
Kansliets noteringar
Kod

Dnr

2009-11863-70101-37

2009
Project Research GrantArea of science

Natural and Engineering Sciences
Announced grants

Research grants NT 15 april 2009
Total amount for which applied (kSEK)

2010 2011 2012 2013 2014

843 868 892

Vetenskapsrådet, SE-103 78 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

APPLICANT
Name(Last name, First name) Date of birth Gender

Sheeran, Mary 590310-2266 Female
Email address Academic title Position

ms@chalmers.se Professor Professor
Phone Doctoral degree awarded (yyyy-mm-dd)

+46 31 772 1013 1984-02-20

WORKING ADDRESS
University/corresponding, Department, Section/Unit, Address, etc.

Chalmers tekniska högskola
Computer Science and Engineering
Software Engineering and Technology

41296 Göteborg, Sweden

ADMINISTERING ORGANISATION
Administering Organisation

Chalmers tekniska högskola

DESCRIPTIVE DATA
Project title, Swedish (max 200 char)

Kontextberoende programgenerering: en tillämpning av funktionell programmering

Project title, English (max 200 char)

Context-aware program generation: an application of functional programming

Abstract (max 1500 char)

Software development is often today a costly, tricky hand-craft, and all the more so in cases where high performance is required. We
would like to raise the level of abstraction at which software developers work, freeing them from the tyranny of details that would be
better left to automated tools. But in high performance applications, the developer must still, somehow, be given control of those
details that are vital to the performance of the resulting code. The need to increase productivity without sacrificing control over fine
details in the result is an apparent contradiction. We have observed it in many applications, ranging from wire-aware hardware
design, through graphics processor programming to the development of digital signal processing (DSP) software for telecoms
base-stations. This project will develop search-based program generation methods that increase programmer productivity and give
high performance results.

Abstract language

English
Keywords

Kod

2009-11863-70101-37
Name of Applicant

Sheeran, Mary

Date of birth

590310-2266

Vetenskapsrådet, SE-103 78 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Research areas

Computer Science
Review panel

NT-S
Classification codes (SCB) in order of priority

160100, 160102, 160601
Aspects

Continuation grant

Application concerns: New grant
Registration Number:
Application is also submitted to

similar to: identical to:

HUMAN AND ANIMAL STUDIES
Human studies

No approved Human studies.
Animal studies

No approved Animal studies.

EQUIPMENT APPLIED FOR IS ALSO TO BE USED IN THE FOLLOWING RESEARCH PROJECT
Research project 1 Funding source

Project title and applicant

OTHER CO-WORKER
Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Kod

2009-11863-70101-37
Name of Applicant

Sheeran, Mary

Date of birth

590310-2266

Vetenskapsrådet, SE-103 78 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

Name(Last name, First name) University/corresponding, Department, Section/Unit, Addressetc.

,

Date of birth Gender

Academic title Doctoral degree awarded (yyyy-mm-dd)

ENCLOSED APPENDICES
A, B, C, N, S

APPLIED FUNDING: THIS APPLICATION
Funding period (planned start and end date)

2010-01-01 -- 2013-01-01
Staff/ salaries (kSEK)

Main applicant % of full time in the project 2010 2011 2012 2013 2014

Mary Sheeran 25 281 291 301

Other staff

Doctoral student 80 392 407 421
travel and invited researchers 120 120 120

computers and computer support 50 50 50

Total, salaries (kSEK): 843 868 892

Scientific equipment < 170 kSEK, materials, other costs (kSEK) 2010 2011 2012 2013 2014

Total, other costs (kSEK):

Scientific equipment between 170 kSEK and 2000 kSEK (kSEK) 2010 2011 2012 2013 2014

Total, equipment (kSEK):

Total amount for which applied (kSEK)

2010 2011 2012 2013 2014

843 868 892

ALL FUNDING
Other VR-projects (granted and applied) by the applicant and co-workers, if applic. (kSEK)

Funded 2009 Funded 2010 Applied 2010Proj.no.(M) or reg.nr.

2006-4687 675
Project title Applicant

A functional programming based
approach to circuit design and
verification challenges

Mary Sheeran

Funded 2009 Funded 2010 Applied 2010

3453

Kod

2009-11863-70101-37
Name of Applicant

Sheeran, Mary

Date of birth

590310-2266

Vetenskapsrådet, SE-103 78 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Project title Applicant

Putting functional programming to
work (rambidrag application (ICT))

John Hughes

Funded 2009 Funded 2010 Applied 2010

603

Project title Applicant

Method to limit Nanoscale Circuit
Variability

Per Larsson-Edefors

Funded 2009 Funded 2010 Applied 2010

452

Project title Applicant

ID proj. Domain-Specific Language
for Real-Time Embedded Software

Anders Persson, Ericsson

Funded 2009 Funded 2010 Applied 2010

657

Project title Applicant

IFA prof. Functional programming
for improving development of digital
signal processing algorithms

E. Axelsson

Funds received by the applicant from other funding sources, incl ALF-grant (kSEK)

Total Proj.period Applied 2010Funding source

SSF 1549 2009-2010
Project title Applicant

Research Visit to Ericsson,
Programming Languages for DSP

Mary Sheeran

Total Proj.period Applied 2010Funding source

Intel 398 2009
Project title Applicant

New abstraction methods to face
challenges caused by

Mary Sheeran, Koen Claessen, Per Larsson-Edefors

Total Proj.period Applied 2010Funding source

Ericsson 1000 2009
Project title Applicant

DSL4DSP (funding for postdoc) Mary Sheeran

Kod

2009-11863-70101-37
Name of Applicant

Sheeran, Mary

Date of birth

590310-2266

Vetenskapsrådet, SE-103 78 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

POPULAR SCIENCE DESCRIPTION
Popularscience heading and description (max 4500 char)

