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Abstract

Parallel prefix is one of the fundamental algorithms in computer science. Parallel prefix
networks are used to compute carries in fast addition circuits, and have a number of other
applications, including the computation of linear recurrences and loop parallelization. A new
construction, called Slices, for fan-out-constrained depth size optimal (DSO) parallel prefix
circuits is presented. The construction encompasses the largest possible number of inputs for
given depth and fan-out. The construction improves on previous approaches that produce
DSO networks with constrained fan-out by encompassing more inputs for a given depth.
Even when compared with parallel prefix circuits with unbounded fan-out, the construction
provides a new family of circuits that are both small and reasonably shallow. We present the
construction, which is composed of recursively defined blocks, and derive a recurrence for the
maximum number of inputs that can be processed for a given fan-out and depth. We also
show how a DSO network built according to our construction can be cropped, to produce a
new DSO network with the same depth and fan-out, but fewer inputs. Thus, we can produce
a DSO network for given depth, fan-out and number of inputs, provided such a network exists.
We believe that we are the first to be able to do this. The resulting networks are compared
to others with both bounded and unbounded fan-out.

1 Introduction

The prefix problem is to compute all the products x1 ◦ x2 ◦ . . . xk for 1 ≤ k ≤ n, for an associative
operator ◦. The most obvious solution is to connect a series of n − 1 operators in a linear array,
as shown schematically in Figure 1(a). Input nodes are on the top of the circuit, with the least
significant input (x1) being on the left. Data flows from top to bottom, and we also count the
stages or levels of the circuit in this direction, starting with level zero on the top. An operation
node, represented by a small circle, performs the ◦ operation on its two inputs. One of the inputs
comes along the diagonal line above and to the left of the node, and the other along the vertical
line feeding the node from the top. A node always produces an output to the bottom along the
vertical line. It may also produce an output along a diagonal line below and to the right of the
node. Here, at level zero, there is a diagonal line leaving a vertical wire in the absence of a node.
This is a fork. The diagram shows a ripple-carry structure with 8 inputs. We say that the circuit
has width 8. The circuit shown contains 7 nodes, and so is said to be of size 7. Its lowest level in
the picture is level 7, so the circuit has depth 7. The depth of a circuit is the maximum number
of operators on a path from input to output. In real circuits, this is related to delay, where the
time unit is the the time taken to perform one operation. So one can think of the levels in the
diagrams as time steps.

The fan-out of a node is its out-degree, and of a circuit is the maximum of the fan-outs of its
nodes. In this example, all but the rightmost node have fan-out 2, so the whole circuit is said to
have fan-out 2. We will typically use n for number of inputs, s for size, d for depth and f for
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Figure 1: (a) The serial prefix structure (b) Construction of a parallel prefix circuit by composition
of two smaller such circuits, p1 and p2. The arrows indicate direction of data flow. The least
significant input is at top left, and the most significant output at bottom right.

fan-out. To ease presentation, we write 1 : k for x1◦x2◦. . .◦xk. Note that our rules of construction
mean that, even in sub-circuits that are not themselves parallel prefix networks, output i always
depends on input i, and possibly also on inputs with index lower than i. We will assume that this
is the case in what follows.

For two inputs, there is only one reasonable way to construct a prefix circuit, using one copy of
the operator. Prefix circuits can also be formed by composing two smaller such circuits, as shown
in Figure 1(b). Repeated application of this pattern (and the base case) produces the serial prefix
circuit that we have already seen.

Examining the serial prefix structure in Figure 1(a), we see that at each non-zero level only one
of the vertical lines contains an operator. Parallel prefix circuits can have more than one operator
at a given level, so that there is some parallelism in the resulting computation. Parallel prefix
structures have been much studied because they shed light on the theory of parallelism, and on
the complexity of computation by networks [21].

Parallel prefix networks are built, in practice, to perform the computation of carries in addition
circuits [30, 10]. The study of how to compute carries in binary adders has been going on since
the late 1950s, and the old papers are fascinating. One of them proposes what is now called the
Manchester carry chain [11] – an approach to avoiding long carry propagations that is still used.
The original paper describes the construction of an 18 stage adder, with the stages on individual
plug-in boards. The authors state that this “results in a transmission delay of approximately 20
millimicrosec. It is thought that careful design of the boards to minimize the 5 ft length of wire
in the ’carry’ path will reduce this delay probably by a factor of 2.”. We still have problems with
wires in circuit design, but they are on a different scale!

Logarithmic depth adders were known (and built) in the early 1960s [26, 22, 17, 2] but the
clean separation of the parallel prefix carry computation from the remainder of the adder came
later [4, 13].

Parallel prefix circuits also turn up in other guises, such as in the implementation of priority
encoders, which are important components of modern microprocessors. Parallel prefix, which is
also known as scan, plays an important rôle in parallel programming [3]. There is an intimate
connection between loop parallelization and parallel prefix [18, 25]. Hinze’s presentation of the
algebra of scan is an excellent introduction to the topic of parallel prefix networks [9]. In this
paper, we will concentrate on the construction of parallel prefix networks at an abstract level, and
will not delve into the details of how such networks are used in applications.

The minimal depth for a parallel prefix network with n inputs is �log2 n�. This bound is
achieved by a simple divide and conquer construction. Sklansky proposed a divide and conquer
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Figure 2: The Sklansky construction for 32 inputs. It recursively computes the parallel prefix for
each half of the inputs and then combines the last output of the lower (left) half with each of the
outputs of the upper (right) half.

Figure 3: The Brent Kung construction with fan-out 2, for 32 inputs.

approach in 1960 in the context of conditional-sum addition [22], and so the recursive construction
shown in Figure 2 for 32 inputs is usually named after him. The shallow depth is achieved at the
expense of a high fan-out of �n/2� + 1 for n inputs. For n = 2t, the number of operators is
t2t−1 = (n/2) log2 n. In Figure 2, note how at each level exactly half of the wires have operators
on them.

