Techniques for Fast CMOS-based
Conditional Sum Adders

Hans Lindkvist and Per Andersson

Department of Computer Engineering, Lund University, Sweden

Abstract

Conditional Sum Adders, CSAs, and Carry-Lookahead
Adders, CLAs, both have logarithmic gate depth. However,
CLAs require a final add stage while CSAs produce the sum
‘bits in parallel with the final carry bit. For CMOS
implementations, the depth advantage of CSA has been
difficult to exploit since the traditional structure of CSAs have
some heavily loaded internal nodes.
In this report we show that the CSA-operation forms a monoid
and that ali circult structures, corresponding to parallel prefix
algorithms, used with CLA to reduce internal fan-out, are
applicable also to CSAs. Furthermore, we show that all time
critical computations in a CSA can be performed with
monotone functions which aliow efficient dynamic CMOS
logic to be used. Finally we evaluate a variety of transistor
-level adder implementations with respect to speed and we
show that in aimost all cases the CSA has lower delay than its
CLA counterpart.

1. Introduction

Binary adders are basic building-blocks for a very wide
range of high performance bit-parallel applications, and
they are often in the critical delay path in effect limiting the
total system performance. The key to optimizing adder per-
formance is to find the best combination of logic structure
and circuit technique.

The dominant technology of today, silicon CMOS, is
characterized by:

* High area efficiency

* Relatively low intrinsic gate delay for small gates but
rapidly growing with number of inputs (when series
transistors are required)

* Low drive capability, leading to long delays for nets
with large fan-out and/or wiring capacitance

* Various forms of dynamic logic are useful to improve
both speed and area

From a performance point of view this favours logic that is
structured as trees of small gates when many inputs must be
combined to produce one output, e.g., to produce the most
significant output of an adder. Furthermore gate output
load (the sum of fan-out and wire capacitance) is just as im-
portant for the total adder delay as the gate depth. In addi-
tion, the possibility to use dynamic logic can have a large
speed impact. However, the full advantage of dynamic log-

1063-6404/94 $4.00 © 1994 IEEE

626

ic is available only when it is used to implement monotone
switch functions.

The techniques used in the distant-carry adder family,
i.e., the Conditional-Sum Adder (here abbreviated CSA)
[1], the Carry-Select Adder [2] and the Carry-Lookahead
Adder (CLA){3][5] all have the advantage of logarithmic
gate depth and these techniques are the basis for virtually
all aggressive adder designs. When the logic is properly
structured and implemented with good circuit techniques,
impressive speed can be achieved even with moderate tech-
nology. Examples of fast CMOS adders include the 56-bit
adder used in the Advanced Micro Devices Am29050,
performing well under 4ns [19] [20] which was improved
by V. Kantabutra [21] to perform below 2 ns in a 1.0um
CMOS process, the integer adder in the 275MHz, CMOS,
DECchip 21064 which is an hybrid of CLA with dynamic
logic and a Conditional-Sum tree [22], and a very aggres-
sive 64-bit adder implemented in 0.8um CMOS with a 2ns
add time [17] [18]. The last example uses a novel dynamic
CMOS circuit technique [16] to implement a carry-looka-
head-block which produces all 64 carry bits with only low
fan-out gates.

The basic difference between the CSA and the CLA
scheme is that CSA produces the sum bits directly with a
minimum logarithmic gate depth whereas CLA produces
only the carry signals with equal depth and less logic. For
CLA, an additional level of half-adders is required to
produce the sum. CSAs are thus potentially faster than their
CLA counterparts.

In spite of its lower depth, the way CSA is normally
implemented gives it a speed disadvantage compared to
CLA. The main reasons are fan-out problems (exponen-
tially growing load on some gates towards the final stages
of the adder) and less effective circuit technique due to the
use of multiplexers rather than simpler gates.

In this paper we show that virtually all the methods used
in CLAs to decrease fan-out and to improve logic speed
with special circuit techniques are applicable also to CSA
design. We show that all parallel prefix algorithms used to
restructure CLAs, e.g., the scheme by Brent and Kung [3],
can be used with CSA. We demonstrate that all multi-
plexers related to the carry information can be realized with

the generate function typically used in CLAs instead of
multiplexers and that dynamic circuit techniques can be
used since these functions are monotone.

