
Kansliets noteringar
Kod

Dnr

2011-11863-89113-49

2011
Project Research GrantArea of science

Natural and Engineering Sciences
Announced grants

Project research grant NT 13 April 2011
Total amount for which applied (kSEK)

2012 2013 2014 2015 2016

929 938 985 995

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

APPLICANT
Name(Last name, First name) Date of birth Gender

Sheeran, Mary 590310-2266 Female
Email address Academic title Position

ms@chalmers.se Professor Professor
Phone Doctoral degree awarded (yyyy-mm-dd)

031 772 1013 1984-02-20

WORKING ADDRESS
University/corresponding, Department, Section/Unit, Address, etc.

Chalmers tekniska högskola
Computer Science and Engineering

Inst. för Data och Informationsteknik
41296 Göteborg, Sweden

ADMINISTERING ORGANISATION
Administering Organisation

Chalmers tekniska högskola

DESCRIPTIVE DATA
Project title, Swedish (max 200 char)

Hårdvaruacceleration av algoritmer genom funktionell programmering

Project title, English (max 200 char)

A functional programming approach to hardware acceleration of algorithms

Abstract (max 1500 char)

The aim of this proposal is to develop methods and tools to enable large scale acceleration of algorithms using reconfigurable
hardware (Field Programmable Gate Arrays, FPGAs). FPGAs currently contain resources other than just a fabric of computing
elements; examples include fast carry chains, embedded DSP circuits that run much faster than the reconfigurable fabric, and
embedded processors. These additional resources make FPGAs into very powerful computing platforms, but also demand
sophisticated methods if they are to be efficiently exploited. Previous knowledge from the design of algorithmic blocks for
implementation on full custom hardware is not simply transferrable to these augmented FPGAs. A new approach is needed; we
propose one based on functional programming and search.

The application areas that we aim to support demand fast data-paths, as distinct from more control oriented computations. Our
driving example is fully homomorphic encryption, which was shown to be practical only in 2009. It offers the holy grail of enabling the
processing of data without needing to decrypt it. Thus, it could make cloud computing secure. The downside is that current
approaches make use of gigantic boolean networks, leading to the need to implement and run such circuits. This application area will
provide a tough test of the programming language based circuit design methods that we propose, as well as providing the chance to
have real practical impact.

Kod

2011-11863-89113-49
Name of Applicant

Sheeran, Mary

Date of birth

590310-2266

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Abstract language

English
Keywords

functional programming, parallel prefix, fully homomorphic encryption, circuit generation, search
Research areas

Computer Science
Review panel

NT-S
Classification codes (SCB) in order of priority

10205, 10206,
Aspects

Continuation grant

Application concerns: New grant
Registration Number:
Application is also submitted to

similar to: identical to:

ANIMAL STUDIES
Animal studies

No animal experiments

OTHER CO-WORKER
Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Kod

2011-11863-89113-49
Name of Applicant

Sheeran, Mary

Date of birth

590310-2266

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

ENCLOSED APPENDICES
A, B, C, S

APPLIED FUNDING: THIS APPLICATION
Funding period (planned start and end date)

2012-01-01 -- 2015-12-31
Staff/ salaries (kSEK)

Main applicant % of full time in the project 2012 2013 2014 2015 2016

Mary Sheeran 25

Other staff

Forskarassistent 75 752 777 803 830

Total, salaries (kSEK): 752 777 803 830

2012 2013 2014 2015 2016

travel 90 90 90 90
equipment (computer + FPGA boards) 19 19
office space 58 60 62 64
IT-costs 10 11 11 11

Total, other costs (kSEK): 177 161 182 165

Total amount for which applied (kSEK)

2012 2013 2014 2015 2016

929 938 985 995

ALL FUNDING
Other VR-projects (granted and applied) by the applicant and co-workers, if applic. (kSEK)

Funded 2011 Funded 2012 Applied 2012Proj.no.(M) or reg.nr.

2009-4303 1850 1850
Project title Applicant

Putting functional programming to
work

John Hughes

Funds received by the applicant from other funding sources, incl ALF-grant (kSEK)

Total Proj.period Applied 2012Funding source

Ericsson AB 1000 2011
Project title Applicant

Feldspar: a domain specific
language for DSP algorithm design

Mary Sheeran

Total Proj.period Applied 2012Funding source

SSF 25000 2011-2016
Project title Applicant

RAW FP John Hughes

Kod

2011-11863-89113-49
Name of Applicant

Sheeran, Mary

Date of birth

590310-2266

Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

POPULAR SCIENCE DESCRIPTION
Popularscience heading and description (max 4500 char)

Om en funktion eller ett program går för långsamt på en dator kan man snabba upp den genom att implementera delar av
programmet på speciell rekonfigurerbar hårdvara. Sådan hårdvara (kallad Field Programmable Gate Array, FPGA, på Engelska) kan
programmeras och omprogrammeras om och om igen, för att implementera många olika kretsar, och snabba upp många olika
program. Oftast är det en viss del av programmet som väljs ut för att implementeras på FPGA. Det senaste årtiondet har FPGAer
blivit allt mer sofistikerade, och nu inkluderar de inte bara den programmerbara logiken utan även extra resurser för att snabba upp
vanligt förekommande beräkningar. Tilläggsresurserna kan var så enkla som kretsar som snabbar upp carry-signalerna i en
adderare. Eller så kan de vara riktiga processorer som sitter bland den rekonfigurerbara logiken. Sådana turbo-FPGAer är
svårprogrammerade, speciellt då algoritmen som skall snabbas upp är dataintensiv. Detta projekt har för avsikt att utveckla nya
metoder för att programmera FPGAer, baserade på moderna domänspecifika programspråk, och på smarta sätt att söka efter bra
kretsar som skall placeras på FPGA.

För att verifiera våra metoder för programmering av FPGAer skall vi applicera dem på kretsar som behövs för att kryptera data och
skydda den från obehöriga som vill stjäla den. Ett stort resultat inom kryptografi (från 2009) indikerar att det faktiskt är möjligt att göra
beräkningar med krypterad data utan att först dekryptera den. Om man kan göra den nya krypteringsmetoden tillräckligt snabb så
kommer den att ha ett stort genomslag, då den möjliggör säkra beräkningar i molnet (Eng. cloud computing). Nackdelen med den
nya sortens kryptering är att den kräver att man konstruerar gigantiska kretsar som en del av beräkningen. Vi kommer att utveckla
nya metoder för att designa och implementera sådana stora kretsar. Om vi lyckas i forskningen kommer vi att bidra till ett enormt
steg framåt inom datasäkerhet.