Det är mot dagens radio-basstationer vi kopplar upp oss när vi använder våra mobiltelefoner och bärbara datorer. Mjukvaran som
utför stationernas signalbehandling (eng. Digital Signal Processing, DSP) är mycket svår att skriva. Programmeraren måste tänka på
klockcykler och hur minnesaccesser ska optimeras. Hon måste också se till att tillfullo utnyttja de specialiserade DSP-processorer
som tar hand om dom tunga beräkningarna. Således blir denna mjukvaruutveckling både långsam och kostsam. Ericsson är mycket
framgångsrika både vad gäller utveckling av sådan mjukvara och att sälja basstationer. Vi skulle vilja förbättra denna
mjukvaruutveckling genom att ge programmeraren ett bättre programmeringsspråk att arbeta i. Men på samma gång vill vi inte ge
upp den höga prestanda som gör att basstationerna fungerar (och säljs) så väl. Detta är den stora forskningsutmaningen. Hur kan vi
utveckla programmeringsspråk och tillhörande kod-genereringsmetoder som låter användaren arbeta på en högre nivå samtidigt
som de ger den kontroll över detaljer som behövs för att uppnå hög prestanda? Vi vill utveckla nödvändig programmeringsteknologi
för att lösa detta dilemma. I synnerhet kommer vi använda nya idéer om att söka efter program som är anpassade till en viss
omgivning, och därmed fungerar effektivt. Vi kommer att demonstrera våra metoder på telekom-programmering i ett projekt
gemensamt med Ericsson. Vi kommer också visa hur våra metoder kan generaliseras till andra applikationsområden. Det långsiktiga
målet är att lösa det svåra problemet med att programmera datorer som innehåller väldigt många processorer (100- eller 1000-tals
istället för 8 eller 16). Sådana datorer kommer finnas, vare sig vi vill det eller ej. Att förstå hur man ska programmera dessa är en
fascinerande forskningsutmaning.

VRAPS/VR-Direct bilaga 2004.Ae Vetenskapsrådet, SE-103 78 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix A
Research programme

Appendix A M. Sheeran, 590310-2266, context-aware program generation

Context-aware program generation: an application of functional
programming

The problem that we want to solve

Software development is often today a costly, tricky hand-craft, and all the more so in
cases where high performance is required. We would like to raise the level of abstraction
at which software developers work, freeing them from the tyranny of details that would
be better left to automated tools. But in high performance applications, the developer
must still, somehow, be given control of those details that are vital to the performance of
the resulting code. The need to increase productivity without sacrificing control over fine
details in the result is an apparent contradiction. We have observed it in many applications,
ranging from wire-aware hardware design, through graphics processor programming to the
development of digital signal processing (DSP) software for telecoms base-stations. This
project will develop search-based program generation methods that increase programmer
productivity and give high performance results.

State of the Art and Preliminary Results

In programming of both digital signal processors and graphics processors, the programmer
typically needs to be aware of the underlying architecture in order to achieve high perfor-
mance. Domain specific languages (DSLs) have proved suitable in cases where one wants
to give the user fine control, with the restriction to a specific domain being what makes
this feasible. Examples in hardware design include work at Chalmers on Lava, a DSL for
hardware netlist generation [2] and Wired, which enables wire-aware low level hardware
design [1].

DSLs for hardware design Lava is a system that supports the design and verification
of circuits [2]. It is an extensible domain specific language embedded in the standard
functional programming language Haskell. Lava descriptions encode standard ways to build
circuits (connection patterns) as higher order functions. The standard Haskell function map

corresponds to placing a component on each element of a list of inputs (a bus).
For example, an important pattern is parallel prefix or scan. Given inputs [x0, x1 . . . xn−1],

the prefix problem is to compute each x0 ◦ x1 ◦ . . . ◦ xj for 0 ≤ j < n, for ◦ an associative,
but not necessarily commutative, operator. In a construction attributed to Sklansky, one
can perform the prefix calculation by first, recursively, performing the prefix calculation on
each half of the input, and then combining (via the operator) the last output of the first
of these recursive calls with each of the outputs of the second, see Figure 1. To express the
construction in Lava, we make use of two connection patterns. two :: ([a] -> [b]) ->

[a] -> [b] applies its component to the top and bottom halves of the input list, concate-
nating the two sub-lists that result from these applications. Thus, two (sklansky plus)

applied to [1..10] gives [1,3,6,10,15,6,13,21,30,40]. Left-to-right serial composition
is written as infix ->-. The final step (implemented by the function sfan) is to combine the
last output of the first recursive call (15 in the example) with each element of the second.

1

Appendix A M. Sheeran, 590310-2266, context-aware program generation

sklansky op [a] = [a]

sklansky op as = (two (sklansky op) ->- sfan) as

where

sfan as = a1s ++ a2s’

where

(a1s,a2s) = splitAt ((length as + 1) ‘div‘ 2) as

a2s’ = [op(last a1s,a) | a <- a2s]

*Main> simulate (sklansky plus) [1..10]

[1,3,6,10,15,21,28,36,45,55]

Fig. 1. The Sklansky construction for 32 inputs, illustrated using a diagrammatic notation for prefix networks. It
recursively computes the parallel prefix for each half of the inputs; the dotted box shows the first of these recursive
calls. It then combines the last output of that call with each of the outputs of the other recursive call.

Lava is a staged language, in that Lava descriptions like this are run (in this case after
choice of operator and input size); symbolic simulation is thus used to generate an internal
representation of the circuit, which can then be written out in various ways, and passed
to synthesis and formal analysis tools. This pattern of program or circuit generation is
typical of embedded domain specific languages [11, 5]. Wired can be viewed as an extension
of Lava that describes not only logic function (as technology mapped netlists) but also cell
placement and some aspects of wiring.

