graph (vt, et) (bottom).

then we can be absolutely sure that the maximum clique size
for our graph is 13, if we trust the formal verification tool(s)
and if the formal higher-order logic (HOL) specifications (as
shown in Figure 2) accurately reflect what it means to be a
clique. The toolchain we provide is also flexible and exten-
sible, in that it can be readily adapted to other combinatorial
problems, including problems not involving graphs.

1.2 Comparison to Related Work
Formally verified proof checkers have previously played an
important role in SAT solving (Cruz-Filipe, Marques-Silva,
and Schneider-Kamp 2017; Cruz-Filipe et al. 2017; Lam-
mich 2020) and are vital for widespread acceptance of SAT-
solver-generated mathematical proofs (Heule and Kullmann
2017). However, such proof checkers have worked only
for conjunctive normal form (CNF), and only to establish
that decision problems encoded in CNF are infeasible: ver-
ification that the encoding accurately reflects the problem
to be solved has either been ignored or has been handled
separately (e.g, Cruz-Filipe, Marques-Silva, and Schneider-
Kamp 2019; Shi et al. 2021; Codel, Avigad, and Heule
2023). For graph problems, previous attempts at verified
proof checking have been tied to one specific problem, or
even one specific algorithm (e.g., Bankovic, Drecun, and
Maric 2023). In contrast, we provide formal verification for
optimization problems and with much more expressive for-
mats than CNF, and we do so in a unified way with a single
pseudo-Boolean proof logging format for 0–1 linear inequal-
ities together with a general-purpose toolchain, rather than
having to design proof logging from scratch for each new
combinatorial problem considered. In this way, we demon-
strate that end-to-end formally verified combinatorial solv-
ing is now eminently within reach, by combining pseudo-
Boolean proof logging with formally verified tools for 0–1
ILP encodings and pseudo-Boolean proof checking.

1.3 Outline of This Paper
After reviewing preliminaries in Section 2, we describe the
formally verified proof checker in Section 3 and how solver
proofs in a user-friendly proof format can be converted to
a more restricted format accepted by this proof checker in
Section 4. We report results from an experimental evaluation



in Section 5. We conclude in Section 6 with a discussion of
future research directions.

2 Preliminaries
Our discussion of pseudo-Boolean proof logging will be
brief, since the main thrust of this work is how to formally
verify proof logging rather than to design it. See Gocht and
Nordström (2021) and Bogaerts et al. (2023a) for more on
the VERIPB system and Buss and Nordström (2021) for
background on the cutting planes reasoning method used.

A literal ℓ over a variable x is x itself or its negation x,
taking values 0 (false) or 1 (true), so that x = 1− x. A
pseudo-Boolean (PB) constraint C is a 0-1 integer linear in-
equality

∑
iaiℓi ≥ A, which without loss of generality we

can always assume to be in normalized form; i.e., all liter-
als ℓi are over distinct variables and the coefficients ai and
the degree (of falsity) A are non-negative. The negation ¬C
of C is

∑
iaiℓi ≥

∑
iai − A + 1 (saying that the sum of

the coefficients of falsified literals is so large that the satis-
fied literals can contribute at most A−1). A pseudo-Boolean
formula is a conjunction F =

∧
j Cj of PB constraints.

Cutting planes (Cook, Coullard, and Turán 1987) is a
method for iteratively deriving new constraints logically im-
plied by a PB formula by taking positive linear combinations
or dividing a constraint and rounding up. We say that C unit
propagates the literal ℓ if under the current partial assign-
ment C cannot be satisfied unless ℓ is set to true, and that C
is implied by F by reverse unit propagation (RUP) if adding
¬C to F and then unit propagating until saturation leads to
contradiction in the form of a violated constraint. VERIPB
allows adding constraints by RUP, which is a convenient way
of avoiding having to write out explicit syntactic derivations.