VRAPS/VR-Direct bilaga 2004.Ae Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix A
Research programme

Appendix A: A functional programming approach to

hardware acceleration of algorithms

Mary Sheeran (ms@chalmers.se, +46 31 772 1013)

CSE Dept., Chalmers

Purpose and aims

The aim of this proposal is to develop methods and tools to enable large scale acceleration
of algorithms using recon�gurable hardware (Field Programmable Gate Arrays, FPGAs).
FPGAs currently contain resources other than just a fabric of computing elements; ex-
amples include fast carry chains, embedded DSP circuits that run much faster than the
recon�gurable fabric, and embedded processors. These additional resources make FPGAs
into very powerful computing platforms, but also demand sophisticated methods if they
are to be e�ciently exploited. Previous knowledge from the design of algorithmic blocks
(such as fast binary adders) for implementation on full custom hardware is not simply
transferrable to these augmented FPGAs. A new approach is needed, and we propose one
based on functional programming and search.

The application areas that we aim to support demand fast data-paths, as distinct from
more control oriented computations. They are medium scale cryptography (which demands
Montgomery multiplication and exponentiation), large scale correlators and convolvers for
astronomy and, �nally, fully homomorphic encryption (FHE), which (currently) demands
arithmetic on millions of bits, and which, if successfully made practical, will enable secure
cloud computing. The proposed research is distinguished from current approaches by:

{ the strong emphasis on data-paths. This leads to the need to have �ne control over layout
on the FPGA and also makes starting from a sequential C-like description infeasible.

{ a programming language based approach to exploiting additional resources (including
processors) on the FPGA, combined with the use of search

{ the sheer scale of the circuits needed in fully homomorphic encryption
{ initial strong results on parallel pre�x networks (a key building block in fast adders)

Survey of the Field

FPGA programming

FPGA programming is steadily moving towards greater use of High Level Synthesis, but
this is hard to reconcile with having �ne control over resource use, particularly for data-
path implementation. At ENS Lyon, the FloPoCo project aims to develop high performance
oating point cores for FPGAs, and it has found the need to develop new methods to imple-
ment even binary adders on FPGAs, particularly with pipelining is required [5]. A number

Appendix A M. Sheeran, 590310-2266, FP for hardware acceleration

of authors have considered ways to map chaining computations onto the fast carry chains
of FPGAs, enabling implemenation of many more operations that just ripple carry adders
(e.g. [7, 14]). Our aims are similar, but we want to put control of the mapping into the
hands of the programmer (assisted by the use of search). Researchers currently implement-
ing very large and regular digital signal processing arrays for use in astronomy have found
that current design tools make the necessary control of layout on the FGPA both slow
and painful. The development of tool-chains for FPGA programming has concentrated on
relatively small scale control-oriented applications, and on harnessing software developers
{ with the result that there is much work on C-like languages for FPGA design. This
approach is inappropriate for our very high performance, very highly parallel applications.

Domain Speci�c Languages (DSLs)

Domain speci�c languages (DSLs) can be used to give �ne control of resources, with the
restriction to a speci�c domain being what makes this feasible. Examples in hardware
(FPGA) design include our work with Singh and later Claessen on Lava, a DSL for hard-
ware netlist generation [3]. Lava has been inuential and there are now several new imple-
mentations (for example [10], which provides new abstractions, including ways to describe
and control memories). We see strong possibilities for collaboration here. The ability to
control geometry is a key ingredient of the success of Lava in real applications (as imple-
mented by Singh at Xilinx). Working with Intel, we explored the control of geometry at an
even �ner level of detail in work on Wired, which enables wire-aware low level hardware
design [2]. This proposal aims to return to work on Lava, and on sophisticated circuit
generation methods, and to extend it to take account of developments in FPGAs that now
combine the FPGA fabric with other computing resources.

Cost models and dynamic programming

The use of integer linear or dynamic programming has a strong history in arithmetic circuit
generation (e.g. the classic work on optimal multipliers [21]). Such methods are closely
associated with cost models. In our own approaches to circuit generation, we have relied
heavily on Non-Standard Interpretation, a variant on classic abstract interpretation, to
estimate costs for the purposes of controlling the search for su�ciently good solutions. We
will need to use much more sophisticated cost modelling if we are to succeed in exploiting
FPGAs plus extra resources such as embedded DSPs or multipliers. We believe that we will
be able to build on work by Blelloch and his co-workers on cost models for parallel functional
programming [20]. Although our context is rather di�erent, we see strong parallels between
our envisaged cost models and those proposed by Blelloch et al. Both lines of research
place a strong emphasis on a programming language (rather than a machine model) based
approach to algorithm discovery, mapping and pro�ling.

Cryptography, our main application area

Modular multiplication is an important building block in modern cryptographic algorithms.
Chow et al have recently studied the implementation on FPGA of a recursive Karatsuba-

2

Appendix A M. Sheeran, 590310-2266, FP for hardware acceleration

based Montgomery multiplier [4]. We will start with this recursive construction as one of
our case studies as it seems well suited to the use of search-based generation techniques
and will force us to adapt those methods to real FPGA generation (see below).

Our main motivating application is, however, fully homomorphic encryption (FHE),
which was shown possible (if very di�cult) in Gentry’s thesis from 2009 [8]. Gentry’s result
has created an enormous splash. In the US, DARPA has appointed Galois, Inc. as research
integrator for the $20m PROCEED program (Programming Computation on Encrypted
Data) whose goal is to make it feasible to execute programs on encrypted data without
having to decrypt the data �rst. \If we are successful with PROCEED, it fundamentally
changes the calculus for computations in untrusted environments on computer systems of
unknown provenance. The potential implications for the cybersecurity of cloud computing
architectures are profound" states DARPA Director Regina Dugan in testimony submitted
to the US House Subcommittee on Emerging Threats and Capabilities, March 1, 2011.
Homomorphic encryption o�ers the possibility of being able to delegate the processing of
data, without having to give away access to it. Gentry has provided an encryption scheme
that \keeps data private, but that allows a worker that does not have the secret decryption
key to compute any (still encrypted) result of the data, even when the function of the data
is very complex" and that thus \helps make cloud computing compatible with privacy" [9].
The downside is that all known FHE schemes are computationally extremely expensive, as
they encode the decryption function (ine�ciently) as a circuit, and then, in the Evaluate
algorithm, replace each bit in that circuit with a large ciphertext that encodes that bit.
Much work by many researchers will be needed to make a truly practical FHE scheme.
Finding ways to implement and run the very large boolean circuits that result is what
interests us, partly because it provides the strictest of tests of our proposed FPGA design
methods, and partly because the need to implement very large circuits opens new research
questions about key algorithms.