Also based on a functional DSL, Intel’s own work on the IDV system (Integrating Design
and Verification, [15]) provides a good demonstration of the value of such an approach.
It has been shown to enable design exploration, while maintaining correctness via local
transforms and associated formal verification. In high performance processors, where design
methods are pushing the limits of the technology, providing a system that really supports
rather than hinders the designer has demanded a good understanding of which details
should be taken care of by automated tools, and which should be left under the control
of the designer. Wired was developed in collaboration with Intel, and we have a current
project to develop a new DSL and abstraction methods to enable early estimation of power
and performance from high level microprocessor models.

DSLs for GPU programming Graphics processing units (GPUs) have moved from being
specialised graphics engines to being suitable to tackle applications with high computa-
tional demands. For a recent survey of the hardware, programming methods and tools, and
successful applications, the reader is referred to [7]. Unlike for current multicore machines,
the question for GPUs is how to keep many small processors busy. We are investigating a
combinator-based approach to the kind of data-parallel programming that this demands,

2

Appendix A M. Sheeran, 590310-2266, context-aware program generation

via a DSL called Obsidian that currently generates CUDA code (NVIDIA’s data-parallel
variant of C). In Obsidian, the Sklansky example is written

sklansky op 0 = Pure id

sklansky op n = two (sklansky op (n-1)) ->- Pure (fan op) ->- sync

fan op arr = conc (a1, (mapArray (op c) a2))

where (a1,a2) = halve arr

c = a1 ! (fromIntegral (len a1 - 1))

A small part of the generated CUDA code is

sm1[tid] = ((unsigned int)((((tid & 0xffffff0f) < 8) ?

((int)(sm2[tid])) :

(((int)(sm2[((tid & 0xf0) | 0x7)])) + ((int)(sm2[tid]))))));

__syncthreads();

sm2[tid] = ((unsigned int)((((tid & 0xffffff1f) < 16) ?

((int)(sm1[tid])) :

(((int)(sm1[((tid & 0xe0) | 0xf)])) + ((int)(sm1[tid]))))));

__syncthreads();

and there are six further such blocks of three lines plus a synchronising operation (three
on either side of these two). Each kernel has a particular thread-id (tid) and works on the
calculation of one element of the eventual output array. This illustrates our aim of writing
higher level descriptions using combinators like two and generating bit-twiddling code that
gives good performance on the GPU.

The generation is done by the applicant’s doctoral student J. Svensson, co-supervised
by K. Claessen. It makes advanced use of type classes and arrows in Haskell, and also
uses Boolean simplification. This work is very recent and has not yet been published. We
regard it as very promising. For a description of early work on Obsidian and a survey
of GPU programming languages, see [22]. The most closely related work that we have
found is GPUGen [13], which in turn builds upon recent work on Nested Data Parallel
programming in Haskell [3]. Our work is distinguished by its aim to both raise the level
of abstraction and aim for high performance. Functions like scan, whose implementation
we want to explore, are primitives in other approaches that aim to raise the level of ab-
straction at which programmers work. However, we also feel that ideas related to fusion in
Data-Parallel Haskell will be applicable in both our work on GPU programming and in the
DSL for DSP described in the following section. Our expected application area is currently
library functions in GPGPU and graphics programming, with widely used examples being
sorting, stream reduction and scan. A typical Obsidian user may well write such frequently
used functions that are needed in many variants in Obsidian, while writing other critical
code directly in CUDA or OpenCL. We have local access to graphics and GPU program-
ming expertise in Ulf Assarsson and his group, and the development of Obsidian is much
influenced by our discussions with this group.

A DSL for DSP and related work Since the beginning of 2009, we have been working
on moving these ideas (embedded DSLs and combinators) over to the development of
the kind of hardware-like software that is used in the DSP parts of baseband processing

3

Appendix A M. Sheeran, 590310-2266, context-aware program generation

in radio base stations. We are developing a domain specific language for the design and
implementation of the DSP algorithms that are the core of the signal processing – the
computational kernels that consume most of the cycles. These algorithms form the data-
path of the processing, as distinct from the control part, which repeatedly calls them with
widely varying parameters, and with very high demands on throughput. The DSL4DSP
project involves the Functional Programming Group at Chalmers and ELTE University,
Budapest. Ericsson funds one Chalmers postdoc (Axelsson, who developed Wired), the
ELTE group and several Ericsson participants with expertise in both research and product
development. The intention is that the resulting language be open source, and used and
supported by DSP vendors, so this is an ambitious project. We will not succeed unless
we generate high performance code. The Swedish Foundation for Strategic Research (SSF)
funds the applicant’s participation under a Mobility initiative [16], so that she is working
80% on the project at Ericsson during 2009, and will have some “repatriation” funding
during 2010. One of the main aims of this application is to tackle the longer term and less
domain-specific research questions arising from this work. Axelsson will also apply for an
IFA-project from VR to continue the work at Ericsson. A separate Ericsson-internal project
is developing an embedded DSL for the control part of the processing. That work will be
the subject of an industrial doctoral student (ID) application to VR (from A. Persson at
Ericsson).

The DSL builds upon ideas in Lava and Wired. It is purely functional and again staged,
but this time the internal representation is a much more sophisticated graph structure. It
is no longer sufficient just to unroll the combinators as in Lava, for example. There are
considerable possibilities for optimisation, based on ideas such as stream fusion [4], and this
will be a major focus of the above-mentioned IFA application. (The ELTE group is building
the backend that generates C (eventually with intrinsics) from the internal graph structure.)
The project was also inspired by Galois Inc’s Cryptol language for the development and
verification of crypto algorithms [14]. The generation of VHDL (for hardware generation)
from Cryptol was inspired by the applicant’s PhD thesis and early work on retiming [17].
Andy Gill, who did much of this work, is now back in academia and we are planning
collaboration.

