
The Design and Implementation of Feldspar

an Embedded Language for Digital Signal Processing

Emil Axelsson1, Koen Claessen1, Mary Sheeran1, Josef Svenningsson1,
David Engdal2, and Anders Persson1,2

1 Chalmers University of Technology
{emax,koen,ms,josefs,anders.persson}@chalmers.se

2 Ericsson david.engdal@ericsson.com

Abstract. Feldspar is a domain specific language, embedded in Haskell,
for programming digital signal processing algorithms. The final aim of a
Feldspar program is to generate low level code with good performance.
Still, we chose to provide the user with a purely functional DSL. The
language is implemented as a minimal, deeply embedded core language,
with shallow extensions built upon it. This paper presents full details of
the essential parts of the implementation. Our initial conclusion is that
this approach works well in our domain, although much work remains.

1 Introduction

The Feldspar project3 aims to raise the level of abstraction at which Digital Sig-
nal Processing (DSP) algorithms are programmed [1]. Today, such algorithms are
typically implemented in low level C, which is a poor match for the mathemati-
cal notations and concepts used in designing and specifying the algorithms. C is
used because performance is critical in applications such as baseband processing
in radio base stations. Feldspar is a Domain Specific Language (DSL) embedded
in Haskell and generating C. It is designed to raise the level of abstraction at
which the programmer works, without sacrificing vital performance.

Feldspar’s roots in the DSP domain are reflected in the fact that it is an array
programming language. Its design is deliberately minimal, so that it does not
contain other DSP-specific features in its core. However, its architecture permits
the addition of higher level interfaces built upon the minimal core. The intention
to provide a compositional approach to expressing algorithms led to the choice
of a purely functional embedded language, and indeed an early design decision
was to have Feldspar programs look as much like Haskell as possible. The user
works at the GHCi prompt, and the experience is very much like ordinary Haskell
programming.

The following example is a Feldspar program that closely resembles the cor-
responding Haskell function. It computes the bitwise and of a mask with each
integer in the range 0 to n.

3 The Feldspar project was initiated by Ericsson. Feldspar is available open source [5].

mask : : Data Int → Data Int → DVector Int
mask m n = map (m .&.) (0 . . .n)

The close resemblance between Feldspar and Haskell programs remains, even in
larger examples. However, Feldspar is restricted, to enable the generation of code
with reasonable and predictable performance. It is the restrictiveness that allows
us to find a sweet spot in which modular, reusable high level code still permits
the user to control important low level details such as when memory allocation
should occur or which loops in the generated code are to be fused. A major
restriction is the absence of recursion over C data structures. All operations on
arrays must be expressed using higher order functions like map and fold .

This paper provides full details (including all code) of how to design and
implement an embedded language in Haskell that itself resembles Haskell. Com-
bining a minimal core language with an API that gives the user the feeling
of writing in a higher level language was fruitful, and the paper documents a
(simplified) implementation of an embedded DSL that follows this pattern. A
novel combination of implementation techniques is presented, including mixing
of deep and shallow language constructs, typed representation of expressions via
GADTs [10], and smart constructors that perform optimizations on the fly.

2 Language Architecture

A convenient way to implement a language is to embed it within an existing lan-
guage. The constructs of the embedded language are then represented as func-
tions (or similar) in the host language. In a shallow embedding, the language
constructs themselves perform the interpretation of the language. In a deep em-
bedding, the language constructs produce an intermediate representation of the
program. This representation can then be interpreted in different ways.

In general, shallow languages are more modular, allowing new constructs
to be added independently of each other. In a deep implementation, each con-
struct has to be represented in the intermediate data structure, making it much
harder to extend the language. Embedded languages (both deep and shallow)
can usually be interpreted directly in the host language. This is, however, rather
inefficient. If performance is an issue, code generation can be employed, and this
typically requires a deep embedding.

The design of Feldspar tries to combine the advantages of shallow and deep
implementations. We wanted the language to have the modularity and exten-
sibility of a shallow embedding, but we also wanted to use a deep embedding
in order to be able to generate high-performance code. A nice combination was
achieved by using a deeply embedded core language and building high-level in-
terfaces as shallow extensions on top of the core. The low-level core language
is purely functional, but with a small semantic gap to machine oriented lan-
guages, such as C. Its intention is to be a suitable interface to the backend code
generator, while being flexible enough to support any high-level interfaces.