Finally we make a comparison between CSA and CLA
based adders for different structures and widths. The
comparison is based on simulation of transistor level
implementations in a standard CMOS technology.

2. Taxonomy for distant-carry adders

Carry lookahead addition can be described as a three stage
calculation. First a preprocessing stage, second a carry cal-
culation stage (the lookahead) and last a summation stage.
In the first stage bit-sum and carry-information signals are
produced. Usually the carry-information signals are bit-
generate and bit propagate, but alternatives exists, e.g. con-
ditional carry calculation. The second stage is a prefix cir-
cuit using an operation which is usually the generate-
propagate operation (GP-operation). This stage will effi-
ciently produce all signals corresponding to the intermedi-
ate carry signals in a ripple carry adder. Once all these carry
signals are produced they will be used as carry-input to the
closest higher addition. Note that neither the algorithm
used to produce the carry-signals nor the operation used in
the circuit is defined. It has been shown that the carry-sig-
nals in carry-lookahead addition can be produced using any
prefix algorithm [8].

Conditional-sum addition is normally associated with
the structure developed by Sklansky [1]. We consider that
misleading. Instead we generalize the term conditional-
sum to describe the set of recurrence equations described
by Sklansky [1], organized according to any correctly
behaving structure. Such adders produce all sums and all
carries simultaneously. Normally we are not interested in
all the carry-outputs, which makes it possible to reduce the
circuit somewhat.

3. Definitions

The operation which is the most commonly used for adding
with prefix algorithms is the Generate-Propagate operation
(GP-operation).

Let a, ja, 5..ap and b, ;b, 5...bg be the n-bit binary
numbers used as operands in a binary addition

Definition 1: The bit-generate, bit-propagate and bit-sum
are defined by

8 =a;nb;
p;=a;vh
s; = aini

Definition 2: The GP-operation “e” is defined by

627

(8gPg) = (8pPp * (84 Py
where
8p = 84V P87

Pp = ParPz

Definition 3: The group GP-operation is defined by
G y { (gpp)iifk =i

pPr) = .

kip ki (Gyjp Py *(Gy.p P piif ki

where k<j<i

where k:i denotes a block ranging from bit k to bit i.

When Gy,; for all i<n have been computed, the sum-bits
S, are formed in an additional step.
5o ifi=0

Sy =
0 {sie{m%1 if 0<i<n

Similar definitions can be made for the Conditional-Sum
operation (CSA-operation).

Definition 4: The bit-sums and bit-carries are defined as

s? = aiebi
5 = a..@bi
c? = a,.Abl.
c‘.l = aivb‘.

Definition 5: The CSA-operation “0” is now defined by

01 0 1 01 01 0 1 0 1
(cB, cpSp sB) = (cz, cp sz,sz)O(cA,cA, sA,sA)

where
0_00 10
CB—CACZVCACZ
1_ 01 11
CB-L‘ACZVCACZ
0_00 10
SB = SACZVSACZ

Definition 6: The Group CSA-operation is defined by

0 1 0 1
(Ck:i’ Ck;i‘ Sk:i’ Sk:i>

where k<j<i
where k:i denotes a block ranging from bit & to bit i.

0 1 0 1 . .
(ci,ci,si,s,.);lfk=z
0

c s

0o
<Ck:j’ C Ji Ty

0 1 0 Ly oy
k. Sk Sk (i S;.pif ki

When Sj.; for all i<n have been produced these form the
sum.

We proceed by stating the common definitions of the mo-
noid, the parallel prefix algorithm and the parallel prefix
circuit.

- Definition 7: A monoid is a pair (S, °) where o is abinary
operation on the non empty set S such that for every a, b
and c in S the following conditions hold:

1. a°be § (closed)
2. [a°b}°c = a°[bo°c] (associative)
3. There is an element e in S such that for
everyainS: e°a = a°e = a
(neutral element)

Definition 8: A parallel prefix algorithm is an algorithm
that takes # inputs x, x;,....,x, and in parallel produces the

noutputs x;, X;0xy,....., Xj0x30....0x, where x € S and (S, °)

is a monoid.