The basic Brent Kung construction [4] is about twice as deep as Sklansky, having depth
2 log2 n − 1 for n = 2t inputs. However, it has fan-out of only 2, as shown in Figure 3. The
Brent Kung construction also has significantly fewer operators. For n = 2t inputs, the number of
operators is

∑t
i(2

i − 1) = 2t+1 − t − 2 = 2n − log2 n − 2. Brent and Kung elucidated the use of
parallel prefix networks in adders. The recursive pattern itself was known earlier [19, 21].

Ladner and Fischer’s ingenious construction [13] allows a kind of sliding scale between a min-
imum depth circuit that contains fewer operators than Sklansky and one that resembles Brent
Kung, being of the same size but with slightly lower depth because the fan-out is not constrained
to be exactly 2. Often, in the literature, the Sklansky construction is attributed to Ladner and
Fischer, and the subtlety of their trading of size against depth is thus ignored. Ladner and Fischer
were fully aware of “the immediate recursive construction” and wished to improve upon it. The
minimum depth Ladner Fischer network, P0, is shown in Figure 4. For n = 2t inputs, it has
4n − F (5 + log2 n) + 1 operators, where F (m) is the mth Fibonacci number. Thus, the size is
bounded by 4n (but remember that size means number of operators, rather than being a more
direct measure of area).

For 32 inputs, P0 has 74 operators, compared to 80 for Sklansky and 57 for Brent Kung. For
64 inputs, P0 has 168 operators, while Sklansky has 192. Both have depth 6 and fan-out 33. On
the other hand, Brent Kung has 120 operators, depth 11 and fan-out 2. The other well-known
minimum depth construction is due to Kogge and Stone [12]. It has fan-out of only 2 but requires
a large number of operators (for example 321 operators for 64 inputs).

Figure 4: The minimum depth Ladner Fischer network, P0, for 32 inputs.
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1.1 The notion of depth size optimality

It is already apparent that the design space of parallel prefix circuits is large. One approach is
to focus attention on the depth size optimal prefix networks. Snir [23] proved that for an n input
parallel prefix network of size s and depth d, d + s ≥ 2n − 2, leading to the following definition:

Definition 1.1 (Depth Size Optimality). An n input parallel prefix network of size s and depth
d is depth size optimal (DSO) if d + s = 2n − 2.

DSO circuits are interesting because they allow us both to build networks of small size (roughly
2n operators) and to trade off size against depth. Of the networks that we have seen so far, only the
serial prefix is depth size optimal. The Brent Kung construction comes close, however. For n = 2t

inputs, we find that s = 2n− log2 n− 2 and d = 2 log2 n− 1, so that their sum is 2n + log2 n− 3.
This misses the 2n− 2 bound by only log2 n − 1.

The amount by which a network misses the depth size lower bound is called its deficiency, and
DSO circuits are therefore also called zero-deficiency [23]. A parallel prefix network is said to be
optimal if it has minimum size for the given depth, number of inputs and fan-out restriction [6].
All of the circuits produced by our construction are optimal in this sense, because they are DSO.
Note, however, that there are optimal parallel prefix networks that are not DSO; if the depth
constraint is tight enough, then DSO circuits no longer exist, and indeed the size of the networks
increases rapidly as depth is reduced further. In this report, we restrict ourselves to the study of
DSO networks.

Zhu et al have recently presented an approach to the design of zero-deficiency parallel prefix
circuits that closely resembles ours [27, 28]. Their construction produces zero-deficiency networks
of the smallest possible depth. It does not have strictly constrained fan-out and this is the main
difference in our approach. Ours is an independently derived, more general construction. We are
particularly interested in circuits with small fixed fan-out that does not increase with n or with
the depth, and one could view Zhu’s construction as an instance of ours in which fan-out is set to
be the maximum allowed by the construction, that is one greater than the depth. It is interesting
to read the papers by Zhu et al, because their way of thinking about and analysing the networks
is completely different from ours; yet they come to very similar conclusions. We will return to a
comparison of our results with those of Zhu et al in section 5.2.21.

We have been inspired by a series of articles by Lin and his coworkers on the construction of
DSO networks with fan-out 4 [15, 14, 16]. Later, in section 5.2.3, we will show how our construction
improves upon the previously best known such networks.

In section 2, we show how to construct DSO circuits with fan-out 2. For a given depth, the
construction gives a widest possible DSO circuit of that depth. Section 3 extends the previous
construction to fan-out greater than 2; the maximum width that can be achieved for a given depth
and fan-out is calculated. Section 4 shows how to take a maximum width DSO circuit and crop
it to a given smaller width, while maintaining the depth, maximum fan-out and DSO property.
Section 5 analyses the results, comparing to other approaches, and the final two sections discuss
future work and conclusions.

2 The Slices construction for fan-out 2

In this section, we consider the design of DSO circuits with fan-out 2. We call the resulting
construction Slices, because it is composed of similar sub-circuits, each of which can be thought of
as a slice of the circuit. Each of these slices is itself a parallel prefix circuit, and we first consider
how to construct these sub-blocks.

1Note that our use of the term depth size optimal is different from that in Zhu et al (but follows references [15,
14, 16]). Zhu et al take depth size optimal to mean having minimum size for a given depth constraint and number
of inputs. What Zhu et al call zero-deficiency is the same as our definition of depth size optimality.
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Figure 5: The general form of a WSO1 parallel prefix circuit for fan-out 2: a slice.

2.1 The notion of the waist of a parallel prefix network

The first (or leftmost) input to a parallel prefix network is always forked at least once, since the
second and all subsequent outputs depend upon it. We call the level at which the first such fork
occurs the firstFork of the network. The level at which the last output is computed is lastOp. The
difference between lastOp and firstFork is the waist of the circuit. Lin et al [15] proved that for an
n input parallel prefix network of waist w and size s, w + s ≥ 2n − 2. They call a parallel prefix
network that meets the lower bound size optimal. However, we rename the property to waist size
optimal in order to emphasise the rôle of our notion of waist. We will call a waist-size optimal
circuit WSO, and those with waist one WSO1.