The architecture of Feldspar is shown in Figure 1. The user interface (the
“API” box) exposes the low-level core language as well as some more convenient

Vector lib.

Core language

Core expression

C code

Frontend

Backend

User program
API

Fig. 1. Feldspar architecture

high-level interfaces. The most prominent of the high level interfaces is the Vector
library. But the generality of the core language makes it very easy to implement
other interfaces, and this is something we are currently working on. The user’s
program generates a core expression, the internal data structure used as interface
to the backends. At the moment, there are two backends: one for producing C
code, and one for pretty printing the core expression as Haskell syntax.

3 Core Language

The core language is based around the type constructor Data. For example, a
Feldspar program that computes an integer has type Data Int. Simple expressions
can be formed using the interface of Haskell’s Num class:

numExpr = 3∗4+5 : : Data Int

This expression can be interpreted directly in Haskell:

∗Main> eval numExpr

17

Since the core language is deeply embedded, it is possible to reify the structure
of the program, using the function printCore :4

∗Main> printCore numExpr

program = v2

where

v1 = 3 ∗ 4

v2 = v1 + 5

In addition to the functions of the Num class, the core language provides its
own versions of many basic Haskell functions; for example

not : : Data Bool → Data Bool
div : : Data Int → Data Int → Data Int

4 In this example, we have turned off constant folding, which would otherwise have
reduced the program to the single value 17.

value : : Storable a ⇒ a → Data a

ifThenElse : : (Computable a , Computable b) ⇒
Data Bool → (a → b) → (a → b) → (a → b)

while : : Computable st ⇒ (st → Data Bool) → (st → st) → (st → st)

para l l e l : : Storable a ⇒ Data Int → (Data Int → Data a) → Data [a]

Listing 1. Basic core language constructs

These functions override the corresponding Prelude definitions, and we will use
them without further notice throughout the examples in this paper.

More interesting programs can be built using the constructs in Listing 1. The
Computable class generalizes the Data type by allowing various Haskell structures
to be treated as programs. This will be further explained in section 4.1; for now,
it suffices to know that Data a is a member of Computable (for certain types a).

The construct value turns a Haskell value into a core language literal (a
program that computes a constant value). For numeric literals, this constructor
is inserted implicitly (by fromInteger). This allowed us to use numeric literals
directly in the numExpr example.

The conditional construct, ifThenElse, selects between two functions based on
a boolean condition. The reason for operating on functions rather than values is
that this lets the user control what expression should go into each branch of the
conditional.

The while loop, while, operates on a state of type st. The first argument is a
function that computes the continue condition based on the current state. The
second argument is the body, which computes the next state from the current
state. The result is a function from initial state to final state. Note that this
while loop is a pure function with no side-effects. For example, modulus division
can be computed by repeated subtraction as follows (assuming a, b > 0):

modulus : : Data Int → Data Int → Data Int
modulus a b = while (≥b) (subtract b) a

The parallel construct computes an array from a length and a function that
maps each index to its element. Arrays are denoted by the type Data [a] (where
[a] can be arbitrarily nested). Reusing Haskell’s list type for arrays results in
compact and readable types. Using parallel , a program that computes the first
10 powers of two is defined as follows:

powersOfTwo = para l l e l 10 (λ i → 2ˆ i)

∗Main> eval powersOfTwo

[1,2,4,8,16,32,64,128,256,512]

The purpose of parallel is to capture the fact that the array elements are inde-
pendent. This means that they can be computed in any order, or even in parallel.
However, our C backend does not yet generate parallel code.

data Expr a where
Value : : Storable a ⇒ a → Expr a
Function : : String → (a → b) → Expr (a → b)
Application : : Expr (a → b) → Data a → Expr b
Variable : : Expr a
IfThenElse : : Data Bool → (a :→ b) → (a :→ b) → (Data a → Expr b)
While : : (a :→ Bool) → (a :→ a) → (Data a → Expr a)
Paral le l : : Storable a ⇒ Data Int → (Int :→ a) → Expr [a]

Listing 2. Core Language Representation

data Data a = Typeable a ⇒ Data (Ref (Expr a))

toData : : Typeable a ⇒ Expr a → Data a
toData = Data ◦ ref

fromData : : Data a → Expr a
fromData (Data a) = deref a

Listing 3. Wrapper type for expression nodes

Feldspar’s expressiveness comes from the fact that we can use the host lan-
guage, Haskell, to program powerful abstractions on top of this rather low-level
core language. In section 5, we introduce one such language extension: the vector
library. This is a substantial extension that more or less eliminates the need for
low-level looping constructs in the user’s code.