In addition to deriving constraints C that are implied
by F , VERIPB also has strengthening rules for inferring re-
dundant constraints D having the property that F and F ∧D
are equisatisfiable. If there is a partial mapping ω of vari-
ables to literals and/or truth values such that

F ∪ {¬D} ⊢ (F ∪D)↾ω (1)

holds, meaning that after applying ω to F ∪ {D} all of
the resulting constraints can be derived by cutting planes
from F ∪{¬D}, then D can be added by redundance-based
strengthening. There is also a similar but slightly different
dominance-based strengthening rule. Importantly, the proof
has to specify ω and also contain explicit subderivations for
all proof goals in (F ∪D)↾ω in eq. (1) unless they are ob-
vious enough that VERIPB can automatically figure them
out (e.g., by using RUP). Finally, for optimization problems
there are rules to deal with objective functions and incum-
bent solutions, and the strengthening rules also need to be
slightly adapted for this setting.

The formalization of our proof checking toolchain is car-
ried out in the HOL4 proof assistant for classical higher-
order logic (Slind and Norrish 2008). We make particular
use of the CAKEML tools for production and optimiza-
tion of verified CAKEML source code (Myreen and Owens
2014; Guéneau et al. 2017) as well as for formally veri-
fied compilation (Tan et al. 2019), allowing to transfer guar-
antees of source-code-level correctness down to executable

machine code. Where applicable, formal code snippets are
pretty-printed for illustration, e.g., as shown in Figure 2. The
set and first-logic notation is standard (e.g., ⇒ denotes logi-
cal implication); other HOL notation is explained where ap-
propriate. Formally verified results are preceded by a turn-
stile ⊩. All code is available in the supplementary mate-
rial (Gocht et al. 2023).

3 Formally Verified Graph Proof Checkers
This section details the formal verification of our pseudo-
Boolean proof checker CAKEPB and its various graph
frontends, focusing on the key architectural decisions and
reusable insights behind the verification effort. An overview
of the tool is shown in Figure 3. We first present the different
components, and then plug them together to obtain end-to-
end verified graph proof checkers.

3.1 Verified Pseudo-Boolean Proof Checking
A key design objective for CAKEPB is to make it a gen-
eral yet effective pseudo-Boolean proof checking back-
end. To this end, CAKEPB supports a kernel subset of the
VERIPB proof format with cutting planes, strengthening,
and optimization rules as discussed in Section 2. The im-
plementation and verification of all of this within a single
proof checker backend presents several new challenges com-
pared to prior tools for efficient verified CNF proof check-
ing (Cruz-Filipe et al. 2017; Lammich 2020; Tan, Heule,
and Myreen 2023). Firstly, the pseudo-Boolean proof sys-
tem features a much richer set of rules, each of which needs a
formal soundness justification. Secondly, there is an intricate
interplay between different proof rules, especially concern-
ing how they preserve optimal solutions (or satisfiability for
decision problems). This necessitates careful maintenance
of state invariants within the proof checker implementation.
And thirdly, all of the above needs to be adequately opti-
mized for practical use, whilst being formally verified.

We use a refinement-based approach to tackle each chal-
lenge in order and at the appropriate level of abstraction.

1. The verification process starts by defining an abstract,
mathematical, pseudo-Boolean semantics, with respect
to which the soundness of each rule is justified. For ex-
ample, we prove lemmas that justify the soundness of
adding two constraints and dividing a constraint by a
non-zero natural number in a cutting planes proof step:
⊩ satisfies npbc w C1 ∧ satisfies npbc w C2 ⇒

satisfies npbc w (add C1 C2)

⊩ satisfies npbc w C ∧ k ̸= 0 ⇒
satisfies npbc w (divide C k)

Here, satisfies npbc w C says that the pseudo-Boolean
constraint C is satisfied by the Boolean assignment w .
We verify similar lemmas for all supported reasoning
principles, the most involved of which is dominance-
based strengthening. Specifically, this rule requires mak-
ing a well-founded induction argument over an arbitrary
user-specified order for Boolean assignments, for which
we largely follow the proof from Bogaerts et al. (2023a,
Proposition 4).
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2. Next, we implement a prototype proof checker that en-
sures that every application of a proof rule is valid, e.g.,
that divide is never applied with k = 0, throwing an error
otherwise. The proof checker is verified to maintain key
invariants on the proof state, especially the ones needed
for dominance and optimization reasoning. Soundness of
the checker is proved by induction over the sequence of
proof steps. The main idea is illustrated by the following
abridged lemma snippet.
⊩ ... ∧ valid conf ord obj fml ⇒