Definition 9: A parallel prefix circuit is a combinational
circuit that takes n inputs x;, x,,....,x, and in parallel pro-

duces the 7 outputs x;, x;0x;,....., X;ox50....0x, where x € §
and (S, °) is a monoid.

The dataflow graph of a parallel prefix algorithm directly
corresponds to the structure of parallel prefix circuit.

Example: The GP-operation has previously been shown to
be a monoid [3] [5] [8] and can therefore be used together
with a prefix algorithm to produce all carry signals.

If this is applied to adder design we obtain a parallel
prefix circuit such as the one used by Brent and Kung.

4. Conditional-Sum addition as a prefix
problem
‘We will now prove that the CSA-operation is a monoid and

therefore can be used together with parallel prefix algo-
rithms to form parallel prefix circuits.

628

Theorem 1: Let S = (a,apa5,a.)a,,a, aj,a,€0,1

then {S,0) is a monoid.

Proof:
1. Check that a0be S

S contains the combinations:
(aj,apa3,a.)a),ay,a5,a,€0,1

Thus all possible combinations of four binary variables are
allowed and the operation cannot extend the set .
2. Check that [a0b) 0c = a0 [b0c] by
expanding to disjunctive normal form,
DNF

o 1 0 1 o 1 0 1 0
[(cz, Cp 8257 0(CyCuu 5050] 0 (C

0.0
=(CZ

1 0 1
C’CC’SC’S

vy, c°v(c c vcocl)c

-
N
>

Nl
>qc
<
NQO
bq--
Oho
<
~—
el
>qo
<
NQO
g
N—r
[Z)

—
al
ﬁo

<

nh-d
QO—I

g
ac 0
<
Vo
ﬁ_|
:bnc

<

q—.
1
N’
2]

R I

1
a a -
N~ N©

2] L Ng-l
nqo nﬁo » o
< < é
Nﬁ_l Nﬁol Nﬁ_
:po| :.qol > =

NOO
-
)
ao

Nn'—-
»
]
oo

and

0o 1 0
[0 CC’ SC’ SC)]

o 06 0 0.1 of 71T 0 1
= <CZ(CACCVCACCJVCZ(C c.vC,C)

—

o 1 0 .1 o 1 0 1
(CpCpSp S 0[(Cpr CpSp 5,00 (C

(0.0 0.1 17T 0 1
'CZ(CACCVCACC)VCZ(CACCVCAC

B st)o b cls
A& cst)vcllcdvcist)

e BB Dctchu el
A ey cielct
T30 s el chclst
1.0.1

0 100 11,1
’CZCASCVCZCASCVCZCASCVCZCASC)

Thus
o 1 0 .1 o 1 0 _1
[(CoCoSe S0 94Cy CpSp Sy]
o 1 01 o 1 0 .1
0 (Cp Cp 5557 = (C Coo s%sc)
o 1 0 .1 0 I 1
0 [(CA’ CaSp S 0(C2Cp 57 SZ)]
3. Fortheelement e = (0,1,0,1) € S we
note that
(0,1,0,1)0{a , ay,a5,a,) = {a),aa3a,)
(@}, ap G5, a,) 0{0,1,0,1) = (al,az,a3, a4)

Q

5. Reduction of Conditional-Carry generation

The CSA-operation is typically implemented with multi-
plexers according to figure 1.

"Figure 1: Typical implementation of the CSA-operation
1

Ca C;
c G
Sh 55
' J_ Sp
¢z

(f; —

We note that
1. Cyis independent of S, and S,

2. Sy is independent of S,
The first point makes it possible to consider the carry-cal-
culation separately. Hereinafter we will refer to the carry

calculation used in Conditional-Sum as Conditional-Carry.
Furthermore, the second point indicates that S, will be less

loaded than Cp - which controls both C n and o in the

following stage - and that optimization should focus on the
carry calculation.

Theorem 2: VCOC ! #1

Proof: From the expressions in definition 4 we directly ob-
tain that ' which leads to el 21. We state the
truth-table for the carry-part of the CSA-operation to verify

that this property is retained under the group-operation.
The output combination (1, 0) does not appear in the table.