4 Core Language Implementation

Core expressions (see Figure 1) are represented by the generalized algebraic data
type (GADT) [10] shown in Listing 2. There is a clear correspondence between
the constructs in Listing 1 and those of the Expr type, but also some differences.
Expr is mutually recursive through the types Data (see Listing 3) and (:→). The
latter type is a representation of functions that supports easy introspection and
inlining (see Listing 7).

Each node in an expression tree is wrapped by the Data type, tagging it with
a unique reference and enabling observable sharing [3]. References are handled
through the interface in Listing 4. In this particular implementation, a reference
is just a uniqe tag attached to value (rather than a mutable reference). Observable
sharing is further discussed in section 4.2.

Another purpose of Data is to make sure that each node in an expression
tree stays within the set of types supported by Feldspar. Listing 5 summarizes
the two classes that define two sets of supported types (not to be confused with
the standard Haskell classes of the same name). Storable is the set of zero- or
higher-dimensional arrays of primitive types. These are the types with which the

data Ref a
instance Eq (Ref a)
ref : : a → Ref a
deref : : Ref a → a

Listing 4. Interface to observable sharing

instance Storable Bool
instance Storable Int
−− Etc . for other primitive types

instance Storable a ⇒ Storable [a]

instance Storable a ⇒ Typeable a
instance (Typeable a , Typeable b) ⇒ Typeable (a ,b)
−− Similarly for larger tuples

Listing 5. Supported core language types

user works; when the user has a value of type Data a, a is generally a Storable

type. The Typeable class is the set of nested tuples of Storable types. These types
are only used internally. That is, the user is not allowed to work with types like
Data (a,b), but should use (Data a, Data b) instead (see section 4.1). The methods
of the Storable and Typeable classes are for internal use when generating code.

We can now give a simple definition of the value function from Listing 1,
which introduces a value from the Storable set of Haskell values (meta level) into
Feldspar (object level).

value : : Storable a ⇒ a → Data a
value = toData ◦ Value

Primitive functions are constructed by the Function constructor of the Expr

type. The String argument identifies the function (for use by backends), and the
function argument gives the evaluation semantics. The only way to use a Function

node is to apply it using the Application constructor. The other constructors use
the Data wrapper for their arguments, and the Typeable constraint for Data rules
out function types. The separate application operator enables nested application
of curried functions. Listing 6 gives handy combinators for defining primitive
functions of one and two arguments. Note the nested use of the application
operator (|$|) in function2. Now, defining new primitive functions is trivial:

not : : Data Bool → Data Bool
not = function ”not” Prelude . not

mod : : Data Int → Data Int → Data Int
mod = function2 ”mod” Prelude .mod

So far, we can define simple values and primitive functions. The remaining
core language constructs deal with embedded functions. It is convenient to be
able to treat Haskell functions of the form Data a → Data b as functions in the

(|$ |) : : Expr (a → b) → Data a → Expr b
f |$ | a = Application f a

function : : Typeable b ⇒ String → (a → b) → Data a → Data b
function fun f a = toData $ Function fun f |$ | a

function2 : : Typeable c ⇒
String → (a → b → c) → Data a → Data b → Data c

function2 fun f a b = toData $ Function fun f |$ | a |$ | b

Listing 6. Primitive function constructors

data a :→ b = Lambda (Data a → Data b) (Data a) (Data b)

freshVar : : Typeable a ⇒ () → Data a
freshVar = toData Variable

lambda : : Typeable a ⇒ (Data a → Data b) → (a :→ b)
lambda f = Lambda f var (f var) where var = freshVar ()

apply : : (a :→ b) → Data a → Data b
apply (Lambda f) = f

Listing 7. Representation of embedded functions

embedded language. This view is supported by the :→ type, defined in Listing 7.
This type is used to represent the sub-functions of the higher-order constructs
of the Expr type (for example, the body of the while loop).

Inspecting a function of type Data a → Data b demands that a suitable argu-
ment be conjured up. The function freshVar creates a fresh variable represented
by the Variable constructor. Observable sharing makes it possible to uniquely
identify each such variable.5 An embedded function is constructed by lambda,
which applies a function to a fresh variable, and stores the original function
with the variable and the applied expression. Thus, a term Lambda subst a b can
be seen as a lambda expression, where b is an expression in which the bound
variable a occurs free. The original function subst gives an effective way of substi-
tuting a different expression for the free variable, as done by the apply function.