In the development of DSP signal processing, the final software must be partitioned
onto the platform, and current tools do not provide good support for this. The result is
that necessary repartitioning (for instance when telecom standards change) is alarmingly
time-consuming. In addition, it is not possible to explore different possible partitions, or to
exploit possibilities for optimisation. For core algorithms, the programmer should be able
to place data in the memory hierarchy with sufficient precision and control. But at the
same time, the ideal would be to write platform-independent code, and then use a model
of the architecture to guide the generation of platform-dependent code. This problem of
portability arises both when one considers a single DSP chip (where even moving to another
processor from the same vendor can be difficult) and when one considers the collection of
processors and accelerators that makes up a platform. Another layer of complexity arises
when some of the processors are multicores. Given the nature of many DSP algorithms, it
seems likely that future platforms will include highly data-parallel manycore architectures.

4

Appendix A M. Sheeran, 590310-2266, context-aware program generation

The question is “How can we give the programmer control over the fine details that
lead to high performance solutions, while maintaining the goal of writing easily portable
code?”. We believe that some of the building blocks of a solution can be found in our
own earlier work on algorithmic circuit generation and on ways to enumerate and analyse
possible solutions, leading to the use of search.

More advanced generation methods In Lava, we have explored the notion of clever
circuits – circuits that have additional Haskell-level shadow parameters carrying non-
functional properties, allowing them to adapt to their contexts during circuit genera-
tion [18]. We demonstrated the method on multiplier reduction trees [19]. In the multiplier
reduction trees, the cells can be thought of as being placed initially, and it is only the wiring
between them that is chosen during generation. In that work, the context consisted only
of the shadow values capturing input delays. One can go further and have the context cap-
ture both input and required output delays. One can then enumerate and choose between
a large number of possibilities for the entire topology of the network, using its recursive
decomposition and dynamic programming. We have had considerable success in doing this
for parallel prefix networks. We started with elaborate ways to decompose the problem
so that one solved different slices of the circuit separately [20], in an effort to make the
problem feasible. We have recently found, however, that one can tackle the entire network
(of fixed size but for large number of inputs) by exploiting knowledge of which recursive
decompositions are likely to give good (that is small) networks. The resulting generator is
pleasingly small and the results improve on known best solutions. We have also linked this
search to Wired, to enable search for low power networks. A key point here is that one is
making significant use of the host language in writing sophisticated generators; so the fact
that the DSLs we study are embedded is important.

Fig. 2. The new construction for 128 inputs, depth 7. It uses 364 operators, compared to 369 for Ladner Fischer [12]
(and 448 for Sklansky).

This work has very recently in turn led to the development of a new parallel prefix
algorithm that does not require search, but that grew out of the insights gained from seeing
the results of search in many contexts. In the new algorithm, the number of operators (the
size) for a minimum depth network with w = 2n inputs approaches 3.5w, while the Ladner
Fischer algorithm approaches 4w. This is a substantial improvement, different from and
also improving considerably on the more advanced of Fich’s prefix algorithms [10]; for
instance, it requires 14662683 operators for 222 = 4194304 inputs, while the corresponding
sizes for Ladner Fischer and Fich are 16580799 and 16558745 respectively. We would like
to investigate ways to exploit the new algorithm. We do not yet know if parallel prefix is a
one-off example in which design exploration using search enables the development of new

5

Appendix A M. Sheeran, 590310-2266, context-aware program generation

algorithms. It would be interesting to try to make the approach more systematic and apply
it to other standard algorithms.

When charting related work for the DSL4DSP project, we have found research with
very similar aims in the SPIRAL project at CMU [9]. The flagship of the project is the SPI-
RAL program generation system, which, entirely autonomously, generates platform-tuned
implementations of signal processing transforms such as the discrete Fourier transform,
discrete cosine transform, and many others. This kind of autotuning also plays a large role
in the Berkeley view of likely developments in parallel programming and architectures [8].
The Berkeley view considers motifs (or dwarfs): related groups of problems, with typical
examples being dense linear algebra, combinational logic and finite state machines. SPI-
RAL is considered to set the standard for library generation for the spectral motif [23].
We are excited by the work on SPIRAL, not only because of its evident success, but also
because it is very much in line with our own ideas about the use of search, and is clearly
applicable to one of our chosen application areas (DSP algorithms). We expect to borrow
ideas from SPIRAL.

What we will do in this project

Clever circuits plus combinators plus search seems to be a very powerful combination. The
main aim of this project will be to explore this combination and its application to program
generation both for DSP algorithms and for GPU programming.

The planned tasks for the first period of the project are as follows:

1) Continue work on search in algorithm development (prefix). Implement new al-
gorithms in Obsidian. Try to generalise the method to other common data-independent
algorithms.

2) Consider the case where the most natural way to express an algorithm is to make
modifications (using the clever circuits idea) to one that does more but is very regular.
An example is our earlier work on generating median networks from sorting networks [18],
where it was possible to reduce the number of comparators needed to produce the median
of 25 inputs (a common operation in graphics). This kind of application of clever circuits
has not been much explored and is promising. In the DSP area, we will explore its use in
the development of sorting networks that are well matched to DSP processors.

3) Model a single DSP processor and explore the use of search to map kernel algo-
rithms to it effectively. This is a good initial test because DSPs display varying degrees
of parallelism (both VLIW and replicated ALUs and other accelerators). We also see the
possibility (later) of applying these ideas even to the control part and entire platforms.
This work should be done in collaboration with others in the DSL4DSP project.

4) Explore ways to find and exploit optimisations when algorithms “meet”. A prelim-
inary example is the composition of an FFT, some function f and an inverse FFT. One
of the main aims of raising the level of abstraction at which the programmers of DSP
algorithms work is to enable such optimisations. Here, again, we expect search to play a
major role.

6

Appendix A M. Sheeran, 590310-2266, context-aware program generation

We will keep the work concrete through our strong connection to the DSP application
area and our contacts with practitioners at Ericsson. The new approach to software genera-
tion will be tested on case studies both from baseband and media processing. The intention
is also to have Ericsson developers outside the project try out the approach, but this will
only happen if we succeed in producing code that is of close to hand-crafted standard.