A

629

ey | ey || (chep
{0, 0) {0, 0) {0, 0)
{0, 0) {0, 1) {0, 0)
{0, 0) (1, 1) {0,0)
(0,1} (0,0) {0, 0)
(0,1) {0, 1) (0, 1)
(0,1) (L1 (1 1)
(1,1 (0,0) (L
(1, 1) {0, 1) (1, 1)
(1,1) (1,1) (1, 1)

This leads to the following theorem:

Theorem 3: For the carry component, (Cg, C;) , of the

CSA-operation it holds that
0 0 1 0
CB = CAVCACZ
1 o 11
CB = CAVCACZ

. . 0 0 1.0
Proof: Verify that equations Cp = C,vC,C, and

Cg v C:‘ C; satisfy the table in the proof of theorem 2.
a

This simplification eliminates the need for an inverter in
each Conditional-Carry multiplexer. The multiplexers for
sum calculation cannot be reduced, but the normal situation
is that the carry calculation is the critical part of the adder.
Using the reduced carry-equations we now redefine the
CSA-operation. The question whether this reduced opera-
tion is still a monoid arises.

1
Cp=

Definition 10: The Reduced Conditional-Sum operation
(CSA-operation) is defined as

0 1 0 1 01 01 0 1 0 1
(cB,cB,sB,sB) = (cz,cz,.rz,sz)0<c ,cA,sA,sA)
where
0_0_ 10
cp =C Ve cy
1_0_ 11
Cp = CaVeycy
0_00_ 10
SB = JACZVSACZ
1_ 01 11
AT

Theorem 4: Let
S = (al,az, a3,a4); ay,8,5,05,a, € 0,1 A alt-z—zatl
then (S, 0) is a monoid.

Proof:
1. Check that a0be S

From the table in the proof of theorem 2 we see that remov-

ing the elements which corresponds to Eacl #1 from the
set of input elements also removes them from the output
set. Thus § is still closed over ¢ .

2. Check that [a0b) 0c =a0 [b0c]

Removing the element (1,0, 1,0) from S in theorem 1
does not affect the associativity. It is still associative. Then
to thereafter reduce the operation in definition 5 to the one
in definition 10 does not affect the behaviour over the re-
duced set S. Thus the operation is still associative.

3. We note that the element e = (0, 1,0, 1)

still belongs to S.
Q

The reduced Conditional-Carry operation is similar to the
Generate function in the GP-operation. In fact the relation
between the Conditional-<carry operation and the GP-op-
eration is quite simple:

CO=G

cl=cvp

Reducing the Conditional-Carry operation this way results
in a monotone function. The main advantages for imple-
mentation are that fewer inverters is needed and that dy-
namic circuit techniques can be used.

6. Prefix algorithms

There are a large variety of algorithms that solve the prefix
problem. Their qualities for use in adding are largely de-
pendant on properties of their graph representation, e.g.,
out-order for a node which corresponds to fan-out, amount
of communication which corresponds to amount of wires,
and number of nodes which corresponds to device-count.
The most commonly used algorithms are the ones used in
Sklansky’s adder [1] and the one used by Brent and Kung
[3]. The one Sklansky used has the advantage of optimal
depth but has an exponentially increasing fan-out towards
the final stages. Brent and Kung’s algorithm on the other
hand, has limited and low fan-out but has almost double
depth compared to the one Sklansky used [1]. There is
however an algorithm, invented by Kogge and Stone [4] as
a solution to a larger class of problems, which has both op-

630

timal depth and low and limited fan-out. The price to pay
for both low depth and fan-out is increased complexity and
communication. The Hybrid Prefix Computation algorithm
invented by Han and Carlson [5] combines Brent and
Kung’s algorithm with Kogge and Stone’s. This increases
the depth somewhat but decreases the communication.

There are many papers on the practical and theoretical
aspects of prefix algorithms and on the generation of prefix
algorithms [4] [5] [6] [7].