We now have the building blocks to give simplified definitions of the remain-
ing core constructs. For example, a kind of while loop can be defined as follows:

whileData : : Typeable st ⇒
(Data st → Data Bool) → (Data st → Data st) → (Data st → Data st)

whileData cont body = toData ◦While (lambda cont) (lambda body)

5 This use of observable sharing is arguably dangerous. We have to be careful to
prevent different uses of freshVar from being accidentally shared. We are currently
investigating safer techniques for handling variable binding.

evalE : : Expr a → a
evalE (Value a) = a
evalE (Function f) = f
evalE (Application f a) = evalE f (evalD a)

evalE (IfThenElse c t e a) | evalD c = evalD (apply t a)
| otherwise = evalD (apply e a)

evalE (While cont body in i t) = evalD $ head
$ dropWhile (evalD ◦ apply cont)
$ iterate (apply body) i n i t

evalE (Paral le l l i x f) = map (evalD ◦ apply i x f ◦ value) [0 . . n−1]
where n = evalD l

evalD : : Data a → a
evalD = evalE ◦ fromData

Listing 8. Semantics of expressions

tup2 : : Typeable (a ,b) ⇒ Data a → Data b → Data (a ,b)
tup2 = function2 ”tup2” (,)

get21 : : Typeable a ⇒ Data (a ,b) → Data a
get22 : : Typeable b ⇒ Data (a ,b) → Data b
get21 = function ”get21” fs t
get22 = function ”get22” snd

−− Similarly for larger tuples : tup3 , get31 , get32 , get33 , tup4 , etc .

Listing 9. Tuple operations

The semantics of core expressions is given in Listing 8. This is generalized in
section 4.1.

4.1 Extended Interface

The simple loop whileData has only a single value Data st in its state. We may
often require more values in the state, for example to accumulate a sum while in-
creasing an index. One way to use multiple state variables is to make a compound
state using the tuple operations in Listing 9. However, it is very inconvenient
for the user to have to insert those operations explicitly in the code. Luckily, it
turns out that the tupling/untupling can be automated. Listing 10 introduces
the Computable class. Generally speaking, this class provides an interface between
the Data type and an open set of other, more convenient types. For example, it
is much more convenient to work with (Data Int , Data Bool) than Data (Int ,Bool),
since the former can be constructed and decomposed using Haskell’s ordinary
tuple syntax. Computable allows us to convert easily between the two types using

class Typeable (Internal a) ⇒ Computable a where
type Internal a
internal ize : : a → Data (Internal a)
external ize : : Data (Internal a) → a

instance Storable a ⇒ Computable (Data a) where
type Internal (Data a) = a
internal ize = id
external ize = id

instance (Computable a , Computable b) ⇒ Computable (a ,b) where
type Internal (a ,b) = (Internal a , Internal b)
internal ize (a ,b) = tup2 (internal ize a) (internal ize b)
external ize ab = (external ize (get21 ab) , external ize (get22 ab))

−− Similarly for larger tuples

lowerFun : : (Computable a , Computable b) ⇒
(a → b) → (Data (Internal a) → Data (Internal b))

lowerFun f = internal ize ◦ f ◦ external ize

l i ftFun : : (Computable a , Computable b) ⇒
(Data (Internal a) → Data (Internal b)) → (a → b)

l i ftFun f = external ize ◦ f ◦ internal ize

Listing 10. Computable class

the internalize / externalize functions. It is possible to automate the insertion of
internalize / externalize so that the user will never see a type like Data (Int ,Bool).