We have strong links to Galois Inc., which works very much with functional program-
ming and domain speci�c languages. Part of Galois Inc’s work on the PROCEED project
will use their Cryptol DSL for the development and veri�cation of cryptographic algo-
rithms [13] as a means to demonstrate research results in the project. The generation of
VHDL (for FPGA programming) from Cryptol was inspired by the applicant’s DPhil thesis
and by her early work on retiming [16]. Andy Gill, who did much of this work at Galois,
is now back in academia and we are planning collaboration, as he continues to work with
his new version of Lava, and with FPGAs for algorithmic computations [10]. While we
appreciate the expressiveness that Cryptol’s advanced type system brings, we are �rmly
convinced of the need for an expressive meta-programming layer if we are to meet the
enormous challenges of fully homomorphic encryption, which currently involves (in one of
its \almost homomorphic" parts) binary arithmetic on 13 million bit numbers.

3

Appendix A M. Sheeran, 590310-2266, FP for hardware acceleration

Preliminary Results

DSLs for hardware design

Lava is a system that supports the design and veri�cation of circuits [3]. It is an extensi-
ble domain speci�c language embedded in the standard functional programming language
Haskell. Lava descriptions encode standard ways to build circuits (connection patterns) as
higher order functions. The standard Haskell function map corresponds to placing a com-
ponent on each element of a list of inputs (a bus). Lava includes a way to capture sharing
in circuit descriptions, so that one can write what look like plain Haskell descriptions, and
do not need to resort to heavier weight constructions (such as monads) when descrbing
cyclic circuits.

For non-cyclic circuits, it is easy to describe circuits directly in Haskell, and to de�ne
various interpretations of them. For example, an important pattern is parallel pre�x or
scan. Given inputs [x0; x1 : : : xn�1], the pre�x problem is to compute each x0 � x1 � : : : �
xj for 0 � j < n, for � an associative, but not necessarily commutative, operator. In
a construction attributed to Sklansky, one can perform the pre�x calculation by �rst,
recursively, performing the pre�x calculation on each half of the input, and then combining
(via the operator) the last output of the �rst of these recursive calls with each of the outputs
of the second, see Figure 1. The Haskell description is parameterised on a fan structure,
which both passes through its �rst input and applies the binary operator to that input and
each of the remaining elements of its input list, to give an output list whose length is the
same as that of the input list:

mkFan op (i:is) = i:[op i k | k <- is]

pplus = mkFan (+)

For example, pplus [1..8] gives the list [1,3,4,5,6,7,8,9]. The Haskell description of
the algorithm contains two recursive calls of skl, each operating on roughly half of the
input. The fan structure is used to combine the last output of the �rst of these with each
of the outputs of the other:

skl _ [a] = [a]

skl f as = init los ++ ros’

where

(los,ros) = (skl f las, skl f ras)

ros’ = f (last los : ros)

(las,ras) = splitAt (chalf (length as)) as

chalf n = n - n ‘div‘ 2 -- Ceiling of n/2

Now, skl pplus [1..4] is [1,3,6,10] and skl pplus [5..8] is [5,11,18,26]. The �-
nal fan structure applies to (10 : [5,11,18,26]), so that the result of skl pplus [1..8]

is [1,3,6,10,15,21,28,36] Figure 2 shows another standard pre�x network construction
due to Ladner and Fischer [12]. Both of these diagrams were generated by running their
Haskell descriptions using a suitable building block (parameter) that gathers the necessary
information. It is also possible to run circuit descriptions in order to get cost estimations,
and this can be done either after, or, more interestingly, during circuit generation.

4

Appendix A M. Sheeran, 590310-2266, FP for hardware acceleration

Fig. 1. The Sklansky construction for 64 inputs, illustrated using a diagrammatic notation for pre�x networks. It
recursively computes the parallel pre�x for each half of the inputs; the dotted box shows the �rst of these recursive
calls. It then combines the last output of that call with each of the outputs of the other recursive call.

Fig. 2. The Ladner Fischer (LF) construction for 64 inputs. Note how the bottom of the left part of the network
makes use of the entire network depth, unlike in the Sklansky construction.

More advanced generation methods

In Lava, we have explored the notion of clever circuits { circuits that have additional
Haskell-level shadow parameters carrying non-functional properties, allowing them to adapt
to their contexts during circuit generation [17]. We demonstrated the method on multiplier
reduction trees [18]. In the multiplier reduction trees, the cells can be thought of as being
placed initially, and it is only the wiring between them that is chosen during generation. In
that work, the context consisted only of the shadow values capturing input delays. One can
go further and have the context capture both input and required output delays. One can
then enumerate and choose between a large number of possibilities for the entire topology
of the network, using its recursive decomposition and dynamic programming.

We have had considerable success in doing this for parallel pre�x networks. By choosing
a good recursive decomposition, one can �nd good (that is small) networks, of �xed size
but for large number of inputs, using a variety of di�erent measure functions, and includ-
ing constraints on fanout [19]. The resulting generator is pleasingly small and the results
improve on known best solutions for depth size optimal networks. A key point here is that
one is making signi�cant use of the host language in writing sophisticated generators; so
the fact that the DSLs we study are embedded is important.

This work has in turn led to the development of a new parallel pre�x algorithm that does
not require search, but that grew out of the insights gained from seeing the results of search
in many contexts. In the new algorithm, the number of operators (the size) for a minimum
depth network with w = 2n inputs approaches 3:5w, while the Ladner Fischer algorithm
approaches 4w. This is a substantial improvement, di�erent from and also improving on the
more advanced of Fich’s pre�x constructions [6]; for instance, it requires 14662683 operators
for 222 = 4194304 inputs, while the corresponding sizes for Ladner Fischer and Fich are
16580799 and 14851947 respectively. Upon the recent appearance of this result in the
Journal of Functional Programming, we were contacted by a Russian complexity theorist,
who had proven an exact lower bound for 2n-input, depth n parallel pre�x networks [15].

5

Appendix A M. Sheeran, 590310-2266, FP for hardware acceleration

Fig. 3. The new construction for 128 inputs, depth 7. It uses 364 operators, compared to 369 for LF [12] (and 448
for Sklansky).For 256 inputs, the three sizes are 773 for our construction, 792 for LF and 1024 for Sklansky.

Sergeev has proved that the number of operators in a pre�x network with 2n inputs and
depth n is bounded below by (3:5 � 2n) � (8:5 + 3:5 � (n%2)) � 2(n=2) + n + 5, where % is
the modulus function. The result relies on a sophisticated argument about the number of
redundant operators that must appear in a network of shape similar to the Ladner Fischer
construction. (Sergeev’s result has so far only been published in preliminary form, and
only in Russian. A slightly longer version will appear mid-year and will be translated to
English.) The interesting thing is that our construction matches this bound exactly, and
so is, to the best of our knowledge, the �rst presentation of an optimal (that is smallest
possible) minimal depth pre�x network construction. We feel that our success in solving
this open problem in pre�x network design was due to the use of functional programming
plus search, and to the ease of experimentation that ensued. Our aim, now, is to develop
this approach further to enable the implementation both of very large pre�x networks and
of other key algorithms such as sorting and median �nding. This will involve both further
work on the algorithms themselves and on ways to implement these algorithms on FPGAs.