We start with some definitions adopted from Brent and
Kung [3] namely the black and the white operator. The
white operator copies the input to the output(s) while the
black operator performs the Conditional-Sum or the
Generate-Propagate operation, depending on the method

used.
v vou
Y —;4 v v _>4 vou
u /

Furthermore we extend their notation with the square.

a;
)}» Vi
b;

The vector v; is either (c?, cil, s?, s’.l) if the CSA-operation
is used or (g, p,) if the GP-operation is used. In the fol-

lowing representations of graph algorithms the a; and b;
arcs are suppressed.
For reference we start with a serial prefix algorithm corre-

sponding to ripple-carry addition. It has the lowest area and
low inter-bit communication, but it has a large delay.

Figure 2: Serial prefix algorithm

As indicated above many of the algorithm properties are
apparent in the graph representations. All arcs are implicit-
ly directed to the right. The number of columns are the
number of steps needed to perform the calculation and can
be interpreted as delay or number of pipeline steps in a re-
alization of the algorithm. The share of black operations in
a column is the degree of parallelism in that step. The out-

degree of an operation node will determine the fan-out of
the corresponding sub-circuit in the realization and will to-
gether with the number of columns have a large impact on
the resulting delay.

The most common parallel prefix algorithm is the one
used by Sklansky for conditional-sum addition [1], by
many others for carry-lookahead addition {9] [10] and by
Kelliher et al. for conditional-sum like addition but with a
different set of equations in the operation [12]. In spite of
its large variations in fan-out it has even been used in an
wave-pipelined adder [11]). Wei and Thompson modified
this algorithm slightly to make place for cells handling the
increasing fan-out [9] [10].

This algorithm has optimal depth but the fan-out
increases exponentially towards the final stages and is
linear in the number of bits. This results in a large delay
when operands are large.

Figure 3: Sklansky’s prefix algorithm

The fan-out can be handled by the use of another algorithm.
Brent and Kung invented an algorithm with low fan-out
everywhere but with a depth of about double the optimal
depth. This algorithm has linear circuit complexity, but
when laid out according to Brent- and Kung it requires O(n
log n) area. This is due to the tree-structures (the tree in the
first half and the inverted tree in the last half). It may not be
area efficient but the low number of nodes together with the
small amount of inter-bit communication makes an adder
using this algorithm quite power efficient. The algorithm
has been used for carry-look-ahead addition using the GP-
operation [3][13].

Figure 4: Brent and Kung’s prefix algorithm

631

An optimal depth algorithm that keeps fan-out low results
when the linear recurrence algorithm invented by Kogge
and Stone is generalized [4]. It has been used for Carry-
Lookahead adding by Papadopoulou [14], Klein [17] and
Yuan [18]. The cost is a higher gate complexity and a high-
er inter-bit communication complexity, which results in
higher power consumption and possibly larger area than
Sklansky’s algorithm.

Figure 5: Kogge and Stone’s algorithm

By combining Brent and Kung’s algorithm [3] with Kogge
and Stone’s [4] algorithm, Han and Carlson achieves inter-
mediate values on delay and area [5]. They aliow & levels
to be added to the optimal depth. They suggest k=1 for
n<64 and log n - loglog n <k < log n -1 for n>64. Han and
Carlson claim that the area due to inter-bit communication
is considerably reduced compared to Kogge and Stone’s al-
gorithm. This may be true in theory, and in practice for
large n’s, but for moderate values on n there is one factor
they do not mention. In both the generate-propagate and in
the Conditional-Sum equations, more information than
needed by the last stage is produced, e.g. propagate in the

GP-operation and ' inthe CSA-operation. If these nodes
are reduced to produce only necessary information, the
edges in the last stage of any prefix algorithm should be
weighted by one half. The Kogge and Stone method is the
one that can benefit most from this, while Han and Carlson
hardly has any advantage at all in their method.

