Cambridge, Aug 2016

A New Verified Compiler Backend for

CakeML

Main contributors to date: Anthony Fox, Ramana Kumar,
Magnus Myreen, Michael Norrish, Scott Owens,Yong Kiam Tan

-m- CHALMERS 5 UNIVERSITY OF L I DATA | % University of
S owsili bl

e ¥ CAMBRIDGE I@nt

CakeM

What? j (strict evaluation, stateful)

\'4
|. A programming language in the style of Standard ML and OCaml.

2. An ecosystem of proofs and verification tools

3. A verified, end-to-end development

Veritied complilation...

State of the art

Tarwe ?,"‘ ,“ Oraon
m:uhouc ----- ‘ CONOrry
il C source ElElilie - — - - Linear Sl o == == -
Y - neal S'..ayt ::oru-m D | 1 yout of e Do 3
P Y ' e—— | whocaton | ,,,,1 recoaNEon Valdaton || W n | actvaton Power PC
4 m) e O raruChons
- pover __,' e
o S el
O Model & Aegsier asocason ty | — vacrwe | [Memory
‘ P, F Detat
C checker .,- ot . ow analyses — P‘W - PR o ry) ‘ .\::::U;u | o et e

Leroy et al. Source: http://compcert.inria.fr/

Compiles C source code to assembly

Good performance numbers (between gcc -O1 and -O2)

Ecosystem: Verified Software Toolchain - Princeton University

Veritied compilation...
...for tunctional languages?

Answer: Many, but all are ‘toy’.

Attempt: CakeML first ‘realistic’ verified ML compiler (plus ecosystem).

The CakeML language

was originally
Design: “The CakeML language ¥ designed to be both easy
to program in and easy to reason about formally”
It is still clean, but not always simple.

CakeML, the language
~ Standard ML without functors

A

(" i.e. with almost everything else:)

higher-order functions

mutual recursion and polymorphism
datatypes and (nested) pattern matching
references and (user-defined) exceptions
arbitrary-precision integers

<A NSNS S

modules, signhatures, abstract types .

/Update.’ New since POPL’ | 4: \e

v foreign-function interface
v mutable arrays, byte arrays, bytes

Design: v vectors strings, chars th easy
v type abbreviations 1ally”
i always simple.

v

CakeML, the language
~ Standard ML without functors

A

(" i.e. with almost everything else:)

higher-order functions

mutual recursion and polymorphism
datatypes and (nested) pattern matching
references and (user-defined) exceptions
arbitrary-precision integers

LA QS A S

modules, signhatures, abstract types .

Ecosystem

Proof-producing synthesis Verified compiler backend

HOL functions Emdl CakeML AST Emd CakeML AST —>

Verified parsing Verified type inference

el |B — N E Ny — e 'C Y388 — typeable yes/no

Recent: Proof-producing verification-condition generation

@GO g — e P e etk i.e. a ‘verification condition’

Also: x86 implementation with read-eval-print-loop

This talk: Compiler verification

user expectations

| gap
observational behaviour

of source code
A

proved connection

<

modelled behaviour of
generated machine code

| gap
real behaviour of hardware

Verified compiler backend

-

The entire development is in
the HOL4 theorem prover.

~

The CakeML compller

Version | & 2

Version

4
First boots
traPPing of 1 .
piler.

Ramana Kumar Magnus 0. Myreen* 1 Michael Norrish 2 §cott Owens
1 Computer Laboratorys University of Cambridge, UK
2 Canberra Researe 1ab, NICTA, Australia
3 gchool of Computing, University of Kent,
Abstract 1. Introduction
We have Jeveloped and mechanica\\y yerified an ML system called The last decade has seen a strong interest 10 verified compilation:
CakeML, which supports substantial subset of standard ML. and there have been significant, high-P ofile results, many based
CakeML 18 imp\emented g an interactive read—eval—prim 1o0p on the CompCert compiler for C 11, 14, 16, 291. This interest is
REPL) 10 x86-6 achine code- Our correctness theorem ensures easy to justify: in the context of program erification, i unverifie
that this EPL imp\ementahon prints only thos€ result permitted compiler forms a 1arge and € mplex pa f the truste computing
by the gemantics of CakeML Our yerification effort touches on base However our knowledges none of the existing work on
a breadth of topics including lexing, Parsing. typ checking, in verified compilers for genera\—pu ose languages has ddressed all
cremental and dynamic compilation garbage collection arbitrary aspects of a mpiler along tWoO dimension one, th compilation
recision arithmetic, and ompiler bootstrapp'mg. algorithm for converting @ program from a Source string to @ 1ist O
Our contributions are twolO 4. The first is ply in build numbers representing machine code, and tWO. the execution of that
© . that 1S end—to—end verified, Jemonstrating that eac algorithm a mp\emented in machine €0 e
o-Cl "~ n in practice be compose Our purpose 1 this paper 15 o explain now we have verified
 _a1v on any a compiler along the full scope £ both of these dimens10ns for a
4ical genera\-purpose program ng languag Our language is
oy typeds 1 pure strict functiona
P e ad, we mean