For example, here is the general definition of the while loop, and an example of
its use:

while : : Computable st ⇒ (st → Data Bool) → (st → st) → (st → st)
while cont body = l i ftFun (toData ◦While contL bodyL)
where contL = lambda (lowerFun cont)

bodyL = lambda (lowerFun body)

gcd : : Data Int → Data Int → Data Int
gcd a b = f s t $ while cont body (a ,b)
where cont (,b) = b > 0

body (a ,b) = (b,a ‘mod‘ b)

For the system to remain sound, the functions internalize and externalize are
not allowed to change the semantics of the program, as formalized by the rule:

evalD ◦ internal ize ◦ external ize == evalD

Computable is very powerful, as it gives a modular way to extend the lan-
guage. For example, in section 5, we extend the language with a new type of

eval : : Computable a ⇒ a → Internal a
eval = evalD ◦ internal ize

ifThenElse : : (Computable a , Computable b) ⇒
Data Bool → (a → b) → (a → b) → (a → b)

ifThenElse cond t e = l i ftFun (toData ◦ IfThenElse cond thenSub elseSub)
where thenSub = lambda (lowerFun t)

elseSub = lambda (lowerFun e)

para l l e l : : Storable a ⇒ Data Int → (Data Int → Data a) → Data [a]
para l l e l l i x f = toData $ Paral le l l (lambda ix f)

Listing 11. Remaining core language definitions

vectors (seen in the introductory examples). The remainder of the core language
implementation is given in Listing 11.

4.2 Inspecting and Optimizing Expressions

Backends, such as printCore , work by inspecting the Expr data structure pro-
duced by core language programs, performing a number of simple but powerful
optimizations. To save space, this section can only give a brief summary of the
techniques used. The main ideas are described in the work on Pan [4].

At the highest level, the language constructors perform local optimizations
on the fly: constant folding, algebraic simplification, etc. Thus, the initial Expr

data structure is already optimized to a certain extent. In addition, we have
experimental support for range-based partial evaluation. A range is an over-
approximation of the set of values a variable might take on. This information
can be used to fold even non-constant expressions. For example, if the ranges of
a and b are known to be disjoint, the comparison a==b can be statically replaced
by value False. This kind of partial evaluation is also performed “on the fly”.

Code duplication can be avoided by the use of the reference equality provided
by observable sharing. Essentially, observable sharing allows us to view the Expr

structure as a directed graph rather than a tree. Once this graph has been
generated, a global transformation pass performs hoisting of loop-invariant code.
The resulting graph can relatively easily be translated to reasonable C code.
While the original motivation behind observable sharing was to reify potentially
cyclic graphs, we use it mainly as a means to make an efficient implementation of
common sub-expression elimination (CSE). However, since there may exist equal
expressions that are not shared, our implementation of CSE is not complete. A
complete CSE can be implemented (less efficiently) by using structural equality
instead of observable sharing.

4.3 Arrays

Core language arrays are denoted by the type Data [a]. Constant arrays are
constructed using the value function, as in value [[1,2,3],[4]] :: Data [[Int]] ,

which creates a constant 2×3 matrix with the first row initialized to [1,2,3] and
the second to [4] . Arrays are always rectangular, so the above constant has two
uninitialized values at the end of the second row.

There are a few more functions that deal with arrays. We have already seen
parallel which constructs an array from an index function. In addition, we have

the two primitive functions

getIx : : Storable a ⇒ Data [a] → Data Int → Data a
setIx : : Storable a ⇒ Data [a] → Data Int → Data a → Data [a]

The expression getIx arr i returns the element at index i in the array arr . Sim-
ilarly, setIx arr i a returns a modified version of arr where the element at index
i has been replaced by a.

5 Vector Library

Many algorithms in the DSP domain operate on ordered collections of data,
which is why we have added special support for vectors. A vector in Feldspar
is much like an array, with one important difference: a vector is guaranteed not
to be represented in memory at runtime, unless it is explicitly converted into a
core-level array. This difference is why we sometimes call vectors virtual.

The support for Vectors in Feldspar is implemented as a shallow embedding
on top of the core language. Implementing vectors as a shallow embedding has
had the benefit of allowing us to experiment with various different vector im-
plementations easily, without having to change any other aspect of the language
and its implementation. Furthermore the backend need not be aware of vectors
and can therefore be simpler.

The vector library provides a set of functions inspired by standard list pro-
cessing functions found in Haskell and other functional languages. This allows
the programmer to write very high level code that is typically rather close to the
mathematical specification of the algorithm. Some example vector functions are
shown in Listing 12. Vector is the type of our virtual vectors and its argument is
the type of its elements. It is very common that the elements of vectors are of
type Data. We often use the abbreviation DVector in those cases.

An example of how to program with the vector library is the function to
compute the moving average of a vector, specified as si = 1

nΣ
i+n−1
j=i aj .

movingAvg : : Data Int → DVector Int → DVector Int
movingAvg n = map ((‘ div ‘ n) ◦ sum ◦ take n) ◦ t a i l s

The function tails produces a vector of all the suffixes of the input vector. The
use of take in the argument of map creates a window into the original vector of a
fixed size. The average of a window is computed using summation and division.