check step step ord obj fml ... =
Some (ord ′,obj ′,fml ′, ...) ⇒

... ∧ valid conf ord ′ obj ′ fml ′

Here, valid conf ord obj fml says that for any satisfy-
ing assignment w to the core constraints in formula fml ,
there exists another satisfying assignment w ′ ≼ w which
satisfies all constraints in fml , where ≼ is the order on
assignments induced by ord and obj . The lemma frag-
ment says that, whenever checking a single proof step
(check step) succeeds and returns a new proof checker
state (result Some), the valid conf invariant is maintained
for the state. Other key properties verified for check step
include showing that fml ′ and fml are equisatisfiable by
assignments that improve the best known objective value.

3. The final phase involves refining the prototype into
an optimized proof checker implementation using the
CAKEML tools for profiling and source code verifica-
tion (Myreen and Owens 2014; Guéneau et al. 2017).
We manually optimize several hotspots encountered in
the pseudo-Boolean proofs generated in our experimen-
tal evaluation, e.g., using buffered I/O to stream large
proof files, and swapping to constant-time array-based
constraint lookups for cutting planes steps and hash-
based proof goal coverage checks in application of the
dominance-based strengthening rule.

The verified proof checker backend operates most natu-
rally and efficiently with normalized pseudo-Boolean con-
straints where, in addition, variables are indexed by num-
bers. However, this is not the most convenient interface for
frontend users. Accordingly, CAKEPB also includes a ver-
ified pseudo-Boolean normalizer. As shown in Figure 3,
CAKEPB accepts any pseudo-Boolean formula as input
(normalized or otherwise) together with an externally gen-
erated kernel proof. It produces an appropriate verified con-

is cis vs (vp ,ep) (vt ,et)
def
=

∃ f . vs ⊆ { 0,1,...,vp−1 } ∧ inj f vs { 0,1,...,vt−1 } ∧
∀ a b. a ∈ vs ∧ b ∈ vs ⇒

(is edge ep a b ⇐⇒ is edge et (f a) (f b))

connected subgraph vs e
def
=

∀ a b. a ∈ vs ∧ b ∈ vs ⇒
(λ x y . y ∈ vs ∧ is edge e x y)∗ a b

is ccis vs (vp ,ep) (vt ,et)
def
=

is cis vs (vp ,ep) (vt ,et) ∧ connected subgraph vs ep

max ccis size gp gt
def
=

maxset { card vs | is ccis vs gp gt }

⊩ good graph (vp ,ep) ∧ good graph (vt ,et) ∧
encode (vp ,ep) (vt ,et) = constraints ⇒
((∃ vs. is ccis vs (vp ,ep) (vt ,et) ∧ card vs = k) ⇐⇒
∃w . satisfies w (set constraints) ∧

eval obj (unmapped obj vp) w = vp − k)

Figure 4: HOL definition of the size of a maximum common
connected induced subgraph (MCCIS) for a pattern graph gp
and a target graph gt (top), and a correctness theorem for en-
coding the MCCIS problem using PB constraints (bottom).

clusion about the formula, such as satisfiability status or up-
per and lower bounds on the objective function, depending
on the type of problem and on the claims made by the proof.

3.2 Verified Graph Problem Encoders
Pseudo-Boolean formulas provide a convenient format for
verified frontend encoders for graph problems, which we
turn to next. Graphs are represented in HOL as a pair (v ,e),
where v is the number of vertices corresponding to the ver-
tex set { 0,1,...,v−1 } , and e is an edge list representation
such that is edge e a b is true iff there is an edge between
vertices a and b. All graphs considered here are undirected.1
The graph encoders use a shared graph library which formal-
izes these basic graph notions and provides parsing func-
tions for standard text formats such as LAD and DIMACS.