Figure 6: Han and Carlson’s prefix algorithm

7. Realization and simulation

A number of adders have been implemented and simulated
on transistor level. Three different algorithms have been
used; Sklansky’s, Kogge-Stone’s and Brent-Kung’s, to-
gether with both the GP- and the CSA-operation. Each of
these have been implemented in 5 different sizes; 4, 8, 16,
32 and 64 bits. The operations have been implemented
mainly using the clock-and-data precharged dynamic
(CDPD) circuit technique [16]. The CDPD-technique share
some properties with Domino-logic, e.g., the functions im-
plemented in the circuit technique are limited to monotone
functions. All the adder configurations have been imple-
mented both with and without capacitances representing
the long inter-bit communication wires. The capacitance
added corresponds to a 45 pm long and 2 um wide metal-1
wire segment per bit spanned by the wire.

In the CDPD circuit technique the acronyms H/L and
L/H are used to describe the precharge polarity. A H/L
block requires signals that are precharged to high on it's
inputs, and produces signals which are precharged low on
the outputs. The L/H block is the other way around. The
blocks can form a chain with a clock precharged n-stage in
the beginning, followed by alternating data precharged H/L
and L/H blocks. This is called a n-chain [16]. In such a
chain it should be noted that the precharging of the gates
propagate along the chain with a delay in each gate. There-
fore great caution must be exercised when sizing the gates
so that the precharge-time of the chain does not exceed the
evaluation time. The cascaded chains of H/L and L/H
blocks that follow the clock-precharged n-stage are termi-
nated by ordinary NORA-latches [15]. Such chains are
used for carry calculation in both CSA and CLA. In the last
stage of a CLA, the non-monotone addition prevents the
use of a H/L or L/H block. Therefore a pass-transistor
multiplexer is used for the addition.

Figure 7: n-chain terminated by an NORA-latch

PH=Precharged High
PL=Precharged Low
The transistors in the CSA- (figure 9 and figure 10) and
GP-blocks (figure 11 and figure 12) have been sized ac-
cording to very simple and identical rules. The width of
both the evaluation and the precharge-transistors are mini-
mum width for the device times the number of transistors
in series between the output and the power-rail. The bit-
level sum- and carry-generation blocks (figure 8) have
been sized the same way, except for the larger clock-driven

632

precharge-transistors. The final NORA-latch is identically
sized for CSA and CLA realizations and has a minimum in-
verter as load on its output. The number placed in connec-
tion with each transistor symbol is the width of the
transistor. The gate length is 1 um for all transistors.
When realizing an adder one is typically not interested
in any intermediate carry outputs. Only the resulting sum’s

and the resulting carry-out, that is Sg,n_l down to Sg,o

and Cgm _ are needed. This implies that some of the gates

in the operation blocks are redundant. These gates have
been removed, something which mainly affects the last two
stages of CSA-adders.

The chains of multiplexers used to form the sums in the
CSA realizations are pass-transistor multiplexers with two
levels of pass-transistors between each inverting buffer,
according figure 9 and figure 10.

Figure 8: Block for bit sum and carry generation (n-type)

b L0 ¢ <go

_sl _ clorp
aqLe 64 aLe6
546 6|—b B-{ 6
o—Le o-Cs6
¢ qrio

50
a{[6 69pa
biLs 6 b
L

Figure 9: CSA block L/H type
1_4 ,
0t
2] .5
2
qL[2 0
1_4
o Ca Sa 452
A1 koo
z 0__4
SA
s/
- CZ

Figure 10: CSA block H/L type

Figure 11: GP block L/H type

——4C4

=0

P
|)3

P,

L

The simulations have been carried out using Mentor
Graphics Lsim simulator running in ADEPT mode [23].
This circuit simulator uses SPICE-like device models.
Transistor parameters correspond to a standard industrial
1.0 um CMOS process. Complete adder circuits have been
simulated and their delays have been measured as the time
from rising clock edge to a stable sum on the output. The
carry-out signal is faster than the sum-bits in all the simu-

633

lations. Input patterns have been carefully selected to stress
the critical path.

It should be noted that the lines between the data-points
in the diagrams are present only as a visual aid, they have
no meaning as intermediate values.

All simulations have been made both with and without
wire capacitances. Only delays have been measured, the
aspects of power consumption or hardware complexity
have not been considered in the comparison.