The longer term aim will be to enable easy partitioning, design exploration and re-
partitioning, initially for the core algorithms, but later also for the control part. In the first
year, the development of associated verification methods will not be a central goal of the
project (as existing methods work reasonably well). However, we would later like to experi-
ment with adapting and developing Galois Inc’s verification research [6] for this application
area. Another source of inspiration will be recent work by Dill and his students [21].

GPU programming will also be a source of case studies. Our view is that the GPU
and DSP work will continue to converge (as is already happening in recent work about
data-types for vectors or arrays). Longer term work on this project will concentrate on
ways to program highly data-parallel systems (100s or 1000s of processors rather than 8
or 16). Building on our expertise in hardware description, we would also like to tackle the
issue of power-aware programming (which is forecast to become a central research question
if forthcoming telecoms standards are to be widely adopted).

Along with colleagues in the FP group at Chalmers, we will also work on making the
development of DSLs more systematic. A central question there is finding data-structures
and abstractions that allow details to be moved between levels of abstraction so that
working at a higher level can still give high performance results. Both this and the work on
context-aware software generation are covered by the multi-project application from the
Chalmers FP group.

Collaboration

The link to Ericsson (with the DSL4DSP project and the applied for ID and IFA projects)
and the Chalmers Functional Programming Group together provide an excellent research
environment for this proposal. Hughes and Sheeran are both PIs in Chalmers applica-
tion to Vinnova in the strategic research area ICT. This (if funded) should lead to a
further strengthening of our research environment. The group has also applied for a multi-
project grant in functional programming, DSLs and associated verification methods. We
have strong research links to Microsoft Research in Cambridge and to Intel; Satnam Singh
and Carl Seger are visiting faculty, interacting strongly with our group. We expect during
this project to establish research collaboration with Andy Gill (U. Kansas), with Galois
Inc. and possibly with NVIDIA. Locally, we expect to collaborate with Per Stenström in
the development of new parallel programming methods.

Impact

Baseband processing is a key component of Ericsson’s business. If we succeed in developing
a well-functioning embedded DSL for DSP algorithms, we will change the way such algo-
rithms are designed and implemented at Ericsson, reducing development time and cost.

7

Appendix A M. Sheeran, 590310-2266, context-aware program generation

Thus we have already established the route to strong industrial impact. Scientifically, we
hope to contribute to solving the pressing problem of how to program parallel machines,
aiming particularly for highly data-parallel manycore architectures.

References

1. Emil Axelsson. Functional Programming Enabling Flexible Hardware Design at Low Levels of Abstraction.
PhD thesis, CSE Dept., Chalmers University of Technology, 2008.

2. P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in Haskell. In International Conference
on Functional Programming. ACM Press, 1998.

3. M. M. T. Chakravarty, G. Keller, R. Lechtchinsky, and W. Pfannenstiel. Nepal – Nested Data-Parallelism in
Haskell. In Euro-Par 2001: Parallel Processing, 7th International Euro-Par Conference, LNCS. Springer, 2001.

4. Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From lists to streams to nothing at
all. In Proceedings of the ACM SIGPLAN International Conference on Functional Programming, April 2007.

5. Conal Elliott, Sigbjørn Finne, and Oege de Moor. Compiling embedded languages. Journal of Functional
Programming, 13(2), 2003. Updated version of paper by the same name that appeared in SAIG ’00 proceedings.

6. Levent Erkök and John Matthews. Pragmatic equivalence and safety checking in Cryptol. In Programming
Languages meets Program Verification, PLPV’09, Savannah, Georgia, USA, pages 73–81. ACM Press, January
2009.

7. J. D. Owens et al. GPU Computing. Proceedings of the IEEE, 96(5):879–899, 2008.
8. K. Asanovic et al. The landscape of parallel computing research: A view from berkeley. Technical Report

UCB/EECS-2006-183, EECS Department, University of California, Berkeley, Dec 2006.
9. Markus Püschel et al. SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE, special issue

on “Program Generation, Optimization, and Adaptation”, 93(2):232– 275, 2005.
10. Faith Ellen Fich. Two problems in concrete complexity: cycle detection and parallel prefix computation. PhD

thesis, University of California, Berkeley, 1982.
11. Paul Hudak. Modular domain specific languages and tools. In in Proceedings of Fifth International Conference

on Software Reuse, pages 134–142. IEEE Computer Society Press, 1998.
12. Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. J. ACM, 27(4), 1980.
13. S. Lee, M. M. T. Chakravarty, G. Keller, and V. Grover. GPU Kernels as Data-Parallel Array Computations

in Haskell. In Workshop on Exploiting Parallelism using GPUs and other Hardware-Assisted Methods, 2009.
14. J. R. Lewis and B. Martin. Cryptol: high assurance, retargetable crypto development and validation. In

Military Communications Conference, Volume 2, pages 820– 825. IEEE, 2003.
15. Carl Seger. Integrating design and verification - from simple idea to practical system. In Fourth ACM and

IEEE Int. Conf. on Formal Methods and Models for Co-Design, MEMOCODE, 2006.
16. M. Sheeran. Research Visit to Ericsson, Programming Languages for DSP. SM08-0026, SSF, 090101-101231.
17. M. Sheeran. Retiming and slowdown in Ruby. In G.J. Milne, editor, The Fusion of Hardware Design and

Verification. North-Holland, 1988.
18. M. Sheeran. Finding regularity: describing and analysing circuits that are almost regular. In Correct Hardware

Design and Verification Methods. LNCS 2860, Springer, 2003.
19. M. Sheeran. Generating fast multipliers using clever circuits. In Formal Methods in Computer-Aided Design,

FMCAD, volume 3312 of LNCS. Springer, 2004.
20. M. Sheeran. Parallel Prefix Network Generation: an Application of Functional Programming. In Int. Workshop

on Hardware Design and Functional Languages, associated with the ETAPS conferences, 2007.
21. Eric Smith and David Dill. Automatic formal verification of block cipher implementations. In Formal Methods

in Computer-Aided Design (FMCAD). IEEE, 2008.
22. Joel Svensson, Mary Sheeran, and Koen Claessen. Obsidian: A Domain Specific Embedded Language for

Parallel Programming of Graphics Processors. In post-symposium proceedings of 20th International Symposium
on the Implementation and Application of Functional Languages (2008), in press, 2009.