The HOL definitions of various graph problems formal-

1In practice, we apply a consistency check good graph for
undirectedness and other syntactic properties when parsing input
graphs. Graphs failing the check are rejected by the encoders.



ized in this paper are shown in Figures 2 and 4; we use max-
imum common connected induced subgraph (MCCIS) as a
representative example. Given a pattern graph gp and a target
graph gt , a subset of vertices vs of gp is a common induced
subgraph (is cis) iff there exists an injective mapping f from
vs into the target graph vertices which preserves edges and
non-edges. Additionally, vs is a connected subgraph of gp
iff its vertices are pairwise connected in the reflexive transi-
tive closure (denoted ∗) of the induced is edge relation. The
MCCIS size is the size of the largest common connected in-
duced subgraph between gp and gt (max ccis size).

The MCCIS pseudo-Boolean encoding from Gocht et al.
(2020, Section 3.1) is implemented as a HOL function en-
code. The main subtlety is connected subgraph; briefly,
connectedness is encoded using additional auxiliary vari-
ables that indicate whether a walk of length n for some
n < min(vp, vt), exists between each pair of vertices in
the chosen subgraph. The correctness theorem for encode
is shown in Figure 4 (bottom). It says that a CCIS of car-
dinality k exists iff a satisfying assignment to the encoding
constraints exists with objective value vp − k. Therefore,
minimizing the objective (unmapped obj vp) yields the MC-
CIS size. Similar theorems are proved for encodings of sub-
graph isomorphism and maximum clique. The value of for-
mal verification here is twofold: to gain confidence in the
pen-and-paper justification of the encodings, and to ensure
that the encodings are correctly implemented in code.

3.3 End-to-End Verification
Feeding the output of each frontend encoder into CAKEPB
yields a suite of formally verified graph proof checkers,
collectively called CAKEPBGRAPH. Since we are work-
ing within the CAKEML ecosystem, we can further achieve
end-to-end verification by running the CAKEML compiler
on CAKEPBGRAPH to transfer the source-level correctness
guarantees for the CAKEPBGRAPH checkers down to the
level of their respective machine code implementations.

Let us illustrate this by briefly discussing the final cor-
rectness theorem for the maximum clique proof checker as
shown in Figure 5. The assumption on Line 1 is standard
for all programs written in CAKEML, and states that the
compiled machine code is correctly loaded in memory of
an x64 machine and that the appropriate command line and
file system foreign function interfaces (FFIs) are available to
CakeML. The first correctness guarantee on Lines 2–3 says
that the code will run without crashing and will terminate
safely, possibly reporting an out-of-memory resource error.
The second correctness guarantee starting at Line 4–5 says
there will be (possibly empty) strings out and err printed
to standard output and error, respectively. The remaining
lines now claim that if standard output is non-empty, then
the input file was parsed in DIMACS format to a graph g
(Lines 6–7), and the output is either:

• a pretty-printed pseudo-Boolean encoding of the maxi-
mum clique problem for g (Line 8), or

• a pretty-printed conclusion string which is either:

– a verified exact maximum clique size for g formatted
using clique eq str (Line 10), or

– verified lower and upper bounds on clique sizes in g
formatted using clique bound str (Lines 11–12).

Let us clarify what needs to be trusted, or at least care-
fully inspected, in order to claim that the conclusions by
CAKEPBGRAPH checkers are formally verified:

• The HOL definitions of the graph input parsers and of
various graph problems that appear in the final correct-
ness theorems (e.g., Figure 5). We have kept these defi-
nitions as simple as possible. Notably, the internal defi-
nitions of pseudo-Boolean semantics and cutting planes
used in the proof checker are not part of CAKEPB-
GRAPH’s trusted base because conversion into and out
of pseudo-Boolean semantics is formally verified.

• The formal HOL model of the CAKEML execution envi-
ronment and its correspondence with the real system on
which CAKEPBGRAPH runs. CAKEML has been used
in various other proof checkers, e.g., by Tan, Heule, and
Myreen (2023), and its target architecture models have
been validated extensively (Tan et al. 2019).

• The HOL4 theorem prover, including its logic, imple-
mentation and execution environment. The prover fol-
lows an LCF-style design (Slind and Norrish 2008) with
a well-separated and trustworthy kernel responsible for
checking every logical inference.

A trusted base for binary code extraction (Kumar et al. 2018)
as above is of the highest assurance standard for formally
verified software—correctness is proved within a single sys-
tem down to the machine code that runs. This provides a
gold standard of trustworthiness for subgraph solving, in
contrast to prior unverified proof checking approaches.