Definition 2.1 (Waist Size Optimality). An n input parallel prefix network of waist w and size
s is waist size optimal (WSO) if w + s = 2n− 2.

2.2 Composing waist size optimal circuits

Waist size optimality is preserved by composition. Suppose we have a parallel prefix circuit p
constructed from two WSO circuits p1, p2 as shown in Figure 1(b). Then, p1 has m inputs, p2 has
n−m + 1 inputs, and p has n inputs. If p1 has size s1 and waist w1, and p2 has size s2 and waist
w2, then p has size s = s1 + s2 and waist w = w1 + w2. Since both p1, p2 are WSO,

w1 + s1 = 2m − 2
w2 + s2 = 2(n − m + 1) − 2

Therefore,

w + s = (w1 + w2) + (s1 + s2)
= (w1 + s1) + (w2 + s2)
= (2m − 2) + (2(n − m + 1) − 2)
= 2n − 2,

which shows that p is also WSO.

2.3 Building a slice with fan-out 2

WSO1 networks are useful in building larger parallel prefix circuits, so we study their construction.
A slice of fan-out 2 is a WSO1 parallel prefix network, and so must have the form shown in
Figure 5. The rightmost output of the upper sub-circuit (labelled T for top) depends on each of
the n inputs to T. T must, therefore, contain at least n − 1 operators. The situation is reversed
for the lower sub-circuit, B (for bottom). Each of its outputs depends on its leftmost input, which
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Figure 6: Composing two slices and then replacing the two operators in the middle by an equivalent
three operator sub-circuit, giving a new slice, with all slices being of fan-out 2.

Figure 7: A fan-out 2 slice with top and bottom trees of depth 4. The dotted line shows the block
symbol used to represent slices in later constructions.

is independent from all of its other inputs, in that it has not been processed by the upper tree T.
Thus, this lower tree must also contain at least n− 1 operators. Because the circuit is WSO1, its
size must be 2n − 1, so each of the sub-circuits above and below the waist must contain exactly
n− 1 operators. In the case when n = 1, the top and bottom trees consist of single wires, and the
circuit contains only the single operator that corresponds to the waist. For n > 1, how should the
n − 1-operator sub-circuits above and below the waist be formed? The construction is recursive.
A slice can by built by composing two smaller slices and then applying a function-preserving
transformation to make the result into a WSO1 slice again, as shown in Figure 6. Applying this
construction repeatedly results in slices with fan-out 2, in which the B and T sub-circuits are
perfect binary trees. If these have depth k, then each has 2k − 1 operators. Then, the entire
construction has n = 2k + 1 inputs and size 2(2k − 1) + 1 = 2k+1 − 1. Just to check the WSO
property: w + s = 1 + 2k+1 − 1 = 2k+1 = 2(2k + 1) − 2 = 2n − 2 as expected. Thus the widest
slice whose waist stretches from level k to level k + 1 has 2k + 1 inputs if fan-out is restricted to
2. Such a block is shown in Figure 7 for k = 4. Note how, in the top tree, there is a path from
every input to the rightmost output, while in the bottom tree there is a path from the leftmost
input to each output.

2.4 Composing slices to make depth size optimal circuits

A WSO circuit whose waist is the same as its depth is depth size optimal (DSO). A DSO circuit
can be built by composing WSO1 circuits with increasing firstFork, in the kind of pattern shown
in Figure 8. For a circuit of depth d, d blocks are composed, with firstFork 0, 1, . . . , d − 1. The
composition of prefix circuits that we saw earlier (Figure 1(b)) is associative, and here we use it
repeatedly. The simplest (and deepest) structure built by composing WSO1 blocks is the serial
prefix network, in which each of the slices has 2 inputs. A network of depth d will then be
constructed from d such 2-input blocks, giving a total of 2d − (d − 1) = d + 1 inputs.

However, we can also make a DSO network of depth d by making sure that each of the d slices
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Figure 8: Composing slices to make a DSO circuit of depth d. The numbers shown give the
firstFork of each of the d slices.

Figure 9: An example of Slices(2) with depth 9, built by composing 9 slices with fan-out 2.

is as wide as possible. This is the essence of our new construction, which we call Slices(f) for
fan-out f . Here, we first consider Slices(2). For each composed slice, if the top tree has depth k,
then the bottom tree must have depth at most d − k − 1. Then, the smaller of k and d − k − 1
determines the depth of the corresponding tree, and thus also the maximum possible width of the
slice. Figure 9 shows the result for depth 9.

The total width of the parallel prefix circuit of depth d constructed in this way can be calculated
by summing the widths of the WSO1 slices, making sure to take proper account of wires that are
“lost” during composition.

Width(d) = 1 +
d−1∑
k=0

2min(k,d−k−1)

= 2(2j) − 1, d = 2j

= 3(2j) − 1, d = 2j + 1

Slices(2) is a pleasingly symmetrical construction. The reader might like to rotate Figure 9
through 180 degrees and to mentally slide the operators to the ends of the diagonal lines on which
they appear. The result is the same circuit! This is partly because the construction of the maximal
width WSO slice gives a symmetrical result. Also, we have seen that the sequence of depths that
determine the widths of the d slices is < min(k, d − k − 1)|k : 0 . . . d − 1 >, and reversing this
sequence leaves it unchanged.

If one takes as the sequence of firstFork values the shorter 0, 1, . . . , �d/2�, and also makes all
trees as shallow as possible, one gets the basic Brent Kung construction [4] – compare Figures 3
and 9. For depth 9, the Brent Kung construction composes WSO1 blocks of width 2, 3, 5, 9 and 17
to give an overall width of 32 (remembering that the composed blocks have a wire in common).
We saw earlier that the Brent Kung construction is not quite DSO. It is, however, WSO because
it is composed of WSO1 blocks.