Our concentration on pre�x networks grew out of contacts at Intel Strategic CAD
Labs, and has its basis in the fact that pre�x networks are key elements both in arithmetic
ciruits (where they provide a means to implement fast carry propagation in adders) and
more generally in microprocessors, where, for example, they are used to implement priority
encoders. There is much work on parallel pre�x networks for VLSI circuits, but this does
not transfer easily to FPGAs because of the additional resources, particularly fast carry
chains. This is well explained in reference [1], which points out that there has been no
systematic study of parallel pre�x networks on FPGAs, and considers the problem of
implementing larger pre�x networks (up to 256 inputs) with word level rather than bit
level operators. However, one of the chosen implementations is labelled Ladner Fischer,
but is actually the Sklansky construction (a common misconception in papers and even
text books). We speculate that the cause of this widespread misconception is a lack of
suitably expressive programming tools to describe slightly irregular algorithms, and of
associated tools to map those algorithms to the FPGA fabric, including the speci�c extra
computing resources that the FPGA provides. At 256 inputs, implementing Sklansky rather
than Ladner Fischer means using 1024 instead of 792 operators, a di�erence that would
probably a�ect power consumption (which tends to depend on circuit size). One of our
aims in this project is conduct a serious study of parallel pre�x network implementation
on FPGAs, �rst for medium scale (up to say 1024 inputs), and later for the gigantic pre�x
networks that will be needed for arithmetic on very large numbers, as required in fully
homomorphic encryption.

6

Appendix A M. Sheeran, 590310-2266, FP for hardware acceleration

Project plan

Planned tasks in the �rst phase of the project

Circuit needs of current cryptography Study the need for circuits in current crypto, with
emphasis on Montgomery multiplication and exponentiation. Use these as guiding case
studies (along with pre�x networks) in the following tasks.

Making search more systematic Continue work on search in algorithm development. Make
the approach more systematic. Develop combinators for search. Extend the notion of con-
text to include richer constraints on the solution (e.g. the existence of carry chains that
should be used). This will entail developing much more sophisticated cost models than
those used during our work on circuit geneation so far.

First practical steps in exploiting and controlling additional computing resources: fast carry
chains Working with real FPGA implementations, develop the above-mentioned search
methods for exactly the case of fast carry-chains. With Satnam Singh, perform a compar-
ative study of parallel pre�x network implementation on FPGA.

Result at the end phase one (18 months) Serious study of medium scale pre�x networks
and Montgomery multipliers on FPGAs, with strong emphasis on programmer control of
resources. This will include higher radix pre�x networks, where results on optimality are
lacking, so that work on the algorithms themselves is needed. This will form the basis for
later work on implementing very large scale pre�x networks.

Planned tasks in the second phase of the project

Clever circuits revisited Consider the case where the most natural way to express an
algorithm is to make modi�cations (using the clever circuits idea) to one that does more
but is very regular. An example is our earlier work on generating median networks from
sorting networks [17], where it was possible to reduce the number of comparators needed
to produce the median of 25 inputs (a common operation in graphics) from 99 to 96. This
kind of application of clever circuits has not been much explored and is promising.

Further work on exploiting and controlling additional computing resources: DSPs and pro-
cessors Extend work on ways to express use of computing resources + FPGA routing
fabric. First consider DSPs (which provide fast arithmetic), and then processors. The need
to make use of processors will place new demands on our algorithm decomposition meth-
ods, as one must now decide which sub-parts to implement in the processors. Our approach
to this problem will be to develop programming oriented cost models, very much along the
lines of those developed for parallel functional programming by Blelloch and his cowork-
ers [20]. In the search-based pre�x network generation described earlier, the context for the
search is something akin to a hole that indicates position and delay on inputs and outputs,
and into which the �nal network must �t. Now, the context is going to have to contain
additional resources placed within the hole. The combinators for expressing the search will

7

Appendix A M. Sheeran, 590310-2266, FP for hardware acceleration

have to be more sophisticated, to give control over placement of functions on the FPGA
fabric or on the additional computing resource.

The main area of application: fully homomorphic encryption Study fully homomorphic
encryption and its need for very large arithmetic circuits. This application will force us
to develop ways to decompose the algorithms and to play with space time trade-o�s. For
the extraordinary demands imposed by FHE, it may be necessary to consider new FPGA
structures (along the lines of work by Hauck et al [11]).

Expected results at the end of the project

{ Greater understanding of data-independent (circuit-like) parallel pre�x algorithms both
in theory and with regard to practical implementation at very large scale.

{ Demonstration of implementations of very large scale arithmetic circuits (with parallel
pre�x as a key component) for use in FHE.

{ Methods of programming combinations of FPGAs with other computing resources.
The methods of programming FPGAs + CPUs will give �rst results in the search
for hardware software codesign methods for algorithmic (rather than control oriented)
problems.

Once we have the cost models and search combinators that enable easy programming of
additional resources on the FPGA, success will be measured both in terms of performance
and area of the generated applications, and of ease of programming new applications.

Collaboration

The Chalmers Functional Programming Group provides an excellent research environment
for this proposal. The group is very well resourced. Our work in DSLs for software includes
development of a DSL framework, which will be very useful in this project.

Singh, with whom we worked on Lava, is now at MSR, Cambridge. He has recently
worked on methods for programming of heterogenous systems, and on ways to translate
(ordinary) Haskell programs into circuits. He is visiting faculty, interacting strongly with
our group. Both his recent research and his practical expertise in FPGA programming will
bene�t us. We plan to work together on FPGA implementations of cryptographic algo-
rithms, and on the necessary cost models and search-based programming methods. Arvind,
from MIT, is working on the use of the Bluespec DSL in hardware-software codesign. Our
work is more data-path oriented, but we will doubtless also need some control-oriented
aspects, just as the Bluespec work has incorporated circuit design patterns similar to ours.
Harper’s work with Blelloch on cost models has inspired us. It was John Launchbury, CTO
of Galois Inc., who introduced the author to fully homomorphic encryption. The author
has the privilege of meeting all of these researchers yearly at the IFIP working group on
functional programming, of which she is a member. We expect during this project to estab-
lish research collaboration with Andy Gill (U. Kansas). We also plan collaboration with
Marc Pouzet and Jean Vuillemin, who, with A. Cohen, are forming a group to work in

8

Appendix A M. Sheeran, 590310-2266, FP for hardware acceleration

synchronous programming at ENS, Paris. We have strong shared interests in algorithms,
hardware design and functional programming languages. Mutual visits are planned. Thus,
the proposed research will be supported by a strong network of colleagues and collabora-
tors.