4 Proof Elaboration
CAKEPBGRAPH verification helps solver users who wish
to attain a high level of trust in solver conclusions. In this
section, we discuss our new elaboration phase, which aids
solver authors who wish to add trustworthy proof logging
and checking to their tools.

The convenience afforded by proof elaboration is illus-
trated in the workflow in Figure 1. First, solver authors can
design their proof output with respect to their own (un-
trusted) pseudo-Boolean encodings, without following the
verified encodings from CAKEPBGRAPH exactly; elabo-
ration helps to automatically line up (where possible) un-
trusted and verified encodings. Second, elaboration supports
an augmented proof format with syntactic sugar that makes
proof logging much easier at runtime; elaboration then fills
in the necessary details to convert the proof into the kernel
format understood by CAKEPBGRAPH. The VERIPB proof
elaborator also performs (unverified) proof checking during
the translation process, helping solver authors to detect bugs
in their proof logging or solver code even before the formal
verification process starts.

4.1 Lining up Encodings
Many VERIPB proof rules refer to constraints by positive
integer constraint IDs, assigned automatically in order of
appearance in the proof. It would be quite a hassle for



clique eq str n
def
= "s VERIFIED MAX CLIQUE SIZE |CLIQUE| = " ˆ toString n ˆ "\n"

clique bound str l u
def
=

"s VERIFIED MAX CLIQUE SIZE BOUND " ˆ toString l ˆ " <= |CLIQUE| <= " ˆ toString u ˆ "\n"

1
2
3
4
5
6
7
8
9
10
11
12

⊩ cake pb clique run cl fs mc ms ⇒
machine sem mc (basis ffi cl fs) ms ⊆

extend with resource limit { Terminate Success (cake pb clique io events cl fs) } ∧
∃ out err .

extract fs fs (cake pb clique io events cl fs) = Some (add stdout (add stderr fs err) out) ∧
(out ̸= "" ⇒
∃ g . get graph dimacs fs (el 1 cl) = Some g ∧

(length cl = 2 ∧ out = concat (print pbf (full encode g)) ∨
length cl = 3 ∧
(out = clique eq str (max clique size g) ∨
∃ l u.
out = clique bound str l u ∧ (∀ vs. is clique vs g ⇒ card vs ≤ u) ∧ ∃ vs. is clique vs g ∧ l ≤ card vs)))

Figure 5: End-to-end correctness theorem for CAKEPB with a maximum clique pseudo-Boolean encoder frontend.

solver authors to keep track of the exact order in which con-
straints in the encoding are generated by CAKEPBGRAPH.
Fortunately, it is straightforward to instead recover an ID
by rederiving the constraint, which provides it with a new,
known ID, before it is used. This can either be done upfront,
at the start of the proof, or lazily (which avoids a poten-
tially large overhead for instances with very short proofs).
A useful fact is that the two constraints do not need to match
exactly—it is sufficient that they are close enough so that
VERIPB can automatically check and prove that one of them
follows from the other.

When it comes to variable names, the solver proof logging
routines are required to agree exactly with the CAKEPB-
GRAPH encoding. This is an easier task, however, since
VERIPB and CAKEPB both support expressive variable
names. For example, for subgraph mapping problems, we
use the protocol that the variable name x1_2 means that
pattern vertex 1 will be mapped to target vertex 2.

4.2 Elaborating on Syntactic Sugar
The augmented proof format contains a number of rules de-
signed to support the ease of proof logging. Chief among
these is reverse unit propagation (RUP), which allows to add
a constraint when the VERIPB proof checker can easily ver-
ify that it is implied by applying unit propagation. Such RUP
steps occur frequently in proofs in many applications, and so
have to be dealt with efficiently by the proof checker, but im-
plementing efficient formally verified unit propagation is a
challenging task even for the simpler case of CNF (Fleury,
Blanchette, and Lammich 2018). Instead, a RUP rule appli-
cation deriving C from F is converted to an explicit cutting
planes proof of contradiction from F ∪ {¬C}. This is pos-
sible since unit propagation on the latter set of constraints
leads to a violation (by the definition of RUP), and this
in turn means that pseudo-Boolean conflict analysis can be
used to derive contradiction. This algorithm is more involved
than CNF-based conflict analysis as used in SAT solvers, but
we employ a procedure similar to the PB conflict analysis
in Elffers and Nordström (2018) for this. For optimization

problems, the augmented format allows incumbent solutions
to be partially specified, so long as the given assignment unit
propagates to a full solution; the kernel format will always
specify a full solution instead. This is illustrated in Figure 6.