23. Samuel Webb Williams. Auto-tuning Performance on Multicore Computers. PhD thesis, EECS Department,
University of California, Berkeley, Dec. 2008.

8

VRAPS/VR-Direct bilaga 2004.Be Vetenskapsrådet, SE-103 78 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix B
Curriculum vitae

Appendix B CV M. Sheeran, 590310-2266, context-aware program generation

Mary Sheeran

1. First Degree:

Bachelor of Engineering Science degree, Electrical Engineering, Trinity College Dublin,
1980.

2. Graduate Degrees:

M.Sc. and D. Phil degrees in Computation., Oxford University, 1981 and 1984.

3. Postdoc and visiting positions and fellowship awards:

Visiting post-doctoral researcher, Chalmers (Sweden), 1984-1985.
Visiting Scientist at IBM Almaden Research Center (with John Backus), Summer 1987.
Royal Society of Edinburgh BP Research Fellow, 1989-92.
Senior researcher, Prover Technology AB (part-time), 1997-2003.
Currently working 80% on SSF-funded research visit to Ericsson (Prog. Lang. for DSP)

5. Current position

Professor in computing science, Chalmers University of Technology (75% research) since
April 1999. Joined Chalmers as universitetslektor in 1992.

6. Earlier positions

University lecturer in computing science, University of Glasgow, Scotland,1986-1992.
University lecturer in Oxford, 1985-1986
GEC Junior Research Fellow, Programming Research Group, Oxford University, 1983-1984.

7. Parental leave

Parental leave 1985-1986 and 1993-1994 (about 20 months in total)

8. Research supervision to doctorate:

Satnam Singh (1991), Graham Hutton (1992), Koen Claessen (2001), Per Bjesse (2001),
Niklas Een (2005), Magnus Björk (2006), Jan-Willem Roorda (2007), Emil Axelsson (2009).
Currently supervising Joel Svensson.

1

Appendix B CV M. Sheeran, 590310-2266, context-aware program generation

Recent research grants

2009-2010 Research visit to Ericsson (SSF mobility scheme)
2009 Abstraction methods in high level hardware design (Intel donation)
2009 A Domain Specific Language for DSP (Ericsson (funds postdoc))
2007-2009 Functional Circuits (VR)
2008 Formal Verification in ASIC Design (Saab Space and NRF)
2006-2007 Performance by Construction (Intel-custom funding from the Semiconductor
Research Corporation, industrial liaisons from IBM Austin, and Intel Strategic CAD Labs,
Oregon)

Selected professional activities:

Charter member of IFIP Working Group 2.8 (on functional programming).

Steering Committee member for Int. Conference on Formal Methods in Computer
Aided Design (FMCAD)

Chair or PC member for Int. Workshop on Designing Correct Circuits, 1990, 1996,
2002, 2004, 2006, 2008.

Co-chair of International Workshop on Hardware Design and Functional Languages
(with ETAPS) 2007, PC member 2009.

Co-chair Int. Conference on Formal Methods in Computer Aided Design, 2007.

Extensive programme committee work (e.g. MPC 1992,1995,1998, POPL 1997,
CHARME 1999, 2001, 2003, 2005, CAV 2001, FMCAD 1998, 2000, 2002, 2006,
TACAS 2001, 2002, DATE 2003, 2004, 2005, CS Russia 2006, WODES 2008, Haskell
Symposium 2008, TFP 2009)

External Examiner for doctoral theses at Brunel University and at the Universities
of Cambridge, Edinburgh, Glasgow, Kent, York and New South Wales.

Member of examining committee for doctoral theses at Oregon Graduate Institute,
KTH, ENS Paris, and Uppsala University and external assessor for doctoral thesis
at the Turku Centre for Computer Science.

Leader (with John Hughes) of the Functional Programming Research Group at
Chalmers.

Vice chair of VR panel NT-S (Computer Science), 2008.

Chalmers leader and member of Steering Group of DSL4DSP project at Ericsson,
2009-

2

VRAPS/VR-Direct bilaga 2004.Re Vetenskapsrådet, SE-103 78 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix C M. Sheeran, 590310-2266, context-aware program generation

Selected Publications: Mary Sheeran

Note to non computer scientists Conference articles in computer science are peer reviewed
full articles — not 1–2 page abstracts, and are the normal form of refereed publication.
The top conferences in each subfield typically have the highest impact factor within that
field. All articles listed below are selected for publication by a peer review process, unless
otherwise indicated.

Most cited publications (Google Scholar via Harzing’s Publish or Perish,
duplicates merged)

Sheeran’s Hirsch-index is 18 and the following papers are the five most cited.

1. (∗) M Sheeran, S Singh and G St̊almarck. Checking safety properties using induction
and a SAT-solver. In Proc. Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD), Lecture Notes in Computer Science 1954, Springer, 2000.
Number of citations: 235.

2. (∗) G Jones and M Sheeran Circuit design in Ruby. In Formal Methods for VLSI Design:
IFIP WG 10.5 Lecture Notes, North-Holland, 1990.
Number of citations: 202.

3. (∗) (∗∗) P Bjesse and K Claessen and M Sheeran and S Singh. Lava: hardware design
in Haskell. In Proceedings of the third ACM SIGPLAN international Conference on
Functional Programming, ACM Press, 1998.
Number of citations: 200.

4. M Sheeran and G St̊almarck. A tutorial on Stl̊amarck’s proof procedure for propositional
logic. Formal Methods in System Design,16:1, pages 23–58, Springer, 2000.
Number of citations: 135.

5. (∗) (∗∗) M. Sheeran. muFP, a language for VLSI design. In Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming, ACM Press, 1984.
Number of citations: 73.