The implementation of the vector type in Feldspar is shown in Listing 12. A
vector, which is zero-indexed, is represented by a pair containing the length and
an index function, as in the core arrays constructed by parallel . This particular
representation has the advantage that all elements in the vector are computed

data Vector a = Indexed { length : : Data Int , index : : Data Int → a }
type DVector a = Vector (Data a)

instance Storable a ⇒ Computable (Vector (Data a))
where type Internal (Vector (Data a)) = (Int , [Internal (Data a)])

map : : (a → b) → Vector a → Vector b
map f (Indexed l i x f) = Indexed l (f ◦ i x f)

take : : Data Int → Vector a → Vector a
take n (Indexed l i x f) = Indexed (min n l) i x f

drop : : Data Int → Vector a → Vector a
drop n (Indexed l i x f) = Indexed (max 0 (l − n)) (λx → i x f (x + n))

t a i l s : : Vector a → Vector (Vector a)
t a i l s vec = Indexed (length vec + 1) (λn → drop n vec)

(. . .) : : Data Int → Data Int → Vector (Data Int)
(. . .) m n = Indexed (n − m + 1) (+ m)

memorize : : Storable a ⇒ Vector (Data a) → Vector (Data a)
memorize (Indexed l i x f) = Indexed l (getIx (para l l e l l i x f))

Listing 12. Implementation of Vector with some smart constructors

independently and can therefore possibly be computed in parallel. Listing 12
shows examples of functions that use this representation. The Computable in-
stances enable vectors to work seamlessly together with the Core language as
explained in section 4.1.

The chosen representation also allows for a very lightweight yet powerful
implementation of vector fusion. Indeed, fusion comes as a byproduct of the
way we have chosen to represent vectors. It is best illustrated by an example.
Consider the following toy function:

squares : : Data Int → DVector Int
squares n = map square (1 . . .n) where square x = x ∗ x

When given an argument m, squares reduces as follows:

map square (1 . . .m) ⇒ map square (Indexed m (+1)) ⇒ Indexed m (square ◦ (+1))

The vector computation is reduced to a single vector. No intermediate vector is
used in the computation. This style of fusion has a significant advantage: vectors
are guaranteed to be fused away and take up no memory during runtime. This
is a very strong guarantee and by far exceeds the kinds of guarantees a typical
optimizing compiler gives. If the programmer wishes to avoid fusing a vector and
store the vector in memory, it is a simple matter of inserting a call to the function
memorize, the effect of which is to store a vector in memory. This function is useful
when elements of a vector are used more than once. If the vector is not written

to memory, then the elements are recomputed each time they are accessed. Such
recomputations can in some cases be very costly, in particular when they consist
of looping over other vectors or arrays. In such cases, using memorize will often
improve the runtime complexity of the function.

In the Computable instance for vectors, the internalize function introduces
memory allocation, similarly to memorize. This means that memory is allocated
in two situations: (1) explicitly by the memorize function, and (2) implicitly by
functions overloaded using Computable when operating on vectors. This scheme
provides a simple and easy to remember contract to the programmer which
offers both predictability and control. It is predictable because fusion will always
happen, except in the above mentioned situations, and the programmer can
control memory allocation and prevent fusion using memorize.

6 Related Work

Embedded Domain Specific Languages are growing in popularity, and are used
in many different domains. We cannot survey the entire field, but will restrict our
attention to work that has influenced ours, or has aspects in common. Feldspar
is compiled, rather than interpreted or used as a library in the host language.
An early forerunner is Pan [4] which is similar to Feldspar in many respects. In
particular, Pan’s treatment of images is similar to Feldspar’s vectors, with their
associated combinator-based style of programming. However, Feldspar is more
general and can handle a larger domain. In implementation, Feldspar differs
from Pan in that it uses observable sharing to control intermediate code size,
and supports fusion of vectors as an optimization.

Several embedded languages support vector programming in the style of
Feldspar. Obsidian [11] is an embedded language for GPU programming that is
in many ways similar to Feldspar. Feldspar’s vectors were inspired by a similar
construct in Obsidian. The main differences arise because Obsidian is specifically
targeted to graphics processors. So, for example, loops are unrolled in Obsidian,
and the programmer has greater control over the location of data in memory
than is currently the case in Feldspar. Repa [6] is a library for array program-
ming in Haskell that shares many similarities with Feldspar’s vectors; the two
approaches were developed independently. Repa uses the same model of fusion
as Feldspar, and also offers programmer controlled memory allocation. It pro-
vides greater reusability through a notion of shape polymorphism, which allows
functions to work over vectors with different shapes. We intend to adopt this
approach in Feldspar.

Other projects aimed at the DSP domain include Spiral [8], Single Assign-
ment C (SAC) [9] and Embedded MATLAB [7]. Spiral automates the production
of high performance libraries for DSP applications (among others). To that end,
it has a high-level language, SPL, for specifying transforms. SPL has no notion
of time or space usage; instead search is used to try to find the best implemen-
tation. SAC is a language aimed at efficient array programming and is similar
to Feldspar in many respects, including the fact that the array programming

model is implemented modularly as a library. However, SAC inherits from C
in the sense that it is a sequential, first-order language; thus, the programming
experience is rather different, and in particular less modular, than in Feldspar.
Embedded MATLAB is an effort to compile MATLAB to C suitable for run-
ning on embedded hardware. Of necessity, Embedded MATLAB is a subset of
full MATLAB. Since it is common to develop and prototype DSP algorithms in
MATLAB, it makes sense to compile these prototypes directly. The compiler is
developed using standard methods, and, as with many optimizing compilers, it
can be difficult to predict the results when many optimizations are combined.

Several methods exist to aid the embedding of a language in Haskell. The
finally tagless technique [2] provides a very powerful and compositional way
of embedding languages. We chose not to use it for two reasons. Firstly, the
types become more awkward; the (result-) type of an embedded program is
simply a qualified type variable. We find it hard to motivate this for Feldspar
beginners. Also, it exposes details of the implementation to the user. Secondly,
we have found finally tagless to be incompatible with our use of observable
sharing. Since language constructs in finally tagless are overloaded, they are
typically implemented as projection functions on dictionaries. When the type
is known at compile time, optimization might remove the dictionary. However,
this optimization will influence whether the term will be shared under observable
sharing or not.

7 Discussion and Future Work

The language presented in this paper has some good sides and some sides that
need more work. Our main impression, based on case studies, is that it actually
works! Case studies have been performed by Ericsson Baseband Research en-
gineers without prior knowledge of functional programming. They successfully
and efficiently implemented a set of signal processing functions and compared
with reference implementations in existing C code.

One of the keys to this result was the decision to use a minimalistic low-level
core language with a high-level interface implemented as a shallow extension to
the core. The minimal core language is quite close to the hardware, making it
relatively easy for the backend to produce C code. At the same time, the core is
flexible enough to support different kinds of high-level interfaces.

Feldspar aims to offer the Haskell style of programming: pure functions, list-
like processing, higher-order functions, etc. It was not obvious that this would
be a good fit for the DSP domain. But now, based on the experience of Ericsson
research engineers, we can say that pure functional programming appears to be
quite well-suited for this task. Admittedly, we need to work on larger examples,
and get feedback from more users before we can draw any real conclusions. But
the initial results are very promising. We believe that a key to achieving high-
level code with good performance is the vector library, which enables powerful
code optimization in a predictable and controllable manner.

While our current language shows great potential, we are also aware of some
quite serious problems. Our simple core language has been a success. It supports
powerful high-level interfaces, such as the vector library, while enabling decent
code generation. However, the current core language fails to produce code of
sufficiently high performance in commonly occurring cases. As an example, take
the append function ++. When compiled to C, it generates the following loop:

for (var2 = 0; var2 < (∗ out 0) ; var2 += 1)
{

var8 = (var2 < var0 0 0) ;
i f (var8) { out 1 [var2] = var0 0 1 [var2] ; }
else { out 1 [var2] = var0 1 1 [(var2 − var0 0 0)] ; }

}

In each iteration, a conditional decides whether to pick elements from the first
argument (var0 0 1) or the second (var0 1 1). In general, having a conditional
inside a loop can prevent the C compiler from doing crucial optimizations. It
would be better to have two loops in sequence, each reading from one of the
arguments. The problem with our current core language is that this desired loop
structure cannot be expressed. There are a large number of useful C code patterns
that are out of reach from the core language. To deal with this problem, we are
working on improving the core language.

Another limitation is the lack of control over memory, due to referential
transparency. The user can control whether or not to use memory for vectors
(via the memorize function), but it is not possible to control memory layout and
memory reuse. A “system layer” being built on top of current Feldspar will
handle memory usage and parallelism. In principle, this system layer will act as
Feldspar’s “IO monad”, but the aim is to have a more declarative interface.

The openness of Feldspar makes it easy to add new domain-specific combina-
tors that capture patterns commonly used in DSP. We are working on combina-
tors for describing streaming computations with feedback, for use, for example,
in defining digital filters. We are developing a more extensive library for algebraic
description of DSP transforms, heavily inspired by the Spiral project [8].

Given that we have chosen to keep Feldspar very close to Haskell one might
wonder why we did not program the DSP algorithms directly in Haskell, and
spend our efforts improving the compilation of Haskell programs. Haskell pro-
grams need an extensive runtime system in order to run, taking up precious
space on embedded platforms where resources are scarce. Furthermore, the cost
model of Haskell is complex, both for time and space consumption. One of the
key design philosophies of Feldspar was to keep these things predictable and
under programmer control.

It remains to be seen how well programmers without functional programming
background can cope with the embedded nature of Feldspar. The reactions from
Ericsson programmers so far have been encouraging. If this turns out to be a
real obstacle, one option might be to implement a stand-alone language instead,
perhaps with a high-level Haskell front end.

8 Conclusion

Feldspar is implemented as an embedded language in Haskell, and its implemen-
tation makes essential use of advanced Haskell features, such as GADTs and
overloading. The implementation is based around a simple, low-level, functional
core language, which can be fairly easily translated to C code. The power of
the implementation comes from the ability to program high-level interfaces as
shallow extensions to the core language. We have presented one such extension
– the vector library – which enables list-like processing and powerful fusion of
vector traversals.

Acknowledgements

This research is funded by Ericsson, Vetenskapsr̊adet, and the Swedish Foun-
dation for Strategic Research. The Feldspar project is an initiative of and is
partially funded by Ericsson Software Research and is a collaboration between
Chalmers, Ericsson and ELTE University, Budapest. We wish to thank Peter
Brauer of Ericsson for working with us on the case studies.

References

[1] Axelsson, E., Dévai, G., Horváth, Z., Keijzer, K., Lyckeg̊ard, B., Persson, A.,
Sheeran, M., Svenningsson, J., Vajda, A.: Feldspar: A Domain Specific Language
for Digital Signal Processing algorithms. In: Proc. 8th ACM/IEEE International
Conference on Formal Methods and Models for Codesign. IEEE (2010)

[2] Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages. J. Func. Prog. 19(05) (2009)

[3] Claessen, K., Sands, D.: Observable sharing for functional circuit description. In:
ASIAN. LNCS 1742, Springer Verlag (1999)

[4] Elliott, C., Finne, S., de Moor, O.: Compiling embedded languages. J. Func. Prog.
13:3, 455– 481 (2003)

[5] Feldspar: http://feldspar.inf.elte.hu/feldspar/
[6] Keller, G., Chakravarty, M., Leshchinskiy, R., Jones, S.P., Lippmeier, B.: Regular,

shape-polymorphic, parallel arrays in Haskell. In: Proc. 15th ACM SIGPLAN
international conference on Functional programming. pp. 261–272. ACM (2010)

[7] Martin, G., Zarrinkoub, H.: From MATLAB to Embedded C, The Math-
works (2009), available at http://www.mathworks.com/company/newsletters/

news_notes/2009/matlab-embedded-c.html
[8] Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong,

J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo,
N.: SPIRAL: Code generation for DSP transforms. Proc. IEEE 93(2) (2005)

[9] Scholz, S.: Single Assignment C: efficient support for high-level array operations
in a functional setting. J. Func. Prog. 13(06), 1005–1059 (2003)

[10] Schrijvers, T., Peyton Jones, S., Sulzmann, M., Vytiniotis, D.: Complete and
decidable type inference for GADTs. In: Proc. 14th ACM SIGPLAN international
conference on Functional programming. pp. 341–352. ACM (2009)

[11] Svensson, J., Sheeran, M., Claessen, K.: GPGPU Kernel Implementation and Re-
finement using Obsidian. In: Proc. Seventh International Workshop on Practical
Aspects of High-level Parallel Programming, ICCS. Procedia (2010)