Slices(2) can be seen as an alternative to the Brent Kung construction. For depth 9, Brent
Kung has 32 inputs, as shown in Figure 3. Slices(2) encompasses 47 inputs for the same depth,
see Figure 9. The corresponding numbers for depth 11 are 64 for Brent Kung and 95 for Slices(2).
Both constructions are, however, rather deep compared to Sklansky and the minimum depth
Ladner Fischer (although neither of those comes close to being DSO). Our next step is to explore
the use of fan-out in the construction of reasonably shallow parallel prefix circuits that are still
DSO (and thus small in size).
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Figure 10: The form of a slice for fan-out greater than two.

Figure 11: A slice that makes use of fan-out to allow the bottom tree to be shallower.

3 The Slices construction: fan-out > 2

Things become less beautiful but more interesting when we allow fan-out per level to increase.
The overall construction of a DSO circuit is exactly the same as before – the composition of d
slices with increasing firstFork. What changes is the method of constructing a maximal width slice
for given constraints on the depth of the top and bottom trees.

3.1 Constructing a slice with top and bottom trees of given depth

The construction for fan-out f > 2 is similar to that used in the fan-out 2 case, except that the
lower tree can now have its first fork on its first wire at the same level as the fork in the waist,
causing the whole tree to move up one level as shown in Figure 10. At the point of the fork in the
waist, the B tree can have fan-out of f − 1, since the fan-out to the operator in the waist counts
as one of the available fan-outs. At all other fork points in B, there can be fan-out of f .

It turns out that increasing allowed fan-out above two makes no difference to the fan-out of
the top tree, since its main purpose is to produce a single output (the rightmost one) that depends
on all of the inputs. Additional fan-out does not assist with this goal. On the other hand, the
bottom tree aims to spread a single input to each of the outputs, so fan-out can most definitely
play a rôle here. For example, Figure 11 shows a slice with fan-out 4 and with depths 5 and 3 for
the top and bottom trees. Note how the bottom tree is squashed up against the wire that goes
across the waist.

For a given depth and fan-out, we want to construct the widest possible DSO parallel prefix
circuit. We will construct such a DSO circuit from slices, so the problem reduces to how to
construct a widest possible slice with top tree depth t and bottom tree depth b, for a given fan-out
f > 2. What we want is a pair of matching trees, one with fan-out 2 and depth at most t, and one
with fan-out f and depth at most b (and with the bottom tree including the waist as illustrated
in Figure 11). Again, a recursive construction is used.

First, consider the simpler problem of how to make matching top and bottom trees in the
absence of any constraints on the fan-out. In that case, the recursive construction is illustrated
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in Figure 12. A base case is reached when either the b parameter (for the depth of the bottom
tree) or the t parameter (for the depth of the top tree) is zero. In both cases, the resulting tree
is just a single wire, without any operators. For the recursive case, the entire top tree must have
depth t, and then the two recursive calls must each have depth t − 1. In the bottom tree, the
left hand recursive call must have the same depth as the entire tree (that is b), while the right
hand recursive call must decrease the b depth parameter by one. The recursive calls are shown in
the diagram as boxes containing the appropriate parameters. The two tree constructions have a
similar recursive pattern, and both have the same number of inputs and operators. Let B1 be the
number of input wires to the bottom tree. It is computed by the following integer recurrence:

B1(0, t) = 1
B1(b, 0) = 1
B1(b, t) = B1(b, t− 1) + B1(b − 1, t − 1)

This recurrence is closely related to Pascal’s 6th identity, which states that

l∑
k=0

(
n

k

)
=

l∑
k=0

(
n − 1

k

)
+

l−1∑
k=0

(
n − 1

k

)

This leads directly to the solution

B1(b, t) =
b∑

i=0

(
t

i

)
(1)

The next step towards taking account of fan-out is to unroll the recursion in the above con-
struction, as shown in Figure 13. For the bottom tree, this distinguishes clearly between the top
level of the tree and the remaining levels. Note that the top level of the bottom tree has fan-out
t + 2, when one includes the waist (which is shown shaded).

Finally, we introduce an extra parameter f for the allowed fan-out per level. Figure 14 shows
the construction of matching top and bottom trees, T ′ and B′, with fan-out f at each level of the
bottom tree (provided t is large enough). When the fan-out to the waist (shown shaded) is added,
this gives fan-out f + 1 at the top of the bottom tree, which is too high. Our solution is to delete
parts of the construction, at the right hand side, as indicated by dotted lines; we call the result a
slice. The resulting top tree, T , has depth t− 1, while the bottom tree, B, has depth b, the same
as that of B′. This construction of slice applies when f ≤ t+1. If f > t+1 (as will happen at the
leaves of the recursion), it is t that determines the allowed fan-out, and we revert to the previous
case, shown in Figure 13. This will be reflected in the recurrence for the number of inputs to a
slice that we develop later.

Figure 15 shows a concrete example of a slice constructed in this way. Note that the first fork
is the depth of the top tree, in this case 6.

The values of both b and t constrain both trees. It can happen, for instance, that the depth of
the top tree ends up being less than t because the value of b is small, or vice versa. As a concrete
example, if t = 1 then the depth of the resulting bottom tree will be 1, independent of the value
of b, provided b > 0.

3.2 The correctness of this method of constructing a slice

The slice’ construction shown in Figure 14, including the B’, T’ and waist, clearly has waist one. It
can be shown to be a WSO parallel prefix circuit by a transformation that replaces the serial prefix
in the top tree, and the top level of the bottom tree plus waist by a single serial prefix. The result
is then the composition of f smaller slice’ circuits; it is a WSO parallel prefix circuit, because
it is the composition of WSO1 blocks. The transformation (and its inverse) preserves both the
WSO property and circuit behaviour, so our original circuit is also a WSO parallel prefix circuit.
The smaller slice construction can be obtained by composing f − 1 (rather than f) smaller slice’
circuits, and then applying a transformation to the waist similar to the inverse of that described
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Figure 12: Recursive construction of matching top and bottom trees. The parameters b and t are
the depths of the bottom and top trees. The only constraint on fan-out is the allowed depth of
the top tree. The operator on the waist is shown shaded.
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Figure 13: Unrolling the recursion in the construction of top and bottom trees.
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Figure 14: The construction of the slice’, with matching top and bottom trees T’ and B’, allowing
fan-out f at each level of the bottom tree (provided t is sufficiently large). Because slice’ has
fan-out f + 1 at the top level of B’, we delete parts of the construction, at the right hand side,
as indicated by dotted lines, to give slice. The resulting top tree, T, has depth t − 1, while the
bottom tree, B, has depth b, the same as that of B’

T(5,4,6)

B’(5,3,4)

T’(5,3,4) T’(5,3,5)

B’(5,3,5)B’(5,3,3)

T’(5,3,3)T’(5,3,3)

B’(5,3,3)

B(5,4,6)
+ waist

Figure 15: A slice with fan-out 5, bottom tree depth 4 and top tree depth 6, showing the recursive
construction.
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above. The result is a WSO1 parallel prefix circuit because it has the same behaviour and number
of operators as the composition of f − 1 WSO1 parallel prefix circuits. The fan-out 2 case that
we considered in section 2 is an instance of this more general one.

3.3 Does the slice encompass the maximum possible number of inputs?

Although we have constructed the slice to have as great a width as possible for the given fan-out
and bottom and top tree depths, we do not yet have a satisfactory proof that this is the case. This
is left to future work.

3.4 Analysing the width of a slice

To calculate the maximum number of inputs that Slices(f) can process for a given depth, we must
first calculate the width of each individual slice.

We often need to sum over sequences of the form 1, 2, . . . , g − 1, g, g – that is monotonically
increasing sequences with two copies of the last element. We will use the notation

∑g,g
i=1 when

summing over such sequences.
Consider the recursive construction outlined in Figure 14, for f ≤ t + 1 & b > 1 & t > 0. Let

W (f, b, t) be the number of inputs in the B and T constructions, and W ′(f, b, t) the number of
inputs in the B′ and T ′ constructions. B′ is made from f smaller copies of B′, giving

W ′(f, b, t) =
f−1,f−1∑

k=1

W ′(f, b − 1, t − k) (2)

Since B is obtained by deleting one copy of B′, the relationship between W and W ′ is as follows:

W (f, b, t) = W ′(f, b, t + 1) − W ′(f, b − 1, t) (3)

Thus, we can find a recurrence for W in terms of itself:

W (f, b, t) = W ′(f, b, t + 1) − W ′(f, b − 1, t) [eq. 3]

=
f−1,f−1∑

k=1

W ′(f, b − 1, t + 1 − k) −
f−1,f−1∑

k=1

W ′(f, b − 2, t − k) [eq. 2]

=
f−1,f−1∑

k=1

(W ′(f, b − 1, t + 1 − k) − W ′(f, b − 2, t− k)) [summation]

=
f−1,f−1∑

k=1

W (f, b − 1, t − k) [eq. 3]

The full recurrence for W is

W (f, b, t) = 1, b = 0 ∨ t = 0 (4)
= W (f, b, t − 1) + W (f, b − 1, t − 1), f > t + 1 (5)
= f − 1, f ≤ t + 1 & b = 1 (6)

=
f−1,f−1∑

k=1

W (f, b − 1, t − k), f ≤ t + 1 & b > 1 (7)

The first equation gives the base cases: the tree is a single wire if either the top or the bottom tree
should be of depth zero. The second equation covers the case when the fan-out is high compared
to the top tree depth, and follows the construction shown in Figure 12. It can also be shown by
induction that

W (f, b, t) = 1 +
t∑

i=1

W (f, b − 1, t − i), f > t + 1 (8)
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Figure 16: Slices(4) with depth 6. The outlined slice has a top tree of depth 4 and a bottom tree
of depth 2.

Figure 17: Slices(3) with 88 inputs and depth 9. Compare with Figure 9, which has the same
depth but fan-out 2.

Equations 6 and 7 give the base case and step to calculate the number of inputs to our new
fan-out-constrained construction, shown in Figure 14.

3.5 Building DSO circuits Slices(f), for fan-out f > 2

As before, to build a DSO circuit of depth d, slices with firstFork ranging from 0 to d − 1 are
composed. To emphasise the effect of increasing fan-out, we show three further examples. In
Figure 9, we saw Slices(2), with depth 9 and 47 inputs. Increasing the fan-out to 3 and 4 allows
us to build DSO circuits with the same depth, but with 88 and 114 inputs respectively, as shown
in Figures 17 and 18.

If we again choose depth 9, but make the fan-out be 10, then the top trees in the resulting
composition of slices have depths 0, 1, 2, . . . , 8. This means that in each of the slices, it is the
case that f > t + 1, so that we revert to the recursive construction that does not take account of
fan-out (see Figure 12). This is the construction described by Zhu et al [27], and it is shown in
Figure 19. In general, the instance of our construction in which the fan-out is set to be d + 1 is
essentially the same as the Zhu network. We will return to this point in section 5.2.2.

3.6 Analysing the width of the Slices(f) construction for a given depth

The maximum size DSO parallel prefix circuit for a given depth and fan-out is calculated based
on the widths of its d slices:

M(f, d) = 1 +
d−1∑
i=0

W (f, d − i, i) (9)

Figure 18: Slices(4) with depth 9. 114 inputs can be processed.
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Figure 19: Slices(10) with depth 9. 143 inputs can be processed (see Table 1 in [27]).

Interestingly, it is possible to give a recursive definition of M . We first consider the case of f > d.

M(f, d) = 1 +
d−1∑
i=0

W (f, d − i, i)

= 1 + 1 +
d−2∑
i=1

W (f, d − i, i) + d [W (f, d, 0) = 1, W (f, 1, d− 1) = d]

= 2 + d +
d−2∑
i=1

W (f, d − i, i − 1) +
d−2∑
i=1

W (f, d − i − 1, i − 1) [eq. 5]

= 2 + d +
d−3∑
i=0

W (f, d − 1 − i, i) +
d−3∑
i=0

W (f, d − 2 − i, i) [change of index]

= 1 + 1 +
d−2∑
i=0

W (f, d − 1 − i, i) + 1 +
d−3∑
i=0

W (f, d − 2 − i, i) [W (f, 1, d − 2) = d − 1]

= 1 + M(f, d − 1) + M(f, d − 2) [eq. 9]

For f <= d:

M(f, d)

= 1 +
d−1∑
i=0

W (f, d − i, i)

= 1 + W (f, d, 0) +
f−2∑
i=1

W (f, d − i, i) +
d−2∑

i=f−1

W (f, d − i, i) + W (f, 1, d − 1)

= 1 + f +
f−2∑
i=1

(1 +
i∑

j=1

W (f, d − i − 1, i − j)) +
d−2∑

i=f−1

f−1,f−1∑
j=1

W (f, d − i − 1, i − j) [eqs. 4,6, 7, 8]

= 1 + f +
f−2∑
j=1

(1 +
f−2−j∑

i=0

W (f, d − i − j − 1, i)) +
f−1,f−1∑

j=1

d−2−j∑
i=f−1−j

W (f, d − i − j − 1, i)

= 1 + f +
f−2∑
j=1

(1 +
d−2−j∑

i=0

W (f, d − 1 − j − i, i)) + 2 ×
d−2−(f−1)∑

i=0

W (f, d − i − (f − 1) − 1, i)

= 1 + f +
f−2∑
j=1

M(f, d − 1 − j) + 2 × M(f, d − 1 − (f − 1)) − 2 [eq. 9]

= f − 1 +
f−1,f−1∑

j=1

M(f, d − 1 − j)
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Thus, the recurrences for M are very similar to those for W . To summarise, we have

M(f, 0) = 1 (10)
M(f, 1) = 2 (11)
M(f, d) = 1 + M(f, d − 1) + M(f, d − 2) f > d (12)

= f − 1 +
f−1,f−1∑

j=1

M(f, d − 1 − j) f ≤ d (13)

And what is the point? The point is that given f and d, these simple recurrences tell you what
width of DSO parallel prefix circuit you can build. As far as we know, nobody has been able to
do this before.

4 Cropping Slices so as to process a given number of inputs

We have shown how to construct a maximum width circuit for a given fan-out and depth. But
it is more usual that the number of inputs is decided first. A slice can be made narrower by
replacing each of a pair of matching sub-trees in the structure by single wires. Think of replacing
top trees by their rightmost wire (and no operators) and bottom trees by their leftmost wire.
When we delete a pair of matching sub-trees, k wires are removed, and for each tree, k operators.
The waist is unaffected, and remains at one. This means that the constraint on waist and size:
w + s = 2n − 2 remains intact. Thus, the slice remains WSO1 even after cropping. It is still a
parallel prefix network because it can still be transformed into the composition of f −1 blocks that
are themselves parallel prefix networks, as before. Some of those blocks have been made narrower
by the same process, so an inductive proof is required.

Then, to make an instance of Slices narrower, one can crop any of its slices in this way. The
waist of the circuit, which stretches from the top left corner (the first fork) to the bottom right,
through a number of operators, is unaffected by this cropping, and the depth of the resulting
circuit therefore remains unchanged. Then, because the resulting circuit is WSO, being composed
of WSO blocks, and has waist equal to its depth, it is also DSO.

To illustrate this process, Figures 20 to 22 show three networks that have depth 8 and fan-out 4.
The first is the original (maximum width for that fan-out and depth) construction with 72 inputs.
The three sub-trees marked in that diagram (and their corresponding bottom trees) are replaced
by single wires, to give the 64 input network shown in Figure 21. Removing further sub-trees in
this way gives, for example, the 57 input network in Figure 22. Here, we have chosen always to
replace a rightmost sub-tree by a wire, so that deletion proceeds from right to left. Other choices
would also be possible, for instance one that starts shrinking the slices from the left. If aiming for
implementation as a circuit, one might want to start cropping in the middle, because this would
reduce the length of the longest wire in the waist of the circuit. Figure 23 shows such a network,
again for 57 inputs.

In the limit, one can replace all the sub-trees with single wires, leaving the waist of the circuit
intact, but removing all else. At that point, the size is the same as the depth, d, and the number
of inputs is d + 1. This gives the serial prefix network. Further cropping is not possible as this
would reduce the depth.

Note that simply cropping the parallel prefix network by deleting wires and associated operators
on the right would not be guaranteed to give a result that is DSO. For example, deleting the three
rightmost wires of the 72 input circuit in Figure 20 would give a circuit whose waist, w, is one
smaller than its depth, d. But we know that w + s ≥ 2n − 2, which means that in this case,
d + s > 2n− 2, so the circuit is not DSO. The cropping method described here preserves the DSO
property.
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Figure 20: A widest possible DSO parallel prefix circuit with depth 8, fan-out 4 and 72 inputs.
The marked sub-trees (and their matching bottom trees) will each be replaced by single wires, to
give the following 64 bit construction.

Figure 21: A 64 input DSO network constructed by cropping the full-width network above.

Figure 22: Continuing the cropping process, which narrows the individual slices. The example
shown has 57 inputs. The two rightmost slices have been shrunk to width 2.

Figure 23: Another example of a 57 input instance of Slices, this time with cropping of the wider
slices in the middle, which reduces the length of the longest wire along the waist.
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Figure 24: The effect of varying fan-out in the Slices construction.

5 Analysis of results

We present a first analysis of our results. Much remains to be done.