Budget and part of project plan, Overlap with existing projects

Sheeran is co-applicant on Hughes’ VR frame grant \Putting functional programming to
work: Software Design and Veri�cation using Domain Speci�c Languages". In that pro-
posal, we excluded work on hardware design, in order to keep the proposal focussed. We
made the same decision in our recent (granted) proposal to SSF on resource aware func-
tional programming. That proposal also concentrates entirely on software development
methods. This proposal is about hardware design methods, and is designed to support
the author’s work in this area. The proposed research does not overlap with either of the
above-mentioned proposals. This proposal aims to fund 100% of the proposed work.

The intention is to hire an assistant professor (forskarassistent) on the project, possibly
from among our existing postdocs. Sheeran plans to spend approximately 25% of her time
on this work (funded from other sources). The requested funding for equipment includes
20.000 SEK for FPGA boards.

Signi�cance

Programming FPGAs with embedded carry chains is non-trivial and tends to be done on
a case by case basis, with specialised module generators. We want to use the programming
language to make it more possible for the user to control the �nal result, by building upon
a library of search combinators.

The problem of how to program FPGAs with embedded computational resources such
as processors is harder. Solving it will enable greater use of such platforms. The problem
also bears some relationship to the more general question of how the transition from pure
software to hardware-accelerated software should be made, or more generally how to do
hardware software co-design. We don’t want to attack the whole of that complex and so
far alarmingly di�cult problem, but to specialise our work to large data-paths, in order
to make progress on investigating simple approaches. Any success here will have broad
impact. The development of usable programming language based methods for expressing
ways in which algorithms should be divided between CPUs and hardware accelerators
would bene�t applications such as baseband signal processing, where accelerators for key
functions like Fast Fourier Transform are routinely used. Our methods could also ease the
use of FPGA simulation of VLSI circuits in hardware veri�cation (so-called emulation).

We expect to make progress in theoretical questions relating to key algorithms (such as
parallel pre�x or multipliers) { developing a programming language rather than a machine
model oriented approach to this work on complexity results for real circuits. Parallel pre�x
is a central algorithm in computer science, as it sheds light on parallel implementations of
an apparently sequential algorithm. It is also a key building block in data parallel software,

9

Appendix A M. Sheeran, 590310-2266, FP for hardware acceleration

such as that used in graphics processing. Results here will inuence not only hardware but
also software implementations.

The holy grail, though, is to �nd principled ways to design and implement the gigantic
circuits that are currently known to be needed to achieve a practical form of fully homo-
morphic encryption. We have contacts with Galois Inc., who are the research integrator in
the DARPA PROCEED initiative in this area, so there will certainly be a route to real
application of our results, should they merit such application. The author has in recent
years prioritised work on software development methods, and has successfully engaged with
Swedish industry in that area. However, the combination of hardware design and functional
programming continues to fascinate, and this new holy grail provides challenging research
questions, highly quali�ed collaborators and a route to high impact.

References

1. N. Abbas, S. Derrien, P. Quinton, and S. Rajopadhye. Accelerating HMMER on FPGA using Parallel Pre�xes
and Reductions. In Proc. IEEE Int. Conf. on Field-Programmable Technology (FPT’10). IEEE, 2010.

2. Emil Axelsson. Functional Programming Enabling Flexible Hardware Design at Low Levels of Abstraction.
PhD thesis, CSE Dept., Chalmers University of Technology, 2008.

3. P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in Haskell. In International Conference
on Functional Programming. ACM Press, 1998.

4. Gary C.T. Chow, Ken Eguro, Wayne Luk, and Philip Leong. A Karatsuba-Based Montgomery Multiplier. Int.
Conf. on Field Programmable Logic and Applications, pages 434{437, 2010.

5. F. de Dinechin, H.D. Nguyen, and B. Pasca. Pipelined FPGA Adders. In Int. Conf. on Field Programmable
Logic and Applications. IEEE Computer Society, 2010.

6. Faith Ellen Fich. Two problems in concrete complexity: cycle detection and parallel pre�x computation. PhD
thesis, University of California, Berkeley, 1982.

7. Michael T. Frederick and Arun K. Somani. Beyond the Arithmetic Constraint: Depth-Optimal Mapping of
Logic Chains in LUT-based FPGAs. In Symposium on Field Programmable Gate Arrays. ACM, 2008.

8. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
9. Craig Gentry. Computing Arbitrary Functions of Encrypted Data. Communications of the ACM, March 2010.

10. A. Gill, T. Bull, A. Farmer, G. Kimmell, and E. Komp. Types and type families for hardware simulation and
synthesis: The internals and externals of kansas lava. In Trends in Functional Programming, 2010.

11. S. Hauck, T.W. Fry, and M.M. Hosler. High-performance carry chains for FPGAs. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 8(2), 2000.

12. Richard E. Ladner and Michael J. Fischer. Parallel pre�x computation. J. ACM, 27(4), 1980.
13. J. R. Lewis and B. Martin. Cryptol: high assurance, retargetable crypto development and validation. In

Military Communications Conference, Volume 2, pages 820{825. IEEE, 2003.
14. H. Parandeh-Afshar, P. Brisk, and P. Ienne. Exploiting fast carry-chains of FPGAs for designing compressor

trees. In Field-Programmable Logic and Applications. IEEE, 2009.
15. Igor S. Sergeev. Some complexity estimations for parallel pre�x schemes (in Russian). In Proc. 10th Int.

Seminar on Discrete Mathematics and its Applications. Moscow State University, Feb. 2010.
16. M. Sheeran. Retiming and slowdown in Ruby. In G.J. Milne, editor, The Fusion of Hardware Design and

Veri�cation. North-Holland, 1988.
17. M. Sheeran. Finding regularity: describing and analysing circuits that are almost regular. In Correct Hardware

Design and Veri�cation Methods. LNCS 2860, Springer, 2003.
18. M. Sheeran. Generating fast multipliers using clever circuits. In Formal Methods in Computer-Aided Design,

FMCAD, volume 3312 of LNCS. Springer, 2004.
19. M. Sheeran. Functional and dynamic programming in the design of parallel pre�x networks. Journal of

Functional Programming, 21(1), 2011.
20. Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper. Space Pro�ling for Parallel

Functional Programs. Journal of Functional Programming, 20(5{6), 2011.
21. P. F. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi. Optimal Circuits for Parallel Multipliers. IEEE

Trans. Comp., 47(3), 1998.

