Sixth International Workshop on
Designing Correct Circuits

Vienna, 25-26 March 2006

A Satellite Event of the ETAPS 2006 group of conferences

Participants’ Proceedings

Edited by Mary Sheeran and Tom Melham

Preface

This volume contains material provided by the speakers to accompany their presentations at
the Sixth International Workshop on Designing Correct Circuits, held on the 25th and 26th of
March 2006 in Vienna. The workshop is a satellite event of the ETAPS group of conferences.
Previous workshops in the informal DCC series were held in Oxford (1990), Lyngby (1992),
Bastad (1996), Grenoble (2002), and Barcelona (2004). Each of these meetings provided a
stimulating occasion for academic and industrial researchers to get together for discussions
and technical presentations, and the series as a whole has made a significant contribution to
supporting our research community.

The 2006 DCC workshop again brings together researchers in formal methods for hardware
design and verification. It will allow participants to learn about the current state of the art in
formally based hardware verification and design and it is intended to further the debate about
how more effective design and verification methods can be developed.

For some time now, research in hardware verification is being done industrial laboratories, as
well as in universities. Industry is commonly focussed on relatively immediate verification
goals, but also keeps our work grounded in practical engineering problems. To make progress
on the longer-term problems in our field, academic and industrial researchers must continue to
work together on the problems facing microprocessor and ASIC designers now but also into
the future. A major aim of the DCC series of workshops has been to provide a congenial and
relaxed venue for communication among researchers in our community. DCC 2006 attracted
a very strong field of submissions, and we hope the selection the Programme Committee has
made will keep the debate stimulating and productive. We look forward to two great days of
presentations and discussion.

We wish to express our gratitude to the members of the Programme Committee for their work
in selecting the presentations, and to all the speakers and participants for their contributions to
Designing Correct Circuits.

Mary Sheeran and Tom Melham
March 2006

Programme Committee

Dominique Borrione (TIMA, Grenoble University, France)
Elena Dubrova (KTH, Sweden)

Niklas Eén (Cadence Design Systems, USA)

Warren Hunt (UT Austin, USA)

Robert Jones (Intel Corporation, USA)

Wolfgang Kunz (TU Kaiserslautern, Germany)

Per Larsson-Edefors (Chalmers, Sweden)

Andrew Martin (IBM Research, USA)

Tom Melham (Oxford University, UK)

Johan Martensson (Jasper Design Automation, Sweden)
John O’Leary (Intel Corporation, USA)

Carl Pixley (Synopsys, USA)

Mary Sheeran (Chalmers, Sweden)

Satnam Singh (Microsoft Corporation, USA)

Joe Stoy (Bluespec, USA)

Jean Vuillemin (Ecole Normale Supérieure, France)

DCC 2006
Microprocessor Verification Based on
Datapath Abstraction and Refinement

Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Ml 48109-2122

{zandrawiliffiton,karem}@eecs.umich.edu

Counterexample Guided Abstraction Refinement (CEGAR for short) has been shown to be an
effective paradigm in a variety of hardware and software verification scenarios. Originally pio-
neered by Kurshan [7], it has since been adopted by several researchers as a powerful means for
coping with verification complexity. The wide-spread use of such a paradigm hinges, however, on
the automation of its abstraction and refinement phases. Without automation, CEGAR requires
laborious user intervention to choose the right abstractions and refinements based on a detailed
understanding of the intricate interactions among the components of the design being verified.
Clarke et al. [3], Jain et al. [5], and Dill et al. [2] have successfully demonstrated the automation
of abstraction and refinement in the context of model checking for safety properties of hardware
and software systems. In particular, these approaches create a smaller abstract transition system
from the underlying concrete transition system and iteratively refine it with the spurious coun-
terexamples produced by the model checker. The approaches in [3] and [5] are additionally based
on the extraction of unsatisfiability explanations derived from the infeasible counterexamples to
provide stronger refinement of the abstract model and to significantly reduce the number of
refinement iterations.

All of these approaches are examples of predicate abstraction which essentially projects the
concrete model onto a given set of relevant predicates to produce an abstraction suitable for
model checking a given property. In contrast, we describe in [1] a methodology for datapath
abstraction that is particularly suited for equivalence checking. In this approach, datapath com-
ponents in behavioral Verilog models are automatically abstracted to uninterpreted functions
and predicates while refinement is performed manually using the ACL2 theorem prover [6].

The use of (near)-minimal explanations of unsatisfiability forms the basis of another class of
abstraction methods. These include the work of Gupta et al. [4] and McMillan et al. [8] who
employ “proof analysis” techniques to create an abstraction from an unsatisfiable concrete
bounded model checking (BMC) instance of a given depth.

In this talk we explore the application of CEGAR in the context of microprocessor correspon-
dence checking. The approach is based on automatic datapath abstraction as in [1] augmented
with automatic refinement using minimal unsatisfiable subset (MUS) extraction. One of our
main conclusions is the necessity of basing refinement on the extraction of MUSes from both the
abstract and concrete models. Additionally, refinement tends to converge faster when multiple
MUSes are extracted in each iteration. Finally, localization and generalization of spurious coun-
terexamples are also shown to be crucial for refinement to converge quickly. We will describe our
implementation of these ideas in the Reveal system and discuss the effectiveness of the various
refinement options in the verification of a few benchmarks.

DCC 2006

REFERENCES

[1] Z. S. Andraus and K. A. Sakallah, “Automatic Abstraction of Verilog Models”, In Proceed-
ings of 41°° Design Automation Conference 2004, pp. 218-223.

[2] S. Das and D. Dill, “Successive Approximation of Abstract Transition Relations” in 16th
Annual IEEE Symposium on Logic in Computer Science (LICS) 2001.

[3] E. Clarke, O. Grumberg. S. Jha, Y. Lu and H. Veith, “Counterexample-Guided Abstraction
Refinement,” In CAV 2000, pp. 154-169.

[4] A. Gupta, M. Ganai, Z. Yang, and P. Ashar, “Iterative Abstraction Using SAT-based BMC
with Proof Analysis.” In Proc. of the International Conference on CAD, pp. 416-423, Nov.
2003.

[5] H. Jain, D. Kroening and E. Clarke, “Predicate Abstraction and Verification of Verilog,”
Technical Report CMU-CS-04-139.

[6] M. Kaufmann and J. Moore, “An Industrial Strength Theorem Prover for a Logic Based on
Common Lisp.” IEEE Transactions on Software Engineering 23(4), April 1997, pp. 203-213.

[7] R. Kurshan, “Computer-Aided Verification of Coordinating Processes: The Automata-Theo-
ritic Approach,” Princeton University Press, 1999.

[8] K. L. McMillan and N. Amla, “Automatic Abstraction without Counterexamples.” In Inter-
national Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’03), pp. 2-17, Warsaw, Poland, April, 2003, LNCS 2619.

An Implementation of Clock-Gating and
Multi-Clocking in Esterel

Laurent Arditi, Gérard Berry, Marc Perreaut
Esterel Technologies
{Laurent.Arditi,Gerard.Berry,Marc.Perreaut } @esterel-technologies.com

Michael Kishinevsky
Intel Strategic CAD Labs
Michael.Kishinevsky@intel.com

Clock gating and multi-clocking are now common design techniques that are used
for power reduction and for handling systems with different operational frequencies.
They cannot be handled by Classic Esterel language and tools because the Classic
Esterel is a single clock synchronous paradigm and Esterel compilers can generate
single clock circuits only. To cover broader class of design needs, we propose to extend
Esterel to other clocking schemes, including clock-gating and multi-clocking.

This extension must satisfy three major needs:

e enhance the scope of designs that can be modeled in Esterel,

e allows to generate different implementations depending on the final target: a
single clock circuit (e.g. for compiling a specification into a basic FPGA), a circuit
with clock-gating or an equivalent circuit without clock-gating, and a multi-
clock circuit (e.g. for compiling to an ASIC). The choice of the implementation
should be possible at compilation time, without requiring any change in the
source model.

e provide support by all tools comprising the Esterel development framework: the
graphical Esterel entry, software simulation and debug, embedded code genera-
tion, formal verification, optimization.

The core of the implementation for the clock-gating is based on a new Esterel in-
struction called weak suspend. This instruction freezes the control and data registers,
while letting the combinational part computing the values as functions of inputs and
the state. The effect of this instruction is similar to an effect of clock-gating on a hard-
ware block. We developed an Esterel compiler which can generate RTL code (VHDL
and Verilog) with the embedded clock-gating logic or with the regular equivalent logic
to emulate functional behavior of clock-gating without the corresponding power saving.

The multi-clock design in the new Esterel compiler is based on the paradigm of
Globally Asynchronous Locally Synchronous principle and is implemented using a few
language extensions: multi-clock units, clock signals, clock gaters and clock multi-
plexers, and clock definition in module instantiations. The compiler can generate a
truly modular and multi-clock RTL code, or mono-clock RTL code based on the weak
suspend instruction. The latter compilation mode is also used for software simula-
tion and formal verification. The trace equivalence of different forms of the design is
guaranteed correct-by-construction.

We show a few classical multi-clock examples, including a dual-clock FIFO and a
synchronizer based on a four-phase handshake protocol. A formal verification of this
protocol is also discussed in detail.

Using Lava and Wired for design
exploration

Emil Axelsson, Koen Claessen, Mary Sheeran
Chalmers University of Technology

DCC 2006

Design exploration

» Design exploration:

— Comparing a set of designs in terms of non-functional
properties (power, speed, area, manufacturability ...)

» Function is the same, parameters to vary:
— Word lengths
— Netlist topology
— Layout topology
— Wiring topology

Example — carry tree

» Serial (ripple carry)
— O(n) speed/size IO*R{.R*H{.R*p.}R{.R.]

» Parallel (Sklansky) 0] r@ $0]
— O(log n) speed r_—?' 0 40

O(n-log n) size

Non-functional properties

* Routing wires account for

=75% of path delays
=50% of the total power consumption

in a typical high-performance design

» Design exploration requires wire-aware design
methods

Design exploration in Lava

» Functional style:

and2 (a,b) = inv (nand2 (a,b))

Main> simulate and2 (high, low)
low

» Layout combinator style:
and2 = nand2 ->- inv

Design exploration in Lava (2)

» Functional style
— Higher abstraction level, flexibility
— Weak connection to the real hardware
— Non-functional estimation with respect to gates only

« Layout combinator style
— Lower abstraction level, less flexibility
— Stronger connection to hardware
— Limited reasoning about wires

Design exploration in Lava (3)

Simulation with non-standard signal interpretation
(NSI) gives unit-delay estimation

rippAdder op = row op
input = (low, [(high,low), (high,high),(low,low)])

Main> simulate (rippAdder fullAdd) input
([high, low,high], low)

faNSl (a,(b,c)) = (d,d)
where d = maximum [a,b,c] + 1

Main> (rippAdder faNSl) (O, [(0,0),(0,0),(0,00D
(I1,2,3],4)

Design exploration in Lava (4)

Clever circuit generators can adapt to non-
functional properties

=]
=
=

=
=
=

=
=
=

M. Sheeran. Generating fast multipliers using clever circuits. FMCAD 2004.

Limitations in Lava

» Better modeling of wires needed
— No built-in support for geometry

— NSl in functional setting can only handle “forwards”
properties (unit delay)

» Proper modeling of wire delay also needs to
know about load (“bidirectional” properties)

drive strength e
:> load _D
delay >
:>

Wired

Models circuits as relational blocks with detailed
geometry

Wires are first-class circuits

NSI in relational setting supports bidirectional
properties

Allows wire-aware design exploration

Wired — example

bitMultl = and2 *=* (crTO *|]* cro) 'f-l'

and2

bitMult = row bitvultl

evalAndView (bitMult :: Description ())
(XP, pl [XP,XP,XP,XP], XP,XP)

+|—= |l

and?2 | and2 | and2 | and?2

Design flow

Lava: functional

JREE S

Lava: layout combinators

.

Wired

Case study Prefix

Given inputs
x1, X2, ... Xn

Compute
x1, x1*x2, X1*x2*x3, ..., X1*x2*...*Xn

For * an associative (but not necessarily
commutative) operator

Serial prefix

12 8 N

\+ operator

l

8 inputs
depth 7
size 7

1 1.2 ... 1:7 1:8

Composing prefix circuits

1 2 3 m m+l n
| 1 | | |
pl
Im
p2
[[[
1 1:2 1:3 1m 1.m+1 1:n

Composition combinator

compose2 pl p2 as = (init 11s) ++ rils
where

(Is,rs) = splitAt t as

I1s = pl Is

ris = p2 ((last 11s): rs)

t = div (length as + 1) 2

Serial prefix again

ripple op [a]
ripple op [a,b]
ripple op as

= compose2 (ripple op) (ripple op) as

[a]
[a,op(a,b)]

Sklansky

T

withEach op p (a:bs) = a:[op(a,b) | b <- p bs]

sklansky op [a] = [al
sklansky op as
= compose2 (sklansky op) (withEach op (sklansky op)) as

Checking

Main> simulate (sklansky plus) [1..9]
[1,3,6,10,15,21,28,36,45]

Main> sklansky append [[i] | i <- [1..6]]
[[11.[1,2],[1,2,3],[1,2,3,4],[1,2,3,4,5],[1,2,3,4,5,6]]

Pictures are also drawn by non-standard
interpretation. Run the circuit and gather info.
in a data type.

Sklansky in Wired

sklansky 0 = rowN 1 (wyl 0)
sklansky dep = join *=~ (sub ~]|~ sub)
where

sub = sklansky (dep-1)
join = (row wyl ~||* wf) -||- (row d2 ~]|* d)

fgﬁﬂr‘?ﬁﬁﬂ ..*Z_T@f:["?f:f@f;
| sl LA gL LL B
| T T e

10

Limit fanout, number of operators, depth

Produce only depth-size optimal circuits

depth+size = 2n-2 for n inputs

(serial prefix is DSO, but Sklansky is not)

How? Design appropriate building blocks

Slice (also parallel prefix)

\\ \\ x\
N N N
first fork Difference = waist
waist + size = 2n-2 waist size optimal

\

last op.

11

Slice

N

each output is of form 1:i

2

N

N

2

:n

Top tree spreads every input to last output
Bottom tree spreads first input to each output

Slices

L™

Compose d such blocks

waist + size = 2n-2

(waist size optimal)
depth + size =2n-2 (depth size optimal)

depth =d
= waist

Il
\Y%

12

Slices (example)

o |
[
-
2
-
2

Functional Lava

zslices d pop
= composeKN [(zsliceW (d-i) i, zslice(d-i) i)l
i <- [0..d-111

where
zslice b t [a] = [al
zslice b t (a:as) = Is ++ [a2] a as
where
ms = zTop b t as
a2 = pop (a,last ms)
Is = zBot b t (a:init ms)

fTop b 0 [a] = [a]

13

Bottom tree

zBot b 0 [a] = [a]
zBot 0 t [a] = [a]
zBot b t as = Is ++ rs

where
(I1s,rls) = splitAt (ztW b (t-1)) as
e2 = pop (head Ils,head rls)
Is = zBot b (t-1) I1s

rs zBot (b-1) (t-1) (e2:tail rls)

- -

Top tree defined similarly

zslices 7

.

TN TR R WM\

fanout =depth +1

14

max fanout

\

fslices f d ps = composeKkN [..]

Limit fanout

where
(wy,pop) = ps
fslice b t (a:as) = Is ++ [a2]
where
ms = fTop (f-1) b t as
a2 = pop (a,last ms)
TBot (f;l) b €t (a:init ms)

parameters

Is

fanout at top of bottom tree (leaving one for waist)

Bottom tree

parameter to track fanout used up

fBot n b 0 [a] = [a] fanout only one => step down one level

fBot n 0 t [a] = [a]
fBot 1 b t as = (fsT wy ->- fBot f (b-1) t) as
fBot n b t as = Is ++ rs
where
(l1s,rls) = splitAt (ftW (n-1) b (t-1)) as
e2 = pop (head l1s,head rls)
Is = fBot (n-1) b (t-1) lils
rs = fBot T (b-1) (t-1)(e2:tail rls)

15

fslices 4 7

szl

Next step: combinators

forkfirst ——

Slice

16

Slice (combinators)

splitd n p = splitAt n ->- p ->- append

fsliceC b t = splitd 1 (tosnD (fTopC (f-1) b t)) —>-
splitd sz (sbl “besidel6” opfirst)

where
sz =ftW (f-1) b t
sbl = fBotC (f-1) b t “belowl25~ forkfirst

Bottom tree

/ opfirst

forkfirst—'| | | | | | | ||

17

Bottom tree combinator code

no circuit inputs, combinator style

/ id. on singleton list
1

T~

fBotC n O t = wys

fBotC n b 0 = wysl

fBotC 1 b t = fBotC F (b-1) t “belowl256™ map wy

fBotC n b €t = splitd sizl (subbtl “besidel6™ subbtr)

where

sizl = ftW (n-1) b (t-1)
subbtl = fBotC (n-1) b (t-1) “belowl25" forkfirst
subbtr = fBotC f (b-1) (t-1) “belowl56° opfirst

different forms of below and beside combinators, all wire crossings also tiles,
no named wires, communication by abuttment

Now think more about layout size

In above code, have both % firstfork

see red code

No waist .
waist

To squeeze layout, should have same height (for same
parameters).
Implement as two separate (mutually recursive) functions

18

Slice

fsliceCl b t

splitd 1 (tosnD (fTopC (f-1) b t)) —>-
splitd sz (sbl "besidel6™ opfirst)

where
sz = ftw (f-1)) b t
sbl = fBotCW (f-1) b t

waisted version

No waist, fbtcN

fBotCN n O t = wysl
fBotCN n b 0 = wysl
fBotCN 1 b t = fBotCN F (b-1) t “belowl256~ map wy
fBotCN n b t = splitd szl (subbtl “besidel6™ subbtr)
where
szl = ftW (n-1) b (t-1)
subbtl = fBotCW (n-1) b (t-1)
subbtr = fTopgN ¥ (b-1) (t-1) “belowl56" opfirst

calls waisted version (and vice versa)

19

Sanity check

sanity fdm
= and (zipWith (==)
((aslicesC T d m (id,copy,append))
[[al] a <- 1D
(tail (inits 1)))
where 1 = [1..m]

Main> sanity 4 8 57
True

Main> sanity 4 9 109

True
Easy step to Wired
TfBotCN n O t = single (wys 0)
TfBotCN n b 0 = single (wys b)
fBotCN 1 b t = fBotCN F (b-1) t ~~=** forkFirst
fBotCN n b t = subbtl ~~]]~~ subbtr
where
subbtl = fBotCW (n-1) b (t-1)
subbtr = fBotCN f (b-1) (t-1) ~~=** opFirst

20

Non-rectangular blocks

» Descriptions in Wired must be rectangular

* Slices are not! ﬂ

» Trick: represent each slice by three blocks
(triple)

Non-rectangular blocks
Construct triples from pairs
/ /

Left pair "Right” pair

21

New combinators
» Beside for pairs (~~| |~~):
>

» Composing slices:

Now add flexibility of size

e Return to Lava

» Add parameter for number of inputs and
systematically crop individual slices by replacing
some matching top and bottom trees by single
wires

» Have experimented with cropping from right or in
the middle

» Hoped cropping in middle would be better as it
reduces length of longest wire on waist

22

Examples
Wﬁ% lilid

lith

WF) M %‘*\\ NA

57 inputs, cropped from slices 4 8, which has 72 inputs

.
p)

And then back to Wired

» Programming cleverness translates directly

e This is the point!

: ::g il:?ﬂj"ilﬁ{@: 9L gfé J'Qﬂ

57 inputs, cropped (middle) from slices 4 8

ET

23

Design exploration by delay analysis
(Elmaore for fictitious 100nm process, Huang&Ercegovac’97)

800
O Sklansky —

700 B Slices End
600 M Slices Mid

Delay 500

[ps]
400 fanout 4 |
300 ﬂ fanout 4
200
32 64 128
Word length
Design flow
y 4

@ Lava: functional

Lava: layout combinators

.

Wired

24

Conclusion

It works!

Going back and forth between Lava and Wired really
helps. Gives understanding and hence simpler solutions

In the case study, we tried to go to Wird too early, and
got over-complicated code (too many cases)

We think we know what the steps are, but need to do
more case studies

Seem to need a new programming idiom in Lava,
involving explicit calculations of numbers of inputs. Need
to simplify this.

Next

Produce real layout from Wired
Really merge Lava and Wired
More analyses

More case studies

Adaptive circuits

Study power consumption

25

Reachability Analysis with QBF
Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University Linz, Austria

Workshop Designing Correct Circuits

DCC’'06

Vienna, Austria, March, 2006

Model Checking 1]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

e explicit model checking [ClarkeEmerson’82], [Holzmann'91]
— program presented symbolically (no transition matrix)
— traversed state space represented explicitly
— e.g. reached states are explicitly saved bit for bit in hash table

= State Explosion Problem (state space exponential in program size)

e symbolic model checking [McMillan Thesis’93], [CoudertMadre’89]
— use symbolic representations for sets of states
— originally with Binary Decision Diagrams [Bryant'86]

— Bounded Model Checking using SAT [BiereCimattiClarkeZhu'99]

Forward Fixpoint Algorithm: Bad State Reached 2]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

Forward Fixpoint Algorithm: Termination, No Bad State Reachable [3]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

Forward Least Fixpoint Algorithm for Model Checking Safety 4]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

initial states |, transition relation T, bad states B

model- CheCkforward (1, T, B)
=0N=1;
while & # Sy do
if BNSy # 0 then
return “found error trace to bad states”;
=N
SN=SU Img(&) ;
done;
return “no bad state reachable”;

symbolic model checking represents set of states in this BFS symbolically

Unrolling of Forward Least Fixpoint Algorithm 5]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

0: continue? L#S Isol (so)]
0: terminate? L= Vso[-(s0)]
0: bad state? BN, #0 o[l (s0) A B(0)]

1: continue? S #S, Iso,51[(S0) A T(S0,51) Al (s)]
1: terminate?

1: bad state? BNSy#0 Tsp,51[1(s0)
£

2: continue? f#£S Is0,51,52[1(S0) AT(S0,51) AT(S1,9) A
~(

) A
1(s2) V Jto[l (to) A T (to, S2)])]

2: terminate? L= Vs0,51.52[1(So) A T(S0,51) AT (1, %) —
| (s2) v 3to[l (to) A T (to, S2)]]

2: bad state? BHS{, #0 3ds9,51,9[1 (S0) A T(S0,51) AT(S1,52) AB(Sp)]

Termination Check 6]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

r

Vso,-- S+ 1(s0) A A\ T(s,541) —

i=0
r—1
o, ..., tr[1(to) A sra=te A N\ (ti=tir1 vV T(ti,tir1))]]
i=0
initial states
Y [% 81 el ——— S Sy S+l

J(tr = Sr+1)
3 tO tl e 0 ——M = t}"—l

(we allow tj, 1 to be identical to t; in the lower path)

radius is smallest r for which formula is true

Quantified Boolean Formulae (QBF) 7]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

e propositional logic (SAT C QBF)
— constants 0,1
— operators A,—,—, <>,

— variables x,y,... over boolean domain B = {0,1}

e (uantifiers over boolean variables
— valid VX[3Y[X < Y]] (read « as =)

— invalid 3x[Vy[x < V]|

QBF Semantics 8]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

e semantics given as expansion of quantifiers
IX[f] = f[0/x]V f[1/X Vx[f] = f[O/X] A f[1/X]

e expansion as translation from SAT to QBF is exponential
— SAT problems have only existential quantifiers

— expansion of universal quantifiers doubles formula size

e most likely no polynomial translation from SAT to QBF

— otherwise PSPACE = NP

Diameter 9]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

initial states

unreachable states

states with distance 1 from initial states

single state with distance 2 from initial states

Termination Check in Symbolic Reachability is in QBF [10]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

e checking & = Sy in 2nd iteration results in QBF decision problem

VS0, 81,82[l (S0) A T(S0,81) A T(S1,%2) — 1(S2) V 3ol (to) A T (to, Sp)]]

e not eliminating quantifiers results in QBF with one alternation
— checking whether bad state is reached only needs SAT

— number iterations bounded by radius r = O(2")

e so why not forget about termination and concentrate on bug finding?

= Bounded Model Checking (BMC)

BMC Part of Fixpoint Algorithm [11]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

0: bad state? BNy #0 3sg[l (So) A B(0)]

. ; 1 1
1:-continue” %:%Sﬂ 980781 I(&j)" I (80781)” I<SI>

1 1

Y Y

1: bad state? BNSy#0 Iso,51[1(S0) A T(S0,51) AB(S1)]

= (I(sp) V Fto[l (to) A T (to,S2)])]
2 2

Bounded Model Checking (BMC)

) _] DCC'06, Vienna — A. Biere, FMV, JKU Linz El
[BiereCimattiClarkeZhu TACAS’'99]

e look only for counter example made of k states

(the bound)
So S S Si41 Sy So S| M| 8741 Sy
O >0 ®) »O »O or O >0 » O O >
7V 7p NV 7PV PNV TP —p -p -p -p —p
e simple for safety properties Gp (e.g. p=-B)
k—1 k
I(s0) A (A T(ss42) A\ —p(s)
i=0 i=0
e harder for liveness properties Fp
k—1 k k
I(s0) A (A T(si842) A (V T(ses)) A A —p(s)
i=0 =0 i=0

Bounded Model Checking State-of-the-Art

DCC'06, Vienna — A. Biere, FMV, JKU Linz

e increase in efficiency of SAT solvers [ZChaff,MiniSAT,SATelite]

e SAT more robust than BDDs in bug finding

(shallow bugs are easily reached by explicit model checking or testing)

e better unbounded but still SAT based model checking algorithms

— k-induction [SinghSheeranStalmarck’00]

— interpolation [McMillan’03]

e 4th Intl. Workshop on Bounded Model Checking (BMC’06)

e other logics beside LTL and better encodings

e.g. [LatvalaBiereHeljankoJuntilla’04]

13]

12

Induction (14]

_ . DCC'06, Vienna — A. Biere, FMV, JKU Linz
[SinghSheeranStalmarck’00]

e more specifically k-induction

— does there exist k such that the following formula is unsatisfiable

T(s0.5) A AT(S-1. % ABEIA N\ S #S;

0<i<j<k
— iIf UNSAT and -BMC(K) then bad state unreachable

— itis further possible to assume —B(s) for all i <k
e backward version of initialized reoccurrence diameter
e k=0 check whether —B tautological (propositionally)

e k=1 check whether —B inductive for T

Occurrence Diameter Explosion 15]
DCC’06, Vienna — A. Biere, FMV, JKU Linz

e diameter longest shortest path between two states

e occurrence diameter longest simple path

— simple = without reoccurring state

e occurrence diameter can be exponentially larger than diameter
— n bit register with load signal, initialized with zero
— reoccurrence diameter 2" -1

— diameter 1

e applies to backward reoccurrence diameter and k induction as well

Symbolic Transitive Closure [16]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

Transitive Closure

™ = T2
(assuming = C T)
Standard Linear Unfolding Iterative Squaring via Copying
THl(st) =3m[T (s m) AT(m,t)] T2 (st)=3Im[T (sm)A TH (mt)]

Non-Copying Iterative Squaring

T2l (st) = ImveEr[(c— (,r)=(sm)AT— (I,r)=(mt)A T 1,r)]]

Hierarchy [17]

DCC'06, Vienna — A. Biere, FMV, JKU Linz

¢ flat circuit model exponential in size of hierarchical model
— Mg has one signal resp. register
— M1 instantiates M; twice

— Mp, has 2" signals resp. registers

e model hierarchy/repetitions in QBF as in non-copying iterative squaring

— T interpreted as combinatorical circuit with inputs s, outputs t

e conjecture: [Savitch70] even applies to hierarchial descriptions

Experiments

DCC'06, Vienna — A. Biere, FMV, JKU Linz

still work in progress

bounded model checker for flat circuits with k induction

can also produce forward/backward diameter checking problems in QBF

sofar instances have been quite challenging for current QBF solvers

found some toy examples which can be checked much faster with QBF

— for instance the n bit register with load signal discussed before

non-copying iterative squaring does not give any benefits (yet)

DPLL for SAT and QBF

DCC'06, Vienna — A. Biere, FMV, JKU Linz

dpll-sat(Assignment S) [DavisLogemannLoveland62]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
V := next-unassigned-variable()
return dpll-sat(SuU{v false}) Vv dpll-sat(SU{v~ true})

dpll-gