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Abstract

Parallel prefix circuits are parallel prefix algorithms on the combinational circuit model. A prefix circuit withn inputs is depth-size
optimal if its depth plus size equals 2n− 2. Smaller depth implies faster computation, while smaller size implies less power consumption,
less VLSI area, and less cost. To be of practical use, the depth and fan-out of a depth-size optimal prefix circuit should be small. A circuit
with a smaller fan-out is in general faster and occupies less VLSI area. In this paper, we present a new algorithm to design parallel prefix
circuits, and construct a class of depth-size optimal parallel prefix circuits, namedSU4, with fan-out 4. Whenn�30,SU4has the smallest
depth among all known depth-size optimal prefix circuits with fan-out 4.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Prefix computation is a very useful and basic opera-
tion [4]. Many have reported its important role in various
applications, such as cryptography, binary addition, bio-
logical sequence comparison, design of silicon compilers,
image processing, job scheduling, loop parallelization,
polynomial evaluation, processor allocation, and sorting
[1–3,8,10,11,17–19,21,40,42,44,45]. The prefix operation
can be defined as follows: Givenn valuesx1, x2, . . . , xn
and an associative binary operation⊗, compute then val-
uesx1 ⊗ x2 ⊗ · · · ⊗ xi , 1� i�n. Note that the associative
binary operation performed in the prefix sums operation is
arithmetic addition [8,22]; that is, the prefix sums operation
is a special case of the prefix operation.

To accelerate the prefix operation, many parallel pre-
fix algorithms for various parallel computing models have
also been proposed [1,7,9,15,17,19,22,23,27,31,32,34–36].
In addition, the prefix operation is built in for MPI parallel
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programming[13] and implemented in hardware in the
thinking machines CM-5 [39].

Parallel prefix circuits are parallel prefix algorithms
for the combinational circuit model of computation [1].
Many parallel prefix circuits have been devised and studied
[3,5,6,12,14,16,18–20,23–26,28–30,33,37,43–45]. Combi-
national circuits may be closely related to other parallel
computing models. For example, some combinational cir-
cuits are known to have corresponding algorithms for other
parallel models [19,23]. On the other hand, prefix circuits
can be components of algorithms for other models, and can
be building blocks for other models [1].

In this paper, we assume that the number of inputs isn,
unless otherwise stated. A prefix circuit is represented as a
directed acyclic graph containingn input nodes,n output
nodes, at leastn−1 operation nodes, and at least one dupli-
cation node. As shown in Fig. 1, an operation node, repre-
sented by a black dot, performs the⊗ operation on its two
inputs, having indegree 2 and outdegree 1 or more. A dupli-
cation node has indegree 1 and outdegree at least 2, denoted
by a small circle also in Fig. 1; it takes an input to produce
multiple copies of the input as output. Because only the
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Fig. 1. Operation node and duplication node.
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Fig. 2. Sequential prefix circuitS(n).

duplication node has indegree 1 and outdegree at least 2, it
need not and will not be explicitly represented by a small
circle. Similarly, input and output nodes will not be explic-
itly represented by any shape, because they can be easily
identified. For ease of presentation, in this paper, all the di-
rected edges are assumed to be downward; thus, the arrows
need not be shown.

A serial prefix circuitS(n) is shown in Fig.2, in which
vertical edges from left to right are named line 1, line 2, . . . ,

line n, respectively. Input nodes are on the top of a circuit
and have indegree 0 and outdegree 1, representing input
items. The input node on linei represents inputxi . Output
nodes are at the bottom and have indegree 1 and outdegree
0, representing outputs. For any operation node on linei at
level j , its left input is from a node at levelj − 1, while
its right input is always from linei. In Fig. 2, a duplication
node is on line 1 at level 0. The numbers at the left of a
prefix circuit denote the depth levels of the nodes to the
right. When no confusion is caused, we may use simplyD

for any prefix circuitD(p), wherep may be the number of
inputs or a parameter with another meaning.

The size of a prefix circuitD, s(D), is the number of oper-
ation nodes inD, and the depth ofD, d(D), is the maximum
level of operation nodes inD. Smaller depth implies faster
computation. Smaller size implies less power consumption
and less area in VLSI implementation and thus less cost.
Therefore, size and depth are important parameters of pre-
fix circuits. For any prefix circuitD, d(D)+ s(D)�2n− 2
[37]. Thus,D is depth-size optimal, or optimal for short, if
d(D)+ s(D) = 2n− 2. For example, as Fig. 2 has shown,
s(S) = d(S) = n− 1; thus,S is optimal.

Fan-out is the third important parameter. The fan-out of
a node is its outdegree. A node having a smaller fan-out is
faster and smaller in VLSI implementation [41]. A node has
unbounded fan-out if the fan-out is not fixed and is a function
of n; otherwise, the fan-out of the node is a constant, or
is bounded. The fan-out of prefix circuitD, fo(D), is the

maximum fan-out of all nodes inD. For example,fo(S) =
2. A circuit should have a small bounded fan-out for it to be
of practical use.

For ease of presentation, leti:j represent the result of
computingxi⊗xi+1⊗· · ·⊗xj , wherei�j . We useia(D) =
a to denote that line 1 of prefix circuitD has a duplication
node at levela and has no duplication nodes at any level
less thana. In addition, we usel(D) = b to denote that line
n of D obtains 1:n at levelb.

This paper is on designing new optimal parallel prefix cir-
cuits with fan-out 4 and the smallest depth. Such prefix cir-
cuits are equivalent to the fastest parallel prefix algorithms
on a fully connected multicomputer ofn nodes, in which
a node can at most receive a message and send out three
messages in a communication step and the number of com-
munication steps plus the number of messages equals the
lower bound 2n− 2 [23]. Many previous parallel prefix cir-
cuits are briefly reviewed in [26]. A recent paper constructs
new depth-size optimal prefix circuits with the minimum
depth; however, they have unbounded fan-out [43]. So far,
WE4andZ4 are optimal prefix circuits with fan-out 4 that
have depths less than or equal to those of all the other pre-
viously known optimal prefix circuits with the same fan-out
[24,25]. It is not easy or impossible, depending on the value
of n, to devise optimal prefix circuits with fan-out 4 and a
smaller depth, even only decreasing the depth by one. This
paper introduces some new prefix circuits, and then system-
atically constructs a new optimal parallel prefix circuit with
fan-out 4, namedSU4, whose depth is less than or equal to
those ofWE4andZ4, for n�30. A new algorithm is also in-
troduced because of its important role in buildingSU4. The
algorithm can construct an infinite number of prefix circuits
from a prefix circuit with certain properties.

Section 2 reviews previous results, including the defini-
tion of a size optimal prefix circuit and related theorems,
that will be used in later sections. Section 3 introduces two
new classes of size optimal prefix circuits. These circuits
are constructed by using our new algorithm. Section 3 also
introduces some other new size optimal prefix circuits. Sec-
tion 4 defines the optimal prefix circuitSU4by composition
of prefix circuits given in previous sections. Section 5 com-
pares the depth ofSU4with those ofWE4andZ4. Section
6 concludes this paper.

2. Review of previous results

2.1. Composition of prefix circuits

Assume thatA andB are two prefix circuits withn1 and
n2 inputs, respectively. By merging the operation node on
line n1 at levell(A) of A with the duplication node on line
1 at levelia(B) of B, A andB are composed into a larger
prefix circuit, denoted byAQB, with n1 + n2 − 1 inputs
[37]. Fig. 3 gives an example of composition. Note that the
composition operation of prefix circuits is associative.
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Fig. 3. Two example prefix circuits and their composition.

2.2. Size optimal prefix circuits

It has been shown that for anyn-input prefix circuitA, if
ia(A) = a, andl(A) = b, thens(A)�2� − 2 + a − b [26].
Therefore, we have the following definition:

Definition 1 (Lin et al. [26] ). For anyn-input prefix circuit
A, if ia(A) = a, l(A) = b, ands(A) = 2n−2+ a− b, then
A is size optimal; we say thatA is SOPC(n, a, b).

Theorem 2 (Lin et al. [26] ). If A is SOPC(n,0, b) and
d (A) = b, then A is optimal.

Theorem 3 (Lin et al. [26] ). If A andB are SOPC(n1, a, b)

and SOPC(n2, c, d), respectively, where b�c, then
A(n1)QB(n2) is SOPC(n1+n2−1, a, b−c+d) with depth
max{d(A), d(B)+ b − c} and fan-outmax{fo(A), fo(B)}.

Theorem 4 (Lin et al. [26] ). The sequential prefix circuit
S(n) is SOPC(n,0, n− 1) with fan-out 2 and depthn− 1.

2.3. Layered prefix circuit P and its compacted version Q

A prefix circuitD can be defined with sets of operation
nodes at leveli, i = 1,2, . . . , d(D) [37]:

Gi = {(x, y) | at leveli on liney there is an operation node

whose left input is the output of a node on linex at

level i − 1}.
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Fig. 4. Layered prefix circuitP(13).
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Fig. 5.Q(13).

For example, for the prefix circuit shown in Fig.4, G3 =
{(4,8), (12,13)}. If (x, y) ∈ Gi , the corresponding opera-
tion node can be denoted as(x, y)i .

Let m = �lg n�; the n-input layered prefix circuitP(n)
is defined with the following sets of operation nodes [37]:

Gt = {(k2t − 2t−1,min(n, k2t ))| k = 1,2, . . . ,


(n− 1)/2t + 1/2�}, t = 1, . . . , m;
Gm+t = {(k2m−t , k2m−t + 2m−t−1)| k = 1,2, . . . ,


(n− 1)/2m−t − 1/2�}, t = 1, . . . , m− 1.

An example,P(13), has already been shown in Fig. 4.
P(n) can be compacted by an algorithm to beQ(n),

a prefix circuit with fan-out at most 4 and smaller depth
[25,26,29]. For example,P(13) can be compacted to be
Q(13) with depth 5 shown in Fig. 5.

Theorem 5 (Lin and Shih[29] ). The fan-out ofQ(n) is at
most4, and the depth ofQ(n) is

�lg n� whenn�7,
2t − 2 whent�3 and2t �n < 3 × 2t−1,

2t − 1 whent�3 and3 × 2t−1�n < 2t+1.

Theorem 6 (Lin et al. [26] ). Q(n) is SOPC(n,0, �lg n�).
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3. Some new size optimal prefix circuits

In Sections3.1–3.3, we will construct size optimal prefix
circuitsSY, SZ, andY, respectively. In Section 3.4, we define
two size optimal prefix circuitsGV andGW. These prefix
circuits will be used to construct our new optimal prefix
circuit SU4.

3.1. SY: a size optimal prefix circuit with fan-out 4

Define a size optimal prefix circuitSY(5) as depicted
in Fig. 6. It has the following properties:d(SY(5)) = 8,
fo(SY(5)) = 4, ia(SY(5)) = 5, l(SY(5)) = 6, ands(SY(5)) =
49 = 2× 26− 2+ 5− 6. Therefore, by Definition 1,SY(5)
is SOPC(26,5,6).

We can move down the operation node(1,26)6 of SY(5)
by one level to become(1,26)7, and move down all the
other operation nodes at levels 6–8 by two levels, to obtain
theYA(5) shown in Fig. 7. It isSOPC(26,6,7) with fan-out
4 and depth 10.

On the other hand, we can move down all the nodes at
levels 6–8 ofSY(5) by two levels to obtain theYB(5) depicted
in Fig. 8. It isSOPC(26,7,8) with fan-out 4 and depth 10.

Fig. 9 shows YA(5)QYB(5). By Theorem 3, it is
SOPC(51,6,8) with fan-out 4. If we delete the node
(26,51)8 of YA(5)QYB(5) and add nodes(26,51)6 and
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Fig. 8.YB(5).

(1,51)7, resulting in the circuitSY(6) shown in Fig.10
with fo(SY(6)) = 4 and ia(SY(6)) = 6. It can be checked
that SY(6) is SOPC(51,6,7) with d(SY(6)) = 10 and
l(SY(6)) = 7.

The procedure for derivingSY(6) from SY(5) is general-
ized to be the following algorithm, which can be used re-
peatedly to derive an infinite number of prefix circuits from
any single prefix circuit with some simple attributes.

Algorithm A( D,n, t,d). Given a prefix circuitD(t) that is
SOPC(n, t, t + 1) with depthd, wheret + 1 < d. Let N
be the set of nodes ofD(t) at levelst+1 throughd. We can
obtain prefix circuitD(t + 1) by the following procedures:

1. ConstructDA(t) by moving down the node(1, n)t+1 of
D(t) by 1 level to become(1, n)t+2, and moving down
all the other nodes inN by 2 levels.

2. ConstructDB(t) by moving down all the nodes inN of
D(t) by 2 levels.

3. Delete the node(n,2n − 1)t+3 of DA(t)QDB(t), and
add nodes(n,2n− 1)t+1 and(1,2n− 1)t+2, resulting in
D(t + 1).

The above algorithm is an improvement on, and a gener-
alization of, two previous algorithms[25]. Either of the two
previous algorithms derives more prefix circuits from only
a particular one. Our new algorithm makes the two previous
algorithms obsolete.

Theorem 7. The prefix circuitD(t+1) derived byAlgorithm
A(D, n, t, d) isSOPC(2n−1, t+1, t+2) with depthd+2.

Proof. SinceD(t) is SOPC(n, t, t + 1), ia(D(t)) = t and
l(D(t)) = t + 1. That is, the first duplication node on line 1
of D(t) is at levelt, and 1:n is produced at levelt +1. This,
in turn, implies that linen has value 2:n at levelt, andD(t)
has an operation node(1, n)t+1 to produce 1:n at levelt+1.

It can be checked thatDA(t) is SOPC(n, t + 1, t + 2)
with depthd+2. In addition,DA(t) has no operation nodes
at levelt+1, and has exactly one operation node(1, n)t+2 at
levelt+2. On the other hand,DB(t) isSOPC(n, t+2, t+3)
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Fig. 10.SY(6).

with depthd+2, andDB(t) has no operation nodes at levels
t + 1 andt + 2.

By Theorem3,DA(t)QDB(t) isSOPC(2n−1, t+1, t+
3) with depthd + 2, implying ia(DA(t)QDB(t)) = t + 1.
After deleting node(n,2n − 1)t+3 of DA(t)QDB(t) and
adding nodes(n,2n − 1)t+1 and (1,2n − 1)t+2, it is easy
to see thatia(D(t + 1)) = t + 1 andd(D(t + 1)) = d + 2.
Note that the transformation fromDA(t)QDB(t) toD(t+1)
does not affect linesi to obtain 1:i, for 1� i�2n− 2.

In the process of obtainingDA(t) andDB(t), no nodes
at level i, i� t , are moved; thus, linen of eitherDA(t) or
DB(t) has value 2:n at levelt . Therefore,DA(t)QDB(t) has
2:n on linen at levelt, and hasn+1:2n−1 on line 2n−1 at
level t. After deleting node(n,2n− 1)t+3 and adding node
(n,2n−1)t+1, there is 2:2n−1 on line 2n−1 at levelt+1.
After adding node(1,2n− 1)t+2, D(t + 1) has 1:2n− 1 on
line 2n − 1 at levelt + 2. Therefore,l(D(t + 1)) = t + 2
andD(t + 1) is a prefix circuit.

SinceDA(t)QDB(t) is SOPC(2n− 1, t + 1, t + 3), we
haves(DA(t)QDB(t)) = 2×(2n−1)−2+(t+1)−(t+3);

thus,

s(D(t + 1))= s(DA(t)QDB(t))− 1 + 2

= 2 × (2n− 1)− 2 + (t + 1)− (t + 2).

Therefore, by Definition1,D(t + 1) is SOPC(2n− 1, t +
1, t + 2). �

By Theorem 7, Algorithm A can be used repeatedly to
obtainD(t + c), for c > 1. For example, we can use Algo-
rithm A(SY,26,5,8) as the first application of Algorithm A
to obtainSY(t), for t�6.

Lemma 8. Given a prefix circuitD(t) that is SOPC(n, t, t+
1) with depth d and fan-out a, wheret +1< d anda�4. If
D(t) has at least two nodes with fan-out a, then the circuit
D(t + 1) obtained by using AlgorithmA(D, n, t, d) has a
fan-out of a, andD(t + 1) has at least two nodes with fan-
out a.
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Proof. SinceD(t) has at least two nodes with fan-outa,
D(t) has a node with fan-outa that is not on line 1 at levelt.
Thus, the fan-out of bothDA(t) andDB(t) is a.DA(t) has
at least one node with fan-outa, andDB(t) has at least two
nodes with fan-outa. Therefore,DA(t)QDB(t) has at least
three nodes with fan-outa. After deleting(n,2n − 1)t+3,
the fan-out of the circuit is stilla, and the circuit now has at
least two nodes with fan-outa. Adding two operation nodes
does not increase the fan-out of the circuit; therefore, the
fan-out ofD(t+1) is a, andD(t+1) has at least two nodes
with fan-outa. �

Lemma 9. SY (t) is SOPC(25× 2t−5 + 1, t, t + 1) with
fan-out4 and depth2t − 2, for t�5.

Proof. The proof is by induction ont. We have seen that
SY(5) isSOPC(26,5,6) with depth 8.

Assume thatSY(k) is SOPC(25 × 2k−5 + 1, k, k + 1)
with fan-out 4 and depth 2k− 2. By Theorem7, SY (k+ 1)
is SOPC(25 × 2k−4 + 1, k + 1, k + 2) with depth 2k.
In addition, sinceSY(5) has three nodes with fan-out 4, by
Lemma 8,SY(t) has at least two nodes with fan-out 4 and
its fan-out is 4 fort�5. �

3.2. SZ: a size optimal prefix circuit with fan-out 4

Define a size optimal prefix circuitSZ(6) as shown in
Fig. 11. It has the following properties:d(SZ(6)) = 9,
fo(SZ(6)) = 4, ia(SZ(6)) = 6, l(SZ(6)) = 7, and
s(SZ(6)) = 71 = 2 × 37− 2 + 6 − 7. Therefore, by Def-
inition 1, SZ(6) is SOPC(37, 6, 7). By Theorem 7, we can
use Algorithm A to deriveSZ(t), for t�7, fromSZ(6).

Lemma 10. SZ(t) is SOPC(9 × 2t−4 + 1, t, t + 1) with
fan-out4 and depth2t − 3, for t�6.

Proof. The proof is by induction ont. We have seen that
SZ(6) isSOPC(37, 6, 7) with depth 9.

Assume thatSZ(k) is SOPC(9×2k−4 +1, k, k+1) with
fan-out 4 and depth 2k − 3. By Theorem7, SZ(k + 1) is
SOPC(9 × 2k−3 + 1, k + 1, k + 2) with depth 2k − 1.
In addition, sinceSZ(6) has seven nodes with fan-out 4, by
Lemma 8,SZ(t) has at least two nodes with fan-out 4 and
its fan-out is 4 fort�6. �

3.3. Y: a size optimal prefix circuit with fan-out 4

Define a size optimal prefix circuitYas shown in Fig. 12.
Clearly,d(Y ) = 7, f o(Y ) = 4, ia(Y ) = 5, l(Y ) = 7, and
s(Y ) = 28 = 2 × 16− 2 + 5 − 7. Therefore, by Definition
1, we have the following lemma.

Lemma 11. Prefix circuit Y is SOPC(16,5,7) with fan-out
4 and depth7.

3.4. GV and GW: size optimal prefix circuits with fan-out 4

Let t�6, we define two prefix circuits as follows:

GV (t)= SZ(t)QSZ(t − 1)Q · · ·QSZ(6)QY,
GW(t)= SY (t)QGV (t).

Lemma 12. GV (t) is SOPC(9× 2t−3 − 20, t , 2t − 3) with
depth2t − 3 and fan-out4, for t�6.

Proof. By Lemma10,SZ(t) isSOPC(9×2t−4+1, t, t+1)
with fan-out 4 and depth 2t − 3, for t�6. By Theorem 3,
SZ(t)QSZ(t−1) isSOPC(9×2t−4+9×2t−5+1, t, t+2)
with depth 2t−3. Using Theorem 3 repeatedly, we can obtain
that SZ(t)QSZ(t − 1)Q · · ·QSZ(6) is SOPC(9 × 2t−3 −
35, t, 2t − 5) with depth 2t − 3. Also by Theorem 3,
GV (t) = SZ(t)QSZ(t − 1)Q · · ·QSZ(6)QY is SOPC(9 ×
2t−3 − 20, t, 2t − 3) with depth 2t − 3.

Since the fan-out ofSZ andY is 4, by Theorem 3, the
fan-out ofGV is also 4. �

Lemma 13. GW(t) is SOPC(61× 2t−5 − 20, t, 2t − 2)
with depth2t − 2 and fan-out4, for t�6.

Proof. By Lemma9,SY(t) isSOPC(25×2t−5+1, t, t+1)
with fan-out 4 and depth 2t − 2. By Lemma 12,GV (t) is
SOPC(9×2t−3−20, t, 2t−3)with depth 2t−3 and fan-out
4. Using Theorem 3, we know thatGW(t) = SY (t)QGV (t)
is SOPC(61 × 2t−5 − 20, t, 2t − 2) with depth 2t − 2.
Since the fan-out ofSY (t) andGV (t) is 4, that ofGW(t) is
also 4. �

4. Optimal prefix circuit SU4with fan-out 4

For n�30, parallel prefix circuitSU4(n) is defined as
follows:

1. When 30�n�32 orn = 47,

SU4(n) = Q(n− 16)QS(2)QY.

2. When 33�n�46 or 48�n�62,

SU4(n) = Q(n− 15)QY.

3. When 63�n�72,

SU4(n) = Q(n− 40)QSY (5)QY.

4. When 73�n�84 orn = 115,

SU4(n) = Q(n− 52)QS(2)QGV (6).

5. When 85�n�114 or 116�n�146,

SU4(n) = Q(n− 51)QGV (6).

6. When 147�n�165,

SU4(n) = Q(n− 101)QGW(6).
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Fig. 12. Prefix circuitY .

7. When 166�n�188 orn = 251,

SU4(n) = Q(n− 124)QS(2)QGV (7).

8. When 189�n�250 or 252�n�314,

SU4(n) = Q(n− 123)QGV (7).

9. When 315�n�351,

SU4(n) = Q(n− 223)QGW(7).

10. When 93× 2t−7 − 20�n�13× 2t−4 − 20 andt�9,

SU4(n) = Q(n− 9 × 2t−4 + 20)QS(2)QGV (t − 1).

11. When 13× 2t−4 − 19�n�2t andt�9,

SU4(n) = Q(n− 9 × 2t−4 + 21)QGV (t − 1).

12. When 2t−1+1�n�21×2t−5−22, n �= 17×2t−5−21
andt�10,

SU4(n) = Q(n− 9 × 2t−5 + 21)QGV (t − 2).

13. Whenn = 17× 2t−5 − 21 andt�10,

SU4(n) = Q(2t−2 − 1)QS(2)QGV (t − 2).

14. When 21× 2t−5 − 21�n�93× 2t−7 − 21 andt�10,

SU4(n) = Q(n− 61× 2t−7 + 21)QGW(t − 2).

Note that, though not explicitly specified,t = �lg n�. Fig.
13, as an example, showsSU4(30) = Q(14)QS(2)QY .

Theorem 14. SU4(n) is an optimal prefix circuit with fan-
out 4, and its depth is

2�lg n� − 3 when30�n�32;
2�lg n� − 4 when47�n�64, 115�n�128,

or 251�n�256;
2�lg n� − 5 when33�n�46, 73�n�114,

166�n�250, or 93× 2t−7 − 20�n�2t

and t�9;
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Fig. 13.SU4(30).

2�lg n� − 6 when65�n�72, 129�n�165,

257�n�351, or 17×2t−5−21�n�93

×2t−7 − 21

and t�10;
2�lg n� − 7 when2t−1 + 1�n�17× 2t−5 − 22

and t�10.

Proof. The fan-out ofQ is at most 4, and the fan-out ofS is
2. In addition, the fan-out ofSY,Y, GV, andGW is 4. Since
SU4is composed of these prefix circuits, by Theorem3, the
fan-out ofSU4 is 4.

We let t = �lg n� and distinguish the following 24 cases
to obtain the depth ofSU4. Because the proving processes
for these cases each are very similar, we will give details for
the first three cases only and give tips for the others. More
details can be found in [38].
Case 1: When 30�n�32, let m = n − 16; thus,

14�m�16. By Theorem 5, we have 5�d(Q(m))�6. By
Theorem 6,Q(m) is SOPC(m,0,4), and by Theorem 4,
S(2) is SOPC(2,0,1) with depth 1. Thus, by Theorem 3,
Q(m)QS(2) is SOPC(m + 1,0,5) with depth 5 or 6. By
Lemma 11,Y is SOPC(16,5,7) with depth 7. By Theorem
3, SU4(n) = Q(m)QS(2)QY is SOPC(n,0,7) with depth
7 = 2�lg n� − 3. Therefore, by Theorem 2,SU4(n) is
optimal.
Case 2: When 33�n�46, let m = n − 15; thus,

18�m�31. By Theorem 5, we have 6�d(Q(m))�7.
By Theorem 6, Q(m) is SOPC(m,0,5). Since Y is
SOPC(16,5,7) with depth 7, by Theorem 3,SU4(n) =
Q(m)QY is SOPC(n,0,7) with depth 7 = 2�lg n� − 5.
Therefore, by Theorem 2,SU4(n) is optimal.
Case3: When n = 47, let m = 31. By Theorem 5,

d(Q(31)) = 7. By Theorem 6,Q(31) is SOPC(31,0,5).
SinceS(2) is SOPC(2,0,1) with depth 1, by Theorem 3,
Q(31)QS(2) is SOPC(32,0,6) with depth 7. SinceY is
SOPC(16,5,7) with depth 7, by Theorem 3,SU4(n) =
Q(31)QS(2)QY isSOPC(47,0,8)with depth 8= 2�lg n�−
4. Therefore, by Theorem 2,SU4(n) is optimal.

Case 4: When 48�n�62, let m = n − 15; thus,
33�m�47.
Case 5: When 63�n�64, let m = n − 40; thus,

23�m�24.
Case 6: When 65�n�72, let m = n − 40; thus,

25�m�32.
Case 7: When 73�n�84, let m = n − 52; thus,

21�m�32.
Case 8: When 85�n�114, let m = n − 51; thus,

34�m�63.
Case9: Whenn = 115, letm = 63.
Case10: When 116�n�128, letm = n − 51; thus,

65�m�77.
Case11: When 129�n�146, letm = n − 51; thus,

78�m�95.
Case12: When 147�n�165, letm = n − 101; thus,

46�m�64.
Case13: When 166�n�188, letm = n − 124; thus,

42�m�64.
Case14: When 189�n�250, letm = n − 123; thus,

66�m�127.
Case15: Whenn = 251, letm = 127.
Case16: When 252�n�256, letm = n − 123; thus,

129�m�133.
Case17: When 257�n�314, letm = n − 123; thus,

134�m�191.
Case18: When 315�n�351, letm = n − 223; thus,

92�m�128.
Case19: When 93× 2t−7 − 20�n�13× 2t−4 − 20 and

t�9, letm = n−9×2t−4 +20; thus, 21×2t−7�m�2t−2

and�lg m� = t − 2.
Case20: When 13×2t−4−19�n�2t andt�9, letm =

n− 9 × 2t−4 + 21; thus, 2t−2 + 2�m�7 × 2t−4 + 21 and
�lg m� = t − 1.
Case21: When 2t−1 + 1�n�17× 2t−5 − 22 andt�10,

letm = n− 9× 2t−5 + 21; thus, 7× 2t−5 + 22�m < 2t−2

and�lg m� = t − 2.
Case22: Whenn = 17× 2t−5 − 21 andt�10, letm =

2t−2 − 1.
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Case23: When 17× 2t−5 − 20�n�21× 2t−5 − 22 and
t�10, letm = n−9×2t−5+21; thus, 2t−2 < m < 3×2t−3

and�lg m� = t − 1.
Case24: When 21× 2t−5 − 21�n�93× 2t−7 − 21 and

t�10, letm = n−61×2t−7+21; thus, 23×2t−7�m�2t−2

and�lg m� = t − 2.
By Case 1, when 30�n�32, d(SU4) = 2�lg n�−3. By

Cases 3–5, when 47�n�64, d(SU4) = 2�lg n� − 4. By
Cases 9 and 10, when 115�n�128, d(SU4) = 2�lg n� −
4. By Cases 15 and 16, when 251�n�256, d(SU4) =
2�lg n� − 4. By Cases 2, 7, and 8, when 33�n�46 or
73�n�114,d(SU4) = 2�lg n� − 5. By Cases 13 and 14,
when 166�n�250,d(SU4) = 2�lg n� − 5. By Cases 19
and 20, when 93× 2t−7 − 20�n�2t andt�9, d(SU4) =
2�lg n� − 5. By Cases 6, 11, and 12, when 65�n�72,
129�n�165,d(SU4) = 2�lg n�− 6. By Cases 17 and 18,
when 257�n�351,d(SU4) = 2�lg n� − 6. By Cases 22–
24, when 17× 2t−5 − 21�n�93× 2t−7 − 21 andt�10,
d(SU4) = 2�lg n�−6. By Case 21, when 2t−1+1�n�17×
2t−5 − 22 andt�10, d(SU4) = 2�lg n� − 7. �

Note that the definition ofSU4can be compacted as fol-
lows:

1. When 30�n�32 orn = 47,

SU4(n) = Q(n− 16)QS(2)QY.

2. When 33�n�46 or 48�n�62,

SU4(n) = Q(n− 15)QY.

3. When 63�n�72,

SU4(n) = Q(n− 40)QSY (5)QY.

4. When 93× 2z−3 − 20�n�13× 2z − 20 orn = 17×
2z − 21 andz�3,

SU4(n) = Q(n− 9 × 2z + 20)QS(2)QGV (z+ 3).

5. When 13×2z−19�n�21×2z−22,n �= 17×2z−21
andz�3,

SU4(n) = Q(n− 9 × 2z + 21)QGV (z+ 3).

6. When 21× 2z − 21�n�93× 2z−2 − 21 andz�3,

SU4(n) = Q(n− 61× 2z−2 + 21)QGW(z+ 3).

5. Comparisons of optimal prefix circuits

In this section,SU4 is compared with two optimal prefix
circuits,WE4[25] andZ4 [24]. They all have the same fan-
out 4. The depth of eitherWE4or Z4 is less than or equal to
those of all the other previous optimal prefix circuits with
the same fan-out. The depths ofWE4andZ4 are between
2�lg n�−6 and 2�lg n�−3. For easy and exact comparisons,
Table 1 gives the numbers of inputs that can be processed
by the three parallel prefix circuits with specific depths.

Table 1
The numbers of inputs that three representative optimal parallel prefix
circuits with specific depths can process

Depth SU4 WE4 Z4

7 30–46 29–46 30–44
8 47–72 47–64 45–67
9 73–114 65–102 68–98
10 115–165 103–138 99–145
11 166–250 139–214 146–208
12 251–351 215–286 209–303
13 352–522 287–438 304–430
14 523–723 439–582 431–621
15 724–1066 583–886 622–876
16 1067–1467 887–1174 877–1259
17 1468–2154 1175–1782 1260–1770
18 2155–2955 1783–2358 1771–2537
19 2956–4330 2359–3574 2538–3560
20 4331–5931 3575–4726 3561–5095

From Table 1, we see that, when 30�n�5931,
d(WE4) − 1�d(SU4)�d(WE4) andd(Z4) − 1�d(SU4)
�d(Z4). In fact, we can show analytically that the above
relations do hold whenn�513 as follows.

From [25], whenn�513,d(WE4) is

2�lg n� − 4 when 7× 2t−3 − 9�n�2t and t�10;
2�lg n� − 5 when 37× 2t−6 − 9�n�7 × 2t−3 − 10

and t�10;
2�lg n� − 6 when 2t−1 < n�37× 2t−6 − 10 andt�10.

From Theorem14, whenn�513,d(SU4) is

2�lg n� − 5 when 93× 2t−7 − 20�n�2t and t�10;
2�lg n� − 6 when 17× 2t−5 − 21�n�93× 2t−7 − 21

and t�10;
2�lg n� − 7 when 2t−1 < n�17× 2t−5 − 22 andt�10.

Therefore, it can be checked that whenn�513,d(WE4)−
1�d(SU4)�d(WE4) [38].

From [24], whenn�513,d(Z4) is

2�lg n� − 4 when 7× 2t−3 − 2t < n�2t and t�10;
2�lg n� − 5 when 5× 2t−3 − 2t + 2�n�7 × 2t−3 − 2t

and t�10;
2�lg n� − 6 when 2t−1<n�5×2t−3 − 2t+1 andt�10.

It can then be checked that whenn�513, d(Z4) −
1�d(SU4)�d(Z4) [38]. Together with Table 1, there-
fore, d(WE4) − 1�d(SU4)�d(WE4) and d(Z4) −
1�d(SU4)�d(Z4), for n�30.

6. Conclusion

In this paper, we have presented Algorithm A, which can
construct an infinite number of size optimal prefix circuits
from a size optimal prefix circuit with some simple proper-
ties. Thereby,SYandSZare obtained; together with other
prefix circuits, they are used to composeSU4, an optimal
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parallel prefix circuit with fan-out 4. The algorithm and our
approach may contribute to the design of more novel pre-
fix circuits with any fixed fan-out.SU4makes obsolete all
the other optimal parallel prefix circuits with fan-out 4 for
n�30, because its depth is the smallest of all the depths of
known optimal parallel prefix circuits with the same fan-out.

A question arises naturally. Can we systematically con-
struct new optimal parallel prefix circuits with fan-out 4 and
smaller depths? From our experience, it is very probable
whenn is very large, but there is little or no hope for a small
n. Our approach serves a basis for achieving this whenn is
huge. Specifically, we will need to devise new size optimal
prefix circuits to replaceSY, SZ, andY; these new size op-
timal prefix circuits will take many more inputs than their
counterparts, respectively. All the other procedures will be
similar, including the application of Algorithm A. Without
the insight gained from our approach, it would be difficult
to have another heuristics that can lead to an optimal prefix
circuit with fan-out 4 and a smaller depth for anyn that is
huge.

A final note: this research is mainly a theoretical study. In
spite of the fact that, for standard-cell implementations, the
depth and the size of a prefix circuit are in general closely
related to the cell delay and cell area, respectively[45], the
assumption of relationships between, for example, size and
VLSI area as well as depth and computation time, may not
be correct for certain implementations.
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