5.1 The effect of varying fan-out in the Slices construction

Figure 24 plots depth against number of inputs for the Slices construction with three different
fan-outs (2,4 and as large as the construction will allow, that is depth +1).

Here, note how close the fan-out 4 is to the “unconstrained” one. For example, for n = 233..281,
fan-out 4 gives the same depth (11) as the unconstrained fan-out (which must be 12, that is depth
+1). And in the range shown, and indeed up to 4163 inputs, the fan-out 4 graph is within depth
1 of the unconstrained one. Thus, fan-out 4 can be argued for from an algorithmic point of view,
and not only from an electrical one. This is fortunate!

5.2 Comparison with other parallel prefix networks

5.2.1 The Ladner Fischer Constructions

First, let us look at some concrete examples, and then attempt a more general comparison between
Slices and Ladner Fischer. For 32 inputs, P0(32) has fan-out 17, and size 74, as we saw in
Figure 4 [13]. Our construction cannot produce a network with 32 inputs and minimum depth
5. Allowing the depth to increase by one, P1(32) has fan-out 9 and size 62. If, in the Slices
construction, we restrict depth to be 6 and number of inputs to be 32, we find that we must have
fan-out of at least 6, since M(5, 6) = 31 and M(6, 6) = 32. The resulting network, which has size
56, is shown in Figure 25. So, for fixed depth 6 and number of inputs 32, both fan-out and size
are noticeably improved compared to Ladner Fischer.

For 128 inputs, the Ladner Fischer construction gives depth 7, size 369, depth 8, size 295 and
depth 9, size 264 networks, with the latter having fan-out 19. Our construction can achieve depth
9 at best. The resulting network has size 245 and fan-out of only 5, as shown in Figure 26. Again,
there is a considerable improvement in fan-out and size for the same depth and number of inputs,
compared to Ladner Fischer.
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Figure 25: A 32 input Slices network with depth 6 and fan-out 6.

Figure 26: A 128 input Slices network with depth 9 and fan-out 5.

Now let us try to make a more general comparison between Slices(4) and the Ladner Fischer
constructions. First, in Figure 27, we plot depth against maximum number of inputs for the
shallowest Ladner Fischer construction (which has minimum depth), Brent Kung and Slices(4).
Slices(4) sits squarely in the middle. It would be interesting to try to analyse this more formally.
Here, we make a first observation. Much remains to be done.

On the other hand, when we plot number of operators against number of inputs, in Figure 28,
we find that Slices(4) has much fewer operators than the shallowest Ladner Fischer (which in turn
has considerably fewer operators than Sklansky), while having slightly fewer than Brent Kung.
Note, also, that the shallowest Ladner Fischer has fan-out �n/2� + 1, compared to 4 for Slices
here, and 2 for Brent Kung. Remember, though, that Ladner Fischer has minimum depth.

Generally, which of these three options one should choose depends on the relative importance
of depth, size and fan-out. But still, it is clear that Slices adds an interesting option to the existing
standard constructions, particularly if one wants low fan-out, small size but relatively low depth.
These circumstances might arise, for example, in circuit designs aimed at low power rather than
raw speed. However, it should be remembered that our analyses are, at this stage, rather abstract.

5.2.2 The network of Zhu et al

The construction of the zero-deficiency parallel prefix network Z(d), which has the maximum
possible width for depth d, appears to be exactly the same as ours for the case in which fan-out
is d + 1 [27, 28]. This is confirmed by examining the diagrams (e.g. on p. 13 of [28]) and the
given construction, and by comparing the figures for maximum width for a given depth given. For
example, for depth 8 fan-out 9, both constructions give width 88, while for depth 9, fan-out 10,
both give width 143 (see Figure 19). If we assume that f > d, our calculation of the width for
depth d of Slices (equation 12), which we will here call S(d), can be rewritten as

S(0) = 1
S(1) = 2
S(d) = 1 + S(d − 2) + S(d − 1), d > 1

while Zhu et al have derived, for d ≥ 1, the closed form

NZ(d) = F (d + 3) − 1

where F (r) denotes the rth Fibonacci number with F (1) = F (2) = 1, and F (k + 2) = F (k + 1) +
F (k), k ≥ 0. It is an easy induction to show that S(d) = NZ(d) for d ≥ 1. For the base case,
S(1) = 2 and NZ(1) = F (4) − 1 = 2.
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For the step,

S(d + 1) = 1 + S(d − 1) + S(d)
= 1 + NZ(d − 1) + NZ(d) by ind. hyp.
= 1 + F (d + 2) − 1 + F (d + 3) − 1
= F (d + 4) − 1
= NZ(d + 1)

When it comes to the width of an individual slice in the case in which fan-out is not constrained,
the link that we found to Pascal’s 6th identity establishes equation 1 (giving the width of the trees
in a slice with given bottom and top tree depths) more simply than the proof by Zhu et al [28].
Indeed, this link is very much in the spirit of their paper!

What we have done that has not yet been achieved by Zhu et al is to systematically construct
DSO networks with constrained fan-out, f ≤ d, and to analyse the width of the resulting networks
in equations 10 to 13. Working independently, Zhu et al took a first step in this direction by
explicitly deleting parts of the depth 8 fan-out 9 construction with 88 inputs to give a fan-out 4
network that is (we think) identical to our 72 input fan-out 4 construction. Our contribution has
been to build limited fan-out into the Slices construction from the start.

In generalising their construction, Zhu et al propose a method of generating DSO circuits
for arbitrary (n, d) pairs. In the case when the depth is the minimum possible for that number
of inputs, they propose simply removing most significant inputs and outputs (and associated
operators) from the maximum width construction. This, as we pointed out above, does not
necessarily give a DSO result. This problem is probably what they refer to when they point
out that “Care must be taken to make small adjustments to the new most significant columns
after discarding.”. Our approach in which matching sub-trees are replaced by wires seems more
systematic, particularly since it carefully preserves the waist of the circuit. Note, incidentally, that
what we call waist is called ridge by Zhu et al.