10

VRAPS/VR-Direct bilaga 2004.Be Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix B
Curriculum vitae

Mary Sheeran CV

1. First Degree

Bachelor of Engineering Science degree, Electrical Engineering, Trinity College Dublin, B.A.
(mathematics), B.A.I. (elec. eng.), 1980.

2. Graduate Degrees

M.Sc. and D. Phil degrees in Computation., Oxford University, 1981 and 1984.

3. Postdoc and visiting positions and fellowship awards

{ Visiting post-doctoral researcher, Chalmers (Sweden), 1984-1985.
{ Visiting Scientist at IBM Almaden Research Center (with John Backus), Summer 1987.
{ Royal Society of Edinburgh BP Research Fellow, 1989-92.
{ Senior researcher, Prover Technology AB (part-time), 1997-2003.
{ worked 80% on SSF-funded mobility project, research visit to Ericsson (Prog. Lang. for DSP),

2009-2010. (Project was extended because of 5 month absence in 2009 due to vision problems,
now �xed.)

5. Current position

Professor in computing science, Chalmers University of Technology (75% research, 2010) since
April 1999. Joined Chalmers as universitetslektor (University Lecturer) in 1992.

6. Earlier positions

{ University lecturer in computing science, University of Glasgow, Scotland,1986-1992.
{ University lecturer in Oxford, 1985-1986
{ GEC Junior Research Fellow, Programming Research Group, Oxford University, 1983-1984.

7. Absences

Parental leave 1985-1986 and 1993-1994 (about 20 months in total). Also 5 months absence because
of vision problems in 2009.

8. Research supervision to doctorate

{ Satnam Singh (1991) Analysis of Hardware Description Languages
{ Graham Hutton (1992) Between functions and relations in calculating programs
{ Koen Claessen (2001) Embedded Languages for Describing and Verifying Hardware
{ Per Bjesse (2001) Gate Level Description of Synchronous Hardware and Automatic Veri�cation

Based on Theorem Proving
{ Niklas Een (2005) SAT Based Model Checking
{ Magnus Bj�ork (2006) A First Order Extension of St�almarck’s Method
{ Jan-Willem Roorda (2007) Semantics, Decision Procedures and Abstraction Re�nement for

Symbolic Trajectory Evaluation
{ Emil Axelsson (2008) Functional Programming Enabling Flexible Hardware Design at Low

Levels of Abstraction

Above 8 students supervised to doctorate, main supervisor in all cases. Koen Claessen was
technical supervisor for Roorda.

5 of the above students obtained lic. before their doctorates. Mia Indrika and Carl-Johan
Lillieroth also obtained lic. degrees. I have two current students at Chalmers, Joel Svensson and
Anders Persson (VR-funded ID student, employed by Ericsson). I am co-supervisor of Eva Burrows,
a PhD student at the Univ. of Bergen. She will defend her thesis on May 23 2011.

Postdocs supervised

{ Andrew D. Gordon (Senior Researcher, Microsoft Research, Cambridge);
{ Graham Hutton (Professor in Computer Science, University of Nottingham);
{ David Cachera (Researcher, ENS Cachan, France);
{ Gordon Pace (Senior Lecturer, University of Malta);
{ Matthias Sauer (Chief Scientist and Senior Director at In�neon Technologies);
{ Ricardo Massa Ferreira Lima (Lecturer, Univ. de Pernambuco, Brazil);
{ Emily Shriver (Intel Strategic CAD Labs, Oregon)
{ Emil Axelsson (working on Feldspar project)
{ Josef Svenningsson (working on Feldspar project)

Recent research grants

{ 2011{2016 RAW FP: Resource Aware Functional Programming, SSF frame grant IT 2010
(co-applicant and co-leader)

{ 2009{2010 Research visit to Ericsson (SSF mobility scheme)
{ 2009-2012: Co-applicant on Software Design and Verication using Domain Specic Languages

(VR, multi-project grant in strategic ICT funding the Functional Programming Group at
Chalmers)

{ 2009 Abstraction methods in high level hardware design (Intel donation)
{ 2009{2011 A Domain Speci�c Language for DSP (Ericsson, funds (part of) 2 postdocs)
{ 2007{2009 Functional Circuits (VR)
{ 2008 Formal Veri�cation in ASIC Design (Saab Space and NRF)
{ 2004{2006 Clever Circuits (VR)
{ 2006{2007 Performance by Construction (Intel-custom funding from the Semiconductor Re-

search Corporation, industrial liaisons from IBM Austin, and Intel Strategic CAD Labs, Ore-
gon)

{ 2003{2006 Wired: Expressing and Estimating Non-Functional Properties of Digital Circuits
(Intel-custom funding from the Semiconductor Research Corporation)

Selected professional activities

{ Charter member of IFIP Working Group 2.8 (on functional programming).
{ Steering Committee member for Int. Conference on Formal Methods in Computer Aided De-

sign (FMCAD)
{ Chair or PC member for Int. Workshop on Designing Correct Circuits, 1990, 1996, 2002, 2004,

2006, 2008.
{ Co-chair of International Workshop on Hardware Design and Functional Languages (with

ETAPS) 2007, PC member 2009.
{ Co-chair Int. Conference on Formal Methods in Computer Aided Design (FMCAD), 2007.
{ Extensive programme committee work (e.g. MPC 1992, 1995, 1998, POPL 1997, CHARME

1999, 2001, 2003, 2005, CAV 2001, FMCAD 1998, 2000, 2002, 2006, TACAS 2001, 2002, DATE
2003, 2004, 2005, CS Russia 2006, WODES 2008, Haskell Symposium 2008, TFP 2009, CUFP
2010, IFL 2011, ITSLE 2011)

{ External Examiner for doctoral theses at Brunel University and at the Universities of Cam-
bridge, Edinburgh, Glasgow, Kent, York and New South Wales.

{ Member of examining committee for doctoral theses at Oregon Graduate Institute, KTH, ENS
Paris, and Uppsala University and external assessor for doctoral thesis at the Turku Centre
for Computer Science.

{ Leader (with John Hughes) of the Functional Programming Research Group at Chalmers.
{ Vice chair of VR panel NT-S (Computer Science), 2008 and 2010.
{ Chalmers leader and member of Steering Group of Feldspar project at Ericsson, 2009-
{ Steering Group of Hiper�t (a large Danish funded centre for high performance computing,

functional programming and �nance, based at Copenhagen University)

VRAPS/VR-Direct bilaga 2004.Ce Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Selected Publications: Mary Sheeran

Note to non computer scientists Conference articles in computer science are peer reviewed
full articles | not 1{2 page abstracts, and are the normal form of refereed publication.
The top conferences in each sub�eld typically have the highest impact factor within that
�eld. All articles listed below are selected for publication by a peer review process, unless
otherwise indicated.