Figure 13: Addition using Sklansky’s algorithm

o

Delay in nS

o 1 1 L L L L
64
Addersize in bits

Figure 14: Addition using Kogge and Stone’s algorithm

2
&
i‘ 10
(18 b CBA witheut wires
== CHA with wires
© . GPwithoutwires o}
s . GPwihwires
18
s}
24
o 1 ! 1 1 1 L
1 2 4 8 16 32 64
Addersize in bits

Figure 15: Addition using Brent and Kung’s algorithm

i

10F o}

8. Discussion

As can be seen from the diagrams all of the implemented
adders are sensitive to wire capacitances. The effect can be
reduced by careful sizing, but the problem still remains;
The length and thereby the capacitance of the inter-bit
communication wires is proportional to the width of the
adder. This can be seen as an exponential component in the
diagrams related to the logarithmic x-axes.

We note that Brent and Kung’s algorithm has a higher
sensitivity to long inter-bit communication wires than the
others. In Sklansky and Kogge and Stone based circuits,
the critical path is loaded by n—1 length-units of inter-bit
wiring. For Brent and Kung based adders the corre-

sponding load is %n -2 length-units, which is almost 50%

higher.
Since all adders have logarithmic depth the expected
.delay, without wiring capacitances, should correspond to a
straight line in the diagrams due to the logarithmic x-axis.
This holds for the Brent and Kung and for the Kogge and
Stone based adders. For Sklansky’s adder structure the
curve bends upwards due to higher fan-out in the latter

stages.

9. Summary and conclusions

Binary adders, which are critical system building blocks,
" must be implemented using techniques that properly match
the characteristics of the underlaying technology. For
CMOS-designs, delay is as much related to node capaci-
tance as to gate depth while the high area efficiency often

634

allows increased complexity to be traded for increased
speed.

To date, most aggressive CMOS adder designs have
been based on carry-lookahead schemes structured
according to a low fan-out prefix algorithm. Conditional
sum adders have smaller depth but when they are struc-
tured according to Sklansky some internal nodes are
heavily loaded and it is difficult to achieve high speeds for
CMOS implementations.

We have demonstrated that virtually all the methods
used in CLA design are applicable also in the CSA case. In
particular, the CSA-operation together with the sum- and
carry-information it operates on, has been shown to be a
monoid which allows any parallel prefix algorithm to be
used for the sum calculation. In fact, all schemes suggested
to restructure CLAs, e.g., to decrease internal fan-out, can
be applied also to CSAs. Furthermore, we have shown that
all computations related to the carry-information can be
reduced to use an operation which is monotone and similar
to the generate-operation. This allows fast dynamic logic to
be used for all critical parts of a CSA.

Transistor level implementations of CSAs and CLAs
have been used as a basis for performance comparison.
Adders, based on three different prefix algorithms and five
different bit widths, ranging from 4 to 64 bits, were
designed and simulated. In almost all cases the CSA-based
implementation is faster than its CLA counterpart.

We conclude that when conditional-sum adders are
organized as low fan-out parallel prefix circuits and imple-
mented in CMOS with fast dynamic logic, then their lower
gate depth result in a speed improvement over carry-looka-
head adders even though most internal nodes have slightly
higher fan-out. Thus, CSA structures should be considered
as main candidates for future high performance CMOS
adders.

10. Acknowledgements

This work was sponsored by the Swedish National Board
for Technical Development (NUTEK) under contract
number 93-02633.

References

(1

{2]

31

(4]

{31

(6]

71

i8]

9

(10

[11]

[12]

[13]

[14]

J. Sklansky, “Conditional-Sum Addition Logic”, In IRE
Transactions on Electronic Computers, Vol. EC-9, No. 2,
pp. 226-231, June 1960.

0. J. Bedrij, “Carry Select Adder”, In IRE Transactions
on Electronic Computers, Vol. EC-11, No. 3, pp. 340-
346, June 1962.

R. T. Brent and H. T. Kung, “A Regular Layout for
Parallel Adders”, In IEEE Transactions on Computers,
Vol. C-31, No 3, pp. 260-264, March 1982.

P. M. Kogge and H. S. Stone, “A Parallel Algorithm for
the Efficient Solution of a General Class of Recurrence
Equations”, In IEEE Transaction on Computers, Vol C-
22, No. 8, pp. 786-792, August 1973.