Journal articles (2002–2009)

6. M. Sheeran. Hardware Design and Functional Programming: a Perfect Match (extended
version). In Journal of Universal Computer Science, JUCS 11 (7), 2005.
Number of citations: 16.

7. (∗) (∗∗) K. Claessen and M. Sheeran and S. Singh. Using Lava to Design and Verify
Recursive and Periodic Sorters. In Software Tools for Technology Transfer, Vol. 4, No.
3, May 2003.
Number of citations: 7.

1

Appendix C M. Sheeran, 590310-2266, context-aware program generation

Articles in refereed collections and conference proceedings (2002–2009)

8. (∗) (∗∗) J. Svensson, M. Sheeran and K. Claessen. Obsidian: a Domain Specific Em-
bedded Language for Parallel Programming of Graphics Processors. In Proc 20th Int.
Symposium on the Implementation and Application of Functional Languages. Springer
LNCS, to appear, 2009. (accepted after post-symposium refereeing)
Number of citations: 1.

9. K. Claessen, N. Een, M. Sheeran and N. Sörensson. SAT-Solving in Practice. In Proc.
9th International Workshop on Discrete Event Systems, IEEE, 2008.
Number of citations: 1.

10. (∗) (∗∗) M. Sheeran. Searching for prefix networks to fit in a context using a lazy
functional programming language. In Proc. Int. Workshop on Hardware Design and
Functional Langauges (ed. Martin, Seger, Sheeran), associated with ETAPS conferences
2007. (acceptance based on peer review of an abstract)
Number of citations: 5.

11. M. Björk, M. Själander, J. Hughes, M. Sheeran et al. Exposed Datapath for Efficient
Computing. In Proc. HiPEAC Workshop on Reconfigurable Computing, 2007.
Number of citations: 1.

12. H. Eriksson, P. Larsson-Edefors and M. Sheeran et al. Multiplier Reduction Tree with
Logarithmic Logic Depth and Regular Connectivity. In Proc. IEEE Intl Symposium on
Circuits and Systems (ISCAS), IEEE, 2006.
Number of citations: 4.

13. E. Axelsson, M. Bjrk and M. Sheeran. Teaching Hardware Description and Verification.
In Proc. International Conference on Microelectronic Systems Education, IEEE, 2005.
Number of citations: 1.

14. (∗) (∗∗) E. Axelsson, K. Claessen and M. Sheeran. Wired: Wire-Aware Circuit Design.
In Proc. Int. Conf. on Correct Hardware Design and Verification Methods (CHARME).
Springer LNCS 3725, pp. 5–19, 2005.
Number of citations: 23.

15. M. Sheeran. Hardware design and functional programming: a perfect match (invited
paper). In Proceedings 9th Brazilian Symposium on Programming Languages (SBLP05),
2005.

16. (∗) (∗∗) M. Sheeran. Generating fast multipliers using clever circuits. In Proc. Int. Conf.
on Formal Methods in Computer-Aided Design, FMCAD04, Springer LNCS 2312, pp.
6-20, 2004.
Number of citations: 18.

17. J. Hughes, K. Jeppson, P. Larsson-Edefors, M. Sheeran and P. Stenström and L. J
Svensson. FlexSoC: Combining Flexibility and Efficiency in SoC Designs. In Proc.
NORCHIP Conference, 2003.
Number of citations: 4.

18. (∗) (∗∗) M. Sheeran. Finding regularity: describing and analysing circuits that are almost
regular. In Proc. Int. Conf. on Correct Hardware Design and Verification Methods,
CHARME03, Springer LNCS 2860, 2003.
Number of citations: 8.

2

Appendix C M. Sheeran, 590310-2266, context-aware program generation

19. K. Claessen, M. Sheeran and S. Singh. Functional Hardware Description in Lava.
Chapter in Fun of Programming, Festschrift for Richard Bird, J. Gibbons and O. de
Moor (eds.), Palgrave Cornerstones in Computing series, 2002.
Number of citations: 2.

Other papers, edited proceedings, tech. reports etc. (2002–2009)

20. E. Axelsson, K. P. Subramaniyan and M. Sheeran and P. Larsson-Edefors. Fast Layout
Exploration Using the Wired System. Swedish System-on-Chip Conference,2009,to be
presented.

21. Koen Claessen, Carl Seger, Mary Sheeran, Emily Shriver and Wouter Swierstra. High
level architectural modelling for early estimation of power and performance. In Proc.
Int. Workshop on Hardware Design and Functional Languagues, associated with ETAPS,
York, 2009. (a short abstract plus presentation)

22. Koen Claessen, Niklas Een, Mary Sheeran, Niklas Sörensson, Alexey Voronov and Knut
Åkesson. SAT-solving in practice. Invited submission to special issue of JDEDS journal
on WODES workshop, 2008. Under review.

23. J. Baumgartner and M. Sheeran (editors). Proc. Int. Conf. on Formal Methods in
Computer Aided Design. IEEE Computer Society. ISBN/ISSN: 0-7695-3023-0, 2007.

24. E. Axelsson, K. Claessen and M. Sheeran. Using Lava and Wired for Design Exploration.
In Proceedings of the sixth international workshop on Designing Correct Circuits, Vi-
enna, Mary Sheeran and Tom Melham (editors). Workshop associated with the ETAPS
conferences, 2006. (acceptance based on refereeing of an abstract)
Number of citations: 1.

25. M. Sheeran and I. Parberry. A new approach to the design of optimal parallel prefix
circuits. Technical Report TR-2006-1, CSE Dept., Chalmers University of Technology,
2006.
Number of citations: 5.

26. Emil Axelsson, Koen Claessen and Mary Sheeran. Wired - a Language for Describing
Non-Functional Properties of Digital Circuits. In Proc. Int. Workshop on Designing
Correct Circuits (DCC), associated with ETAPS conferences, 2004. Accepted on basis
of short abstract.
Number of citations: 2.

27. K. Claessen, M. Sheeran and S. Singh. Lava, an Embedded Language for Structural
Hardware Design. in Proc. Designing Correct Circuits (Sheeran and Melham eds.),
Workshop associated with the ETAPS conferences), 2002. Accepted on basis of short
abstract.

3

VRAPS/VR-Direct bilaga 2004.Re Vetenskapsrådet, SE-103 78 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth

Kod

Title of research programme

Appendix N M. Sheeran, 590310-2266, context-aware program generation

Budget

I apply for a 80% of PhD student salary (the other 20% is covered by teaching) and for
25% of my own salary. I also apply for travel money for me and the PhD student, and
also for inviting guest researchers and colleagues from Ericsson for shorter visits. Finally,
I apply for money for computer equipment and computer support.

Cost 2010 2011 2012
Mary Sheeran, 25%: 281 291 301
PhD student, 80%: 392 407 421
Travel and invited researchers: 150 150 150
Comp. equip. & support 50 50 50

Total: 873 898 922

I have a VR grant that expires at the end of 2009 (2006-46787). This is a new project
application because of the move towards software generation. The DSL for DSP project
mentioned in Appendix A is partly funded by Ericsson. In 2009, they paid 1000 kSEK
to Chalmers to pay for one postdoc (Axelsson). My particaption in the project has been
funded by SSF (SM08-0026, SSF, 090101-101231, 1 548 933 SEK). Of that funding, 549
SEK is for use on my return to Chalmers in 2010, having spent 80% of my time working
on the project at Ericsson during 2009.

I currently have a donation of 398 kSEK from Intel. This is being used to pay a stipen-
diat holder from 1 Feb. 2009. A continuation of this donation is, unfortunately, unlikely
because of severe cost-cutting at Intel, though we will try to get continued funding.

I am a PI in Chalmers’ application under the government’s strategic research initiative
in ICT, along with John Hughes, also from the Functional Programming Group. The result
of that application will be known in June 2009. If we got this funding, it would increase
“faculty money” to Chalmers and would strengthen our research environment.

1

VRAPS/VR-Direct bilaga 2004.Ss Vetenskapsrådet, SE-103 78 Stockholm, tel. +46 (0)8 546 44 000, vetenskapsradet@vr.se

Name of applicant

Date of birth Reg date

Kod Dnr

Project title

DateApplicant

Head of department at host University Clarifi cation of signature Telephone

Vetenskapsrådets noteringar
Kod

	AmnesOmrade_S: Computer Science
	Amnesrad_S: NT
	AnsokanKod_A: 2009-11863-70101-37
	AnsokanKod_B: 2009-11863-70101-37
	AnsokanKod_C: 2009-11863-70101-37
	AnsokanKod_N: 2009-11863-70101-37
	AnsokanKod_S: 2009-11863-70101-37
	appendix: Appendix S
	appendix_C: Appendix C
	appendix_N: Appendix N
	Ar_S: 2009 -
	BeredGrp_S: NT-S
	Bidragsform_S: Project Research Grant
	Budget:
	Ar_S1: 2010
	Ar_S2: 2011
	Ar_S3: 2012
	Ar_S4: 2013
	Ar_S5: 2014

	DetBud:
	Dnr_S:
	ForhandText_A:
	ForhandText_B:
	ForhandText_C:
	ForhandText_N:
	ForhandText_S:
	ForvMynd_S: Chalmers tekniska högskola
	hjalptext1: A signature on the application is required not only from the applicant but also from the authorised representative of the host university/institution or equivalent (normally the head of the department or establishment where the research is to be conducted). The signature confirms that the department can accommodate the proposed research, position or equipment; that the costing in the application is approved for the department's part, that any proposed experimentation on human or animal subjects has been reported, and that the appplicant has reported any secondary occupations and commercial ties (s)he may have, and nothing inconsistent with good research practice has thereby emerged. The applicant must have discussed these conditions with the representative of the host university/institution or equivalent before the latter approves and signs the application.
	hjalptext2: Educational Science (not Travel and Conference grants)
	hjalptext4: Note that the signature of an authorised representative of the host university/institution or equivalent means that the latter undertakes to invest its own resources corresponding to at least one-third of the funds obtained from the Committee for Educational Science, if the application is approved. This co-funding may include existing research if this can be linked with projects in Educational Science. Host universities/institutions or equivalent that are awarded funds must annually submit a special report on how the institution has measured up to the co-financing requirement. For research conducted in collaboration with researchers from other educational institutions, the host university/institution or equivalent is responsible for all agreements with the researchers concerned.
	hjalptext5: International Postdoctoral Fellowships
	hjalptext6: are administered by the Swedish Research Council. The only signature required on the
	hjalptext6_5: application is that of the applicant.
	hjalptext7: Travel, Conference and Publication grants:
	hjalptext8: The only signature required on the application is that of the applicant.
	ProjTitelEng_A: Context-aware program generation: an application of functional programming
	ProjTitelEng_B: Context-aware program generation: an application of functional programming
	ProjTitelEng_S: Context-aware program generation: an application of functional programming
	ProjTitelSv_C:
	ProjTitelSv_N:
	RegDate_S: 2009-04-15 11:52:24
	S:
	Namn_A: Sheeran, Mary
	Namn_B: Sheeran, Mary
	Namn_C: Sheeran, Mary
	Namn_N: Sheeran, Mary
	Namn_S: Sheeran, Mary
	PersNr_A: 590310-2266
	PersNr_B: 590310-2266
	PersNr_C: 590310-2266
	PersNr_N: 590310-2266
	PersNr_S: 590310-2266

	sign: Signatures
	SoktBeloppAr_S1: 843
	SoktBeloppAr_S2: 868
	SoktBeloppAr_S3: 892
	SoktBeloppAr_S4:
	SoktBeloppAr_S5:
	StartSlut_S: 2010-01-01 -- 2013-01-01
	Utlysning_S: Research grants NT 15 april 2009