Most cited publications (Google Scholar via Harzing’s Publish or Perish,
duplicates merged)

Sheeran’s Hirsch-index is 20 and the following papers are the �ve most cited.

1. M. Sheeran, S. Singh and G. St�almarck. Checking safety properties using induction
and a SAT-solver. In Proc. Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD), Lecture Notes in Computer Science 1954, Springer, 2000.
Number of citations: 344

2. (�) P Bjesse and K Claessen and M Sheeran and S Singh. Lava: hardware design
in Haskell. In Proceedings of the third ACM SIGPLAN international Conference on
Functional Programming, ACM Press, 1998.
Number of citations: 289

3. G. Jones and M. Sheeran Circuit design in Ruby. In Formal Methods for VLSI Design:
IFIP WG 10.5 Lecture Notes, North-Holland, 1990.
Number of citations: 219

4. M. Sheeran. muFP, a language for VLSI design. In Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming, ACM Press, 1984.
Number of citations: 91

5. M. Sheeran and G. St�almarck. A tutorial on St�almarck’s proof procedure for propo-
sitional logic (conference paper version). In Proc. Int. Conf. on Formal Methods in
Computer Aided Design, Springer LNCS, 1998. (The journal version of the paper in
FMSD is considerably extended and has an additional 80 citations.)
Number of citations: 85

1. Journal articles (2003{2011)

1. (�) M. Sheeran. Functional and dynamic programming in the design of parallel pre�x
networks. Journal of Functional Programming, 21:1, pp. 59{114, Cambridge University
Press, 2011.
Number of citations: 0

2. K. Claessen, N. Een, M. Sheeran, N. S�orensson, A. Voronov and K. �Akesson. SAT-
Solving in Practice, with a Tutorial Example from Supervisory Control. Discrete Event
Dynamic Systems, pp. 495{524, Vol. 19, issue 4, Springer, 2009. (Note: Google Scholar
shows 13 citations, but I believe this to be incorrect.)
Number of citations: 4

3. M. Sheeran. Hardware Design and Functional Programming: a Perfect Match (extended
version). In Journal of Universal Computer Science, JUCS 11 (7), 2005.
Number of citations: 39

4. (�) K. Claessen and M. Sheeran and S. Singh. Using Lava to Design and Verify Recursive
and Periodic Sorters. In Software Tools for Technology Transfer, Vol. 4, No. 3, pp. 349{
358, May 2003.
Number of citations: 8

2. Articles in refereed collections and conference proceedings (2003{2011)

1. E. Axelsson, Emil, K. Claessen, M. Sheeran, J. Svenningsson, Josef; D. Engdal, A. Pers-
son. The Design and Implementation of Feldspar: an Embedded Language for Digital
Signal Processing. IFL 2010, the 22nd Symposium on Implementation and Application
of Functional Languages (accepted to appear in post-symposium proceedings after ref-
ereeing, to appear 2011).
Number of citations: 0

2. Emil Axelsson, Gergely D�evai, Zolt�an Horv�ath, Karin Keijzer, Bo Lyckeg�ard, Anders
Persson, Mary Sheeran, Josef Svenningsson and Andr�as Vajda. Feldspar: A Domain
Speci�c Language for Digital Signal Processing algorithms. In Proc. Eighth ACM/IEEE
International Conference on Formal Methods and Models for Codesign, MemoCode,
IEEE Computer Society, 2010.
Number of citations: 5

3. J. Svensson, M. Sheeran and K. Claessen. GPGPU Kernel Implementation and Re�ne-
ment using Obsidian. Proc. Seventh International Workshop on Practical Aspects of
High-level Parallel Programming, ICCS, Procedia, 2010.
Number of citations: 6

4. Gergely D�evai, M�at�e Tejfel, Zolt�an Gera, G�abor P�ali, Gyula Nagy, Zolt�an Horv�ath, Emil
Axelsson, Mary Sheeran, Andr�as Vajda, Bo Lyckeg�ard and Anders Persson. E�cient
Code Generation from the High-level Domain-speci�c Language Feldspar for DSPs. In
Proc. ODES-8: 8th Workshop on Optimizations for DSP and Embedded Systems, as-
soc. with IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), 2010.
Number of citations: 4

5. J. Svensson, M. Sheeran and K. Claessen. Obsidian: a Domain Speci�c Embedded Lan-
guage for Parallel Programming of Graphics Processors. In Proc 20th Int. Symposium
on the Implementation and Application of Functional Languages, 2008. Springer LNCS
5386. (accepted to appear in post-symposium proc. after refereeing)
Number of citations: 7

6. K. Subramaniyan, E. Axelsson, M. Sheeran and P. Larsson-Edefors. Layout Exploration
of Geometrically Accurate Arithmetic Circuits. Proceedings of IEEE International
Conference of Electronics, Circuits and Systems, 2009.
Number of citations: 1

7. K. Claessen, N. Een, M. Sheeran and N. S�orensson. SAT-Solving in Practice. In Proc.
9th International Workshop on Discrete Event Systems, IEEE, 2008.
Number of citations: 7

8. M. Sheeran. Searching for pre�x networks to �t in a context using a lazy functional
programming language. In Proc. Int. Workshop on Hardware Design and Functional
Langauges (ed. Martin, Seger, Sheeran), associated with ETAPS conferences 2007. (ac-
ceptance based on peer review of an abstract)
Number of citations: 3

9. M. Bj�ork, M. Sj�alander, J. Hughes, M. Sheeran et al. Exposed Datapath for E�cient
Computing. In Proc. HiPEAC Workshop on Recon�gurable Computing, 2007.
Number of citations: 2

10. H. Eriksson, P. Larsson-Edefors and M. Sheeran et al. Multiplier Reduction Tree with
Logarithmic Logic Depth and Regular Connectivity. In Proc. IEEE Intl Symposium on
Circuits and Systems (ISCAS), IEEE, 2006.
Number of citations: 14

11. E. Axelsson, M. Bj�ork and M. Sheeran. Teaching Hardware Description and Veri�cation.
In Proc. International Conference on Microelectronic Systems Education, IEEE, 2005.
Number of citations: 5

12. E. Axelsson, K. Claessen and M. Sheeran. Wired: Wire-Aware Circuit Design. In Proc.
Int. Conf. on Correct Hardware Design and Veri�cation Methods (CHARME). Springer
LNCS 3725, pp. 5{19, 2005.
Number of citations: 31