T. Han and D. A. Carlson, “Fast Area-Efficient VLSI
Adders”, In Proceedings 8th Symposium on Computer
Arithmetic, pp. 49-56, May 1987.

R. E. Ladner and M. J. Fischer, “Parallel Prefix
Calculation”, In Journal of the Association for Computing
Machinery, Vol. 27, No. 4, pp. 831-838, October 1980.

F. E. Fich, “New Bound for Parallel Prefix Circuits”, In
Proceedings 15th ACM Symposium on Theory of
Computing, pp. 100-109, April 1983.

Ingo Wegener, In The Complexity of Boolean Functions,
ISBN 0 471 91555 6 (Wiley), ISBN 3 519 02107 2
(Teubner), pp. 47-50, 1987.

B. W. Y Wei, C. Thompson and Y. Chen, “Time-Optimal
Design of a CMOS Adder”, In Proceedings 19th
Asilomar Conference on Circuits, Systems and
Computers, pp. 186-191, November 1985.

B. W. Y Wei and C. Thompson, “Area-Time Optimal
Adder Design”, In IEEE Transactions on Computers,
Vol. 39,pp. 666-675, May 1990.

D. Fan, C. T. Gray, W. Farlow, T. Hughes, W. Liu and R.
K. Cavin, “A CMOS Parallel Adder Using Wave
Pipelining”, In Advanced Research in VLSI and Parailel
Systems, Proceedings of the 1992 Brown/MIT
Conference, pp.147-164.

T. P. Kelliher, R. M. Owens, M. J. Irwin and T.-T.
Hwang, “ELM - A Fast Addition Algorithm Discovered
by a Program”, In IEEE Transactions on Computers, Vol.
41, No. 9, September 1992.

W. Schardein, B. Weghaus, O. Maas, B. J. Hosticka and
G. Troster, “A Technology Independent Module
Generator for CLA Adders”, In Proceedings 18th
European Solid State Circuits Conference, pp. 275-278,
September 1992.

E. Papadopoulou, “A Fast Parallel Binary Adder”, In
Proceeding of the IASTED International Symposium:
Applied Simulation and Modelling - ASM ‘85, pp. 29-31,
June 198S.

635

(15]

(16]

{17

(18]

[19]

[20]1

[21]

22]

(23]

N. F. Goncalves and H. J. De Man, “NORA: A racefree
dynamic CMOS technique for pipelined logic structures”,
In IEEE Journal of Solid State Circuits, Vol. SC-18, pp
261-266, 1983.,

J.-R. Yuan, C. Svensson and P. Larsson, “New Domino

logic precharged by clock and data”, In Electronics
Letters, Vol. 29, No. 25, pp. 2188-2189, December 1993.

Michael Klein, “Entwurf und Vergleich von schnellen
Addierern zur Integration von Microprozessoren”
(content in english), Matr.-Nr. 163098, Lehrstuhl fur
Allgemeine Elektrotechnik, Rheinisch-Westfahlische
Technische Hochschule, Aachen.

J.-R. Yuan, “An ultrafast adder arrangement”, Swedish
patent application no. 9302158-2, June 1993.

T. Lynch, E. Swartzlander, *The Redundant Cell Adder”,
In Proceedings 10th Symposium of Computer Arithmetic,
pp. 165-170, 1991.

T. Lynch, E. Swartzlander, “A Spanning Tree Carry
Lookahead Adder”, In IEEE Transactions on Computers,
Vol. 41, No. 8, August 1992.

V. Kantabutra, “A Recursive Carry-Lookahead/Carry-
Select Hybrid Adder, In IEEE Transactions on
Computers, Vol. 42, No. 12, pp. 1495-1499, December
1993.

D. W. Dobberpuhl, R. T. Witek et. al., “A 200-MHz 64-
bit Dual-issue CMOS Microprocessor”, In IEEE Journal
of Solid-State Circuits, Vol. 27, No. 11, pp. 1555-1567,
November 1992.

P. Odryna et al, “A Workstation-Based Mixed Mode
Circuit Simulator”, In Proceedings 23rd Design
Automation Conference, pp. 186-192, 1986.