Dimensions of Compiler Veritication

source code

< how far compiler goes)

abstract syntax
intermediate language

VM bytecode First verification to cover the full
spectrum of both dimensions.

machine code

compiler implementation implementation interactive call in read-
algorithm in ML in machine code eval-print loop runtime
A\

(the thing that is verified)

Intuition for Bootstrapping

Proof-producing synthesis Verified compiler backend

SRR | ST | GTLIE | S
Verified parsing Verified type inferem
el |B — N E Ny — e 'C Y388 — typeable yes/no

Intuition for Bootstrapping

&

el |B — N E Ny — e 'C Y388 — typeable yes/no

HOL functions

linput
HOL functions gmdl CakeML AST Emd CakeML AST —>

l output

verified x86 implementation of parsing, type inference, and compilation

a very short demo of version |

Version 1 as in POPL'14

Compiler phases:

£n-09-0-0- 230
g

[huge step J\ huge step]

Bytecode simplified proofs of
read-eval-print loop, but made
optimisation impossible.

Almost no optimisations possible...
Poor design.

Version 2

Goals:

Design compatible with optimisations.

Acceptable performance.

Strategy: take inspiration from OCaml compiler (for some parts).

Values Languages

abstract values incl.

64-bit 32-bit

abstract values incl. closures and ref pointers

ref and code pointers

machine words and code labels

words words

source syntax

no modules

)

ClosLang:
last language
with closures
(has multi-arg

closures)

~—

BVL:
functional
language

without
closures

only 1 global,
handle in call

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVALVAVAVAVAVAVAVIAVA VAV

Datalang:
imperative
language

)

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

~—

StackLang:
imperative
language
with array-like
stack and
optional GC

LabLang:
assembly lang.

<
<
P
<
<
P
P

Compiler transformations

Parse concrete syntax
Infer types, exit if fail

Eliminate modules

Replace constructors
names with numbers

Reduce declarations to
exps; introduce global vars

Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets

Rephrase language

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow; annotate program

Introduce C-style fast
calls wherever possible

Remove deadcode
Prepare for closure conv.

Perform closure conv.
Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions
Switch to imperative style
Reduce caller-saved vars

Combine adjacent
memory allocations

Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Remove deadcode
Allocate register names
Concretise stack
Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code
Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

(ARMv6)

i(ARMVg)(XsefZM)(W}Q‘(R.SC-V)

All languages communicate with the external world
via a byte-array-based foreign-function interface.

(next slides will zoom in)

Result:

| 2 intermediate languages (ILs)

and many within-IL optimisations

each IL at the right level of abstraction

-

_

for the benefit of
proofs and compiler
implementation

J

\

s
Values used by
the semantics

P
<
P

P

Compiler transformations

Parse concrete syntax

Infer types, exit if fail

Eliminate modules

Replace constructors
names with numbers

Reduce declarations to
exps; introduce global vars

Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets

Rephrase language

_ V J
Values Languages
(source syntax)
[source ASTJ
v (no modules)
g <
= (no cons names)
8
5 (no declarations)
% (fuu pat. match)
n
g (no pat match)
-]
ol A
[©
[
= ClosLang:
0 last language
= with closures
© .
> (has multi-arg
*g closures)

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow; annotate program

Introduce C-style fast
calls wherever possible

Remove deadcode

p
Parser and type
inferencer as before
-
4
Early phases reduce
the number of
language features
-
4
Language with multi-
argument closures
-

abstract values incl.

ref and code pointers

(no pat. match

-

abstract values incl. closures «

ClosLang:
last language
with closures
(has multi-arg

~

closures)

[

Y,
4)
BVL:
functional
language
without
closures

_

only 1 global,
handle in call

AN

AN

-
Datalang:
Imperative

language

- /
N\

<

N\ «— tonested Ifsand Lets

Rephrase language

\VAVAVAVAVAVIRVIAVAVAVAVAVIVIRVALY

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values

=~

flow; annotate program

Introduce C-style fast
calls wherever possible

Remove deadcode

Prepare for closure conv.

Perform closure conv.
Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions
Switch to imperative style
Reduce caller-saved vars

Combine adjacent
memory allocations

Remove data abstraction

Language with multi-
argument closures

. J
N
New!

. J
4)
Simple first-order
functional language
- J

Imperative language

WordLang:
Imperative
language with
machine words,

_ J
4)
StackLang:
imperative
language

with array-like

optional GC

LabLang:
assembly lang.

machine words and code labels

\VAVAVEAVAVAVAVAVAVAVAVAVAY

Remove data abstraction
Simplify program
Select target instructions

Perform SSA-like renaming
Force two-reg code (if req.)
Remove deadcode

Allocate register names

Concretise stack
Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

(ARMV6) /ﬁ‘

= U
25
N

m =
= U
25
q—

O =

~.

(ARMVS) (X86 64) (MIPS 64) (RISC V)

All languages communicate with the external world
via a bvte-arrav-based foreian-function interface.

Machine-like types

Standard compiler for
an imperative lang
with a few FP twists:
garbage collector,
live-var annotations,
fast exception
mechanisms

Targets 5 architectures

- J

| atest developments

Optimisation of function calls

fun reverse xs = let
fun append xs ys =
case xs of [] => ys
| (x::xs8) => x :: append XS ys;
fun rev xs =
case xs of [] => xs
| (x::xs8) => append (rev xs) [x]
in rev Xs end;
val example = reverse [1,2,3];

| atest developments

Optimisation of function calls

set_global O (fn xs => let
fun append xs = fn ys =>
if xs = [] then ys else
el O xs :: (append (el 1 xs)) ys
fun rev xs =
if xs = [] then xs else
(append (rev (el 1 xs))) [el O xs]
in rev xs end);
set_global 1 ((get_global 0) [1,2,3]);

L atest developments

Optimisation of function calls

set_global 0 (fnz xs => let
fun appendp (xs,ys) =
if xs = [] then ys else
el 0 xs :: append? (el 1 xs, ys)
fun revy xs =

if xs = [] then xs else
append® (rev? (el 1 xs), [el 0 xs])
in rev® xs end);

set_global 1 ((get_global 0)* [1,2,3]);

L atest developments

Optimisation of function calls

set_global O (fn xs => Call 5 (xs));
set_global 1 (Call 5 [1,2,3]);

Code Table:
1 (xs,ys) => if xs = [] then ys else
el 0 xs :: Call 1 (el 1 xs, ys)

3 (xs) => if xs = [] then xs else
Call 1 (Call 3 (el 1 xs), [el 0 xs])

5 (xs) => let
val append = O

val rev = 0
in Call 3 (xs)—end

= C-like function calls J

Pointers

Configurable data representation

Example pointer value:

0...00110011101 00 01 010 1

A

))
padding T length T

address value ﬁ tag Amarker

A

[These can be left out

-

Speeds up pattern
matching, if present

J

Stack

Stack contains information about live vars for the GC

stack

))

0010110101010

Details of one stack frame:

pointer / livi/!far !\

... | 00000101 | 00100100 | ...
A 4 X

7 AN
continues last word
end of frame

Semantics & Proofs

Semantic values

Immediately before closure conversion:

vV —

Number int

Block num (v 1ist)

RefPtr num

Closure (num option) (v 1ist) (v 1ist) num exp
Recclosure (num option) (v list) (v list) ...

Immediately after closure conversion:

v = Number int | Block num (v 1ist) | CodePtr num | RefPtr num

Closures are values with a code pointer:

Block closure tag
([CodePtr ptr; Number arg_count] @ free_var_vals)

For mutually recursive closures:

Block closure tag
|(CodePtr ptr; Number arg_count;|RefPtr ref _ptr]

Semantics

Each intermediate language has a formal semantics.

We define these using a functional big-step style (ESOP’ | 6)
where the semantics is an evaluation function in logic

Extract of abstract first-order lang:

evaluate ([Var n|,env,s) =
if n < len env then (Rval [nth n env],s)

else (Rerr (Rabort Rtype error),s)

Observable semantics defined using evaluate (on later slide).

Semantics (cont.)

What about infinite loops!?

evaluate (|Call ticks dest xs|,env,s1) = -

case evaluate (zs,env,sy) of
(Rval vs,s) =
(case find code dest vs s.code of
None =- (Rerr (Rabort Rtype error),s)

A simple clock
mechanism ensures
evaluation always

| Some (args,exp) = i terminates.
if s.clock < ticks 4+ 1 then
(Rerr (Rabort Rtimeout error) sA@ith clock := 0)

else evaluate (|exp|,args,dec “€lock (ticks + 1) s))

| (Rerr e,s) = (Rerr e,s)

Clock only decremented when necessary for termination.

Observational semantics

We define the obs. semantics using evaluate.

Terminates if we can
reach a result for
some clock.

Diverges if evaluation
times out for every
initial clock value.

semantics prog st env prog (Terminate outcome io_list) <= (
dk ffi r.
evaluate prog with clock st env k prog = (ffi,r) A
(if ffi.final event = None then
(V a. 7 # Rerr (Rabort a)) A outcome = Success
else outcome = FFl outcome (THE ffi.final event)) A
10_list = ffi.ilo events \
semantics prog st env prog (Diverge io_trace) <=
(V k. 4
3 ffi.
evaluate prog with clock st env k prog =
(ffi,Rerr (Rabort Rtimeout error)) A
ffi.-final _event = None) A
Iprefix_lub
(IMAGE \
(A k.
fromList e

(fst (evaluate prog with clock st env k prog)).
io_events) U(: num)) to_trace
semantics prog st env prog Fail <=
Jk.

snd (evaluate prog with clock st env k prog) =

Rerr (Rabort Rtype error) —e——

—_

Fails on internal error.
This is ruled out by
successful type inference.

Proof

Proof styles:

Standard induction on evaluation function
v proofs in direction of compilation
¥ no co-induction needed for divergence pres. (ESOP’| 6)

Untyped logical relation (ind. on compile function)

Each part of the compiler preserves obs. semantics:

r

_

type-safe
source
implies this

J

- compile config prog = new_prog N
syntactic condition prog A
Fail ¢ semantics ffi prog = due to out-of-memory error]

semantics fft new_prog C
extend with resource limit (semantics ffi prog)

Proof detalls

The obs. sem. theorems are proved using this about evaluate.

All evaluate proofs are of the form:

/ source |L j

- compile config exp = exp -A— £ target IL J
evaluate exp state = (new_state,res) N
state rel state state;r N res # Error =
1 new_state] resy.
evaluate exp; state; = (new_statey,resy) N
state rel new_state new_stater A res rel res res;

Informally: the compiler produces code which simulates the original.

No co-induction required.

abstre

code

Is and code labels

Imperative
language

4)
Imperative
language with
machine words,
memory and a
GC primitive
_ /
4)
Imperative
language
with array-like

YLVEVLVAVAVAVAYATE

AatAanls AnA

Difficult cases

GC and register allocator interaction

Combine adjacent
memory allocations

[

Remove data abstraction ——

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Allocate register names

GC introduced j

Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

u
LN

GC calls concretised j

Solution: we use a semantics that allows reordering of stack variables.

Size, Effort, Speed

Combpiler Size:

Proof Size:

Effort:

Speed:

6 000 lines of function definitions
(excludes target-specific instruction encoders & config.)

100 000 lines of HOL4 proof scripts

6 people, 3 years, but not full time

next slide...

(Numbers up-to-date as of Aug 2016)

SImple Benchmarks

B CakeML v1
B CakeML v2

slower
interpreted OCam|

faster

l

exec time / exec time of interpreted OCaml|

/\fib gsort queue btree

Contributing factor:
CakeML has arbitrary
_ Precision arithmetic y

SImple Benchmarks

B CakeML v1
M CakeML v2

. OCaml native-code compiler <(state of the art)

slower
interpreted OCam|

faster

l

exec time / exec time of interpreted OCaml|

/\fib gsort queue A btree

Contributing factor:
CakeML has arbitrary (an anomaly)
_ Precision arithmetic y

SImple Benchmarks

Why?
Version | can compile big programs (in-logic)

Version 2 in-logic evaluation is too slow for large examples

| A

(we are working to improve this)

[why not outside? J

We will be able to compile large
programs once v2 is bootstrapped.

CakeML

This talk: New compiler’s design compatible with optimisations

Big—picture: Ecosystem around a clean formalised ML language

Why? End-to-end verification, and end-to-end verified applications

Questions?

BN 'x} >
LS,

(\'

Magnus Myreen Yong Kiam Tan Ramana Kumar Anthony Fox Scott Owens Michael Norrish