13. M. Sheeran. Hardware design and functional programming: a perfect match (invited
paper). In Proceedings 9th Brazilian Symposium on Programming Languages (SBLP05),
2005. (Note: All citations are of the extended Journal version, which has 39 citations.)
Number of citations: 0

14. (�) M. Sheeran. Generating fast multipliers using clever circuits. In Proc. Int. Conf.
on Formal Methods in Computer-Aided Design, FMCAD’04, Springer LNCS 2312, pp.
6-20, 2004.
Number of citations: 43

15. J. Hughes, K. Jeppson, P. Larsson-Edefors, M. Sheeran and P. Stenstr�om and L. \J"
Svensson. FlexSoC: Combining Flexibility and E�ciency in SoC Designs. In Proc.
NORCHIP Conference, 2003.
Number of citations: 9

16. (�) M. Sheeran. Finding regularity: describing and analysing circuits that are almost
regular. In Proc. Int. Conf. on Correct Hardware Design and Veri�cation Methods,
CHARME’03, Springer LNCS 2860, 2003.
Number of citations: 11

3. Other papers, edited proceedings, (2003{2011)

1. E. Axelsson, K. P. Subramaniyan and M. Sheeran and P. Larsson-Edefors. Fast Layout
Exploration Using the Wired System. Swedish System-on-Chip Conference, 2009.
Number of citations: 0

2. W. Swierstra, K. Claessen, C. Seger, M. Sheeran and E. Shriver. Chalk: a language
and tool for architecture design and analysis. Workshop on Designing Correct Circuits,
associated with ETAPS, 2010. (accepted based on refereeing of abstract).
Number of citations: 0

3. Koen Claessen, Carl Seger, Mary Sheeran, Emily Shriver and Wouter Swierstra. High
level architectural modelling for early estimation of power and performance. In Proc.
Int. Workshop on Hardware Design and Functional Languagues, associated with ETAPS,
York, 2009. (a short abstract plus presentation)
Number of citations: 1

4. J. Baumgartner and M. Sheeran (editors). Proc. Int. Conf. on Formal Methods in
Computer Aided Design. IEEE Computer Society. ISBN/ISSN: 0-7695-3023-0, 2007.

5. E. Axelsson, K. Claessen and M. Sheeran. Using Lava and Wired for Design Exploration.
In Proceedings of the sixth international workshop on Designing Correct Circuits, Vi-
enna, Mary Sheeran and Tom Melham (editors). Workshop associated with the ETAPS
conferences, 2006. (acceptance based on refereeing of an abstract)
Number of citations: 1

6. M. Sheeran and I. Parberry. A new approach to the design of optimal parallel pre�x
circuits. Technical Report TR-2006-1, CSE Dept., Chalmers University of Technology,
2006. (This is a tech. report, but it is included because it has attracted citations.)
Number of citations: 10

7. Emil Axelsson, Koen Claessen and Mary Sheeran. Wired - a Language for Describing
Non-Functional Properties of Digital Circuits. In Proc. Int. Workshop on Designing
Correct Circuits (DCC), associated with ETAPS conferences, 2004. Accepted on basis
of short abstract.
Number of citations: 2

5. Freely available computer programs

1. The Feldspar language and compiler for Digital Signal Processing algorithm design is
released (by Ericsson) as open source software. Sheeran’s main role is in developing
the necessary programming idioms, and associated tutorial materials. Release 0.4 is the
current version. http://feldspar.inf.elte.hu/feldspar/

2. The Haskell program for pre�x network design and visualisation, associated with the
journal paper \Functional and dynamic programming in the design of parallel pre�x
networks", JFP 21:1, is freely available via a link given in the paper. http://www.cse.
chalmers.se/~ms/PPSearch/

6. Popular scienti�c presentations

M. Sheeran. Tutorial presentation on Domain Speci�c Langauges, Ericsson Software Re-
search Day, 2009.

VRAPS/VR-Direct b Vetenskapsrådet, Box 1035, SE-101 38 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth Reg date

Kod Dnr

Project title

DateApplicant

Head of department at host University Clarifi cation of signature Telephone

Vetenskapsrådets noteringar
Kod

	AmnesOmrade_S: Computer Science
	Amnesrad_S: NT
	AnsokanKod_A: 2011-11863-89113-49
	AnsokanKod_B: 2011-11863-89113-49
	AnsokanKod_C: 2011-11863-89113-49
	AnsokanKod_S: 2011-11863-89113-49
	appendix: Appendix S
	appendix_C: Appendix C
	Ar_S: 2011 -
	BeredGrp_S: NT-S
	Bidragsform_S: Project Research Grant
	Budget:
	Ar_S1: 2012
	Ar_S2: 2013
	Ar_S3: 2014
	Ar_S4: 2015
	Ar_S5: 2016

	DetBud: List of publications
	Dnr_S:
	ForhandText_A:
	ForhandText_B:
	ForhandText_C:
	ForhandText_S:
	ForvMynd_S: Chalmers tekniska högskola
	hjalptext1: A signature on the application is required not only from the applicant but also from the authorised representative of the host university/institution or equivalent (normally the head of the department or establishment where the research is to be conducted). The signature confirms that the department can accommodate the proposed research, position or equipment; that the costing in the application is approved for the department's part, that any proposed experimentation on human or animal subjects has been reported, and that the applicant has reported any secondary occupations and commercial ties (s)he may have, and nothing inconsistent with good research practice has thereby emerged. The applicant must have discussed these conditions with the representative of the host university/institution or equivalent before the latter approves and signs the application.
	hjalptext6: International Postdoctoral Fellowships are administered by the Swedish Research Council. The only signature required on the application is that of the applicant.
	hjalptext7:
	hjalptext8:
	ProjTitelEng_A: A functional programming approach to hardware acceleration of algorithms
	ProjTitelEng_B: A functional programming approach to hardware acceleration of algorithms
	ProjTitelEng_C: A functional programming approach to hardware acceleration of algorithms
	ProjTitelEng_S: A functional programming approach to hardware acceleration of algorithms
	RegDate_S: 2011-04-13 12:52:51
	S:
	Namn_A: Sheeran, Mary
	Namn_B: Sheeran, Mary
	Namn_C: Sheeran, Mary
	Namn_S: Sheeran, Mary
	PersNr_A: 590310-2266
	PersNr_B: 590310-2266
	PersNr_C: 590310-2266
	PersNr_S: 590310-2266

	sign: Signatures
	SoktBeloppAr_S1: 929
	SoktBeloppAr_S2: 938
	SoktBeloppAr_S3: 985
	SoktBeloppAr_S4: 995
	SoktBeloppAr_S5:
	StartSlut_S: 2012-01-01 -- 2015-12-31
	Text2: 2
	Utlysning_S: Project research grant NT 13 April 2011