5.2.3 Comparing to previous bounded fan-out DSO networks

It is also interesting to compare with the fan-out 4 networks created by Lin and his co-workers.
A recent paper by Lin and Su proposes a new construction called SU4 for DSO parallel prefix
networks with fan-out 4 [16]. This is the culmination of a whole series of such constructions [14, 15]
and is superior to the others in the series. Thus, we compare only with this latest construction.
SU4 is built from 6 different types of parallel prefix circuits, which are used as building blocks.
Our construction has only one type of building block, the slice, with its matching trees. Thus,
our construction is conceptually much simpler, and consequently easier to analyse. In addition,
the Slices(4) network is superior to SU4 in that it encompasses a greater number of inputs for all
depths from 10 and upwards. For larger depths, this superiority is marked. Figure 29 shows the
number of inputs and depth for the two constructions.

5.2.4 Comparison with circuit synthesis-oriented approaches

In the early 1990s, Fishburn developed a tool called LATTIS that used heuristic procedures for
performance optimisation of mapped combinational logic [8, 7]. Interestingly, in the earlier paper,
parallel prefix is taken as a case study and parallel prefix networks are developed by greedily
applying a depth-decreasing heuristic to a serial prefix network. The result is compared to Ladner
Fischer. For instance, for 32 inputs, and depth 8, LATTIS produces a DSO network of 54 operators
with fan-out 5, while P3(32), the Ladner Fischer construction of depth 3 greater than minimum
depth, has 57 operators and fan-out 6. It is interesting to note that LATTIS produces a network
that is a composition of slices, but that it does not choose exactly the right slice widths to give the
minimum possible depth for such a construction. Fishburn points out that his heuristic approach
produces DSO circuits in the depth range 2 log2 n−2 to n−1, for n inputs, and the above example
is at the lower limit of this range. Our non-heuristic approach (which is, of course, much more
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Figure 29: Comparing SU4 with Slices(4). Slices(4) copes with more inputs already at depth 10
(179 vs. 165). At depth 20, the maximum number of inputs is 15997 for Slices(4) and 5931 for
SU4.

specialised) produces DSO networks also for smaller depths. For instance, in Figure 25, we saw a
DSO network of depth 6 for 32 inputs (and with fan-out only 6). On the other hand, Fishburn’s
approach took account both of input arrival time and desired output time (using a unit-delay
model for gates). We are also very interested in pursuing this direction.

In a non-heuristic approach, Zimmermann has studied the generation of optimal parallel prefix
networks, including taking account of non-uniform input and output signal arrival times [30, 29].
For uniform input signal arrival times, the results seem quite similar to ours. For instance, a DSO
network with 32 inputs and depth 6 is shown, and indeed it too is a composition of slices [30].
Its fan-out is 7, one greater than that in our construction. We have found Zimmermann’s work
inspiring, and hope to return to a more serious comparison when we have worked with non-uniform
input signal arrival times.

6 Future Work

We became interested in parallel prefix networks because we want to solve real problems in circuit
design. A referee of an early (admittedly incoherent) attempt to explain these ideas claimed that
we (like everyone else) are still at the stage that Weinberger was at in ’59, trying to “figure a good
tradeoff between delay and area/size/energy”. Trying to understand this tradeoff is indeed one
of our goals, and we feel that we have actually done something useful towards this end. We have
understood how to produce parallel prefix networks with the smallest possible number of operators
for given constraints on fan-out, depth and number of inputs. We assert that understanding how to
make low-fan-out parallel prefix circuits that do not have many long wires is going to be important
in practice. These constructions are a first step. The next step is to take account of wires and
their effects, and this is a topic that we are pursuing actively [1].

It remains to be seen if these constructions will have desirable properties when implemented
as circuits, although a first implementation (by undergraduate students at Chalmers) of a 64-
bit adder based on these ideas had 15% lower power consumption than a reference Han-Carlson
implementation, though at the expense of being 15% slower. It is true that the DSO condition
only counts number of operators, and ignores real physical effects, but this does not imply that
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the resulting networks perform poorly as circuits, and first indications are promising. Many more
experiments are needed. Our intention, though, is not to implement these structures directly,
but to use the insights gained in developing these constructions to do synthesis of parallel prefix
networks that are adapted to the delay profile of their inputs.

Note that parallel prefix circuits appear in many guises, so it makes sense to start with the
general case, as we have done here, without any assumptions about the final application area.
Now, however, further work is needed to specialise these results to the important special case of
binary addition (taking account of generate and propagate signals). This has deliberately not been
done yet. The more abstract analysis is necessary as a base on which to build more specialised
ones. We will both use our Wired language to generate real adder layouts, and the combination
of Wired with standard modelling methods, including methods of estimation based on comparing
energy-delay behaviour [20] and power macromodelling [5].

On the more theoretical side, much work also remains to be done. We have designed the Slices
construction to encompass as many inputs as possible for a given depth, but we do not yet have
a satisfactory proof that we have indeed succeeded! This must be our next step.

Next, having studied the effect of fan-out in the region in which DSO networks exist, it would
be interesting to move on to consider fan-out in the more chaotic region in which tight depth
constraints prevent them from existing, and size grows quickly. Beyond these questions about how
size, number of operators and fan-out relate to each other, more theoretical work needs to be done
to take account of area rather than number of operators. The classic paper by Sugla and Carlson
on extreme area-time trade-offs in VLSI points the way here [24].

Parallel prefix in the context of parallel programming rather than circuits is yet another area
that we should consider.

7 Conclusion

The Slices construction is interesting because it provides a new family of relatively shallow parallel
prefix networks that are also small. Previous results are improved upon in a quantitative sense.
However, perhaps the most important contribution is some new insight into how depth, size and
fan-out can be traded off against each other. Much remains to be done, but these are important
first steps! We hope that some of our readers will join us in this exploration, and would welcome
comments and feed-back on this technical report.
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