Another convenient rule is syntactic implication, where a
constraint to be derived is implied by a single (unspecified)
previous constraint by simple syntactic manipulations. This
condition is again easy to check, but the elaborator converts
this into an explicit derivation or explicitly annotates the ker-
nel proof with IDs. Yet another important aspect that we are
ignoring here, but which is crucial for efficient proof check-
ing, is deletion of constraints no longer needed in the proof.

Finally, applications of strengthening rules generate a sep-
arate proof goal for each constraint currently in use in the
proof, which is a potentially huge overhead, but often most
of these proof goals are obvious and can be skipped in the
augmented format (e.g., if they can be obtained by RUP or
syntactic implication). The proof elaborator fills in the nec-
essary missing details for such proof goals.

5 Experiments
To validate our approach, we performed experiments on a
cluster of machines with dual AMD EPYC 7643 processors,
2TBytes RAM, and a RAID array of solid state drives, run-
ning Ubuntu 22.04. We ran up to 40 jobs in parallel, and lim-
ited each individual process to 64GBytes RAM. Note that
performance of the verification process is strongly affected
by I/O and memory cache speeds, and so we do not expect
running time measurements to be highly reproducible, but
they should still be indicative of the feasibility of the ap-
proach and the slowdowns that one might encounter. We
used the Glasgow Subgraph Solver (McCreesh, Prosser, and
Trimble 2020) as the proof-producing solver for all experi-
ments, and made small modifications so that it would lazily
recover constraint IDs as required. The results are plotted
on an instance by instance basis in Figure 7 and explained
below.

For maximum clique, we took the 54 instances from the
Second DIMACS Implementation Challenge (Johnson and
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Verified Encoding

min: 1 x0_n 1 x1_n 1 x2_n 1 x3_n 1 x4_n 1 x5_n ;
1 x0_n 1 x0_0 1 x0_1 1 x0_2 1 x0_3 1 x0_4 1 x0_5 \
1 x0_6 1 x0_7 1 x0_8 1 x0_9 = 1 ;

1 x1_n 1 x1_0 1 x1_1 1 x1_2 1 x1_3 1 x1_4 1 x1_5 \
1 x1_6 1 x1_7 1 x1_8 1 x1_9 = 1 ;

... 1172 omitted constraints ...

Augmented Proof

pseudo-Boolean proof version 2.0
...
* Specifying a partial solution
soli x5_9 x2_7 ... (58 omitted literals)
...
* Unit propagation step
u 1 ∼x4_0 >= 1 ;

...
conclusion BOUNDS 2 2
end pseudo-Boolean proof

Kernel Proof

pseudo-Boolean proof version 2.0
...
* Specifying a full solution
soli x0_n x1_n ... (304 omitted literals)
...
* Derivation by cutting planes
red 1 ∼x4_0 >= 1 ; ; begin

pol 8784 8778 + 8772 + 8766 + ... \
+ 8133 13 * + 8085 13 * +

end 8786
...
conclusion BOUNDS 2 : 8798 2
end pseudo-Boolean proof

Figure 6: (Top) MCCIS problem encoding for the pattern graph K3,3 and the target Petersen graph. (Bottom) An augmented
proof generated by a solver on the left, and a corresponding elaborated kernel proof on the right; kernel annotations in bold.
When run on the kernel proof, CAKEPBGRAPH outputs: s VERIFIED MAX CCIS SIZE |CCIS| = 4. This corre-
sponds to the conclusion in the proof, which claims that at least two of the six pattern vertices must be mapped to null.

Trick 1996) that Gocht et al. were able to check. We man-
aged to produce proofs for and formally verify 50 of these
instances; for the 4 instances that we could not verify, 3 were
due to VERIPB taking over one week to check the proof
files, and the final one to the 64GByte memory limit for the
verified checker. Over the successfully checked instances,
translating augmented proofs to kernel proofs took, on aver-
age, 18% longer than simply verifying the proofs, and pro-
duced proof files that were on average 2.26 times as large.
However, verified checking of these kernel proofs was con-
sistently faster than checking the original augmented proofs
using VERIPB: the average running time was 3.8 times
lower.

For subgraph isomorphism, we used the same subset of
1,226 small-to-medium-sized instances from the benchmark
set in (Kotthoff, McCreesh, and Solnon 2016) as was stud-
ied by Gocht, McCreesh, and Nordström (2020). We were
able to verify 417 satisfiable and 784 unsatisfiable instances;
13 instances failed due to memory limits on the verified
checker, and 12 instances when the converted kernel proofs
exceeded 500GBytes in size. Performance-wise, running
VERIPB and asking it to output a kernel proof was on aver-
age 27% slower than verification alone. Producing the ver-
ified encoding was never a significant cost in the process.
Verifying kernel proofs was on average 2.4 times slower than
verifying the original, augmented proofs; the former were on
average 10.5 times larger than the latter.

For maximum common connected induced subgraph, we
used a database of randomly generated instances (Conte,

Foggia, and Vento 2007; De Santo et al. 2003), and ran the
solver in clique reformulation mode. We were able to verify
all 690 instances involving up to 20 vertices in each graph.
Elaborating the proofs took on average 43% longer than ver-
ifying them using VERIPB, and the proofs were on average
14.7 times larger. However, verifying the kernel proofs us-
ing CAKEPB took on average only 9% longer than using
VERIPB for the original, augmented proofs.

Across each problem family, producing formally verified
encodings was always extremely cheap, and asking VERIPB
to produce an elaborated kernel proof was never substan-
tially more expensive than simply checking the augmented
proof. This is to be expected: VERIPB already has to pro-
duce nearly all of the information needed for proof elabo-
ration to check a proof anyway. Checking elaborated proofs
was sometimes a little faster than checking the original, aug-
mented proof, and sometimes a little slower, and we were
able to formally check almost every proof that was amenable
to unverified checking.

6 Conclusion
In this paper, we present the first efficient toolchain for
formal end-to-end verification of state-of-the-art subgraph
solving. Our design is easily adaptable, which opens up the
possibility of bringing formal verification to other combina-
torial problem domains where problem instances can be suit-
ably represented using the expressivity of 0–1 integer lin-
ear programs. In fact, our formally verified CAKEPB proof
checker equipped with a CNF frontend has also been used
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Figure 7: Experiments using the Glasgow Subgraph Solver on (a) max clique, (b) subgraph isomorphism, and (c) max common
connected induced subgraph problem instances. In the top row, comparisons of kernel and augmented proof sizes; in the bottom
row, time comparisons for verified and unverified checking of kernel and augmented proofs, respectively. Crosses indicate
failures due to space or memory limits.

for SAT solving in the SAT Competition 2023 (Bogaerts
et al. 2023b), supporting, also for the first time, efficient
verified proof logging and checking for the full range of
advanced techniques used in modern SAT solvers such as
cardinality reasoning, Gaussian elimination, and symmetry
breaking. A future challenge of particular interest would be
to provide a formally verified setting for the proof logging
techniques for constraint programming developed in a se-
quence of papers by Elffers et al. (2020); Gocht, McCreesh,
and Nordström (2022) and McIlree and McCreesh (2023).
It would also be valuable to expand the reach of pseudo-
Boolean proof logging to problems like (projected) model
enumeration problems, which were dealt with in a somewhat
ad-hoc fashion by Gocht et al. (2020).

To further improve performance, it would be highly desir-
able to enhance the VERIPB elaborator with proof trimming
to be able to remove unnecessary proof steps before handing
the kernel proof to CAKEPB. Currently, our system verifies
all of the steps carried out by the solver to reach its conclu-
sion. This is useful for detecting solver bugs, but for storing
and distributing proofs a trimmed proof would suffice and
could be much faster to verify. Another significant source of
performance gains could come from switching from a text

proof format to a binary format: although this would lose
some human-readability, our experiments suggest that text
parsing often forms a substantial portion of the elaboration
and checking times.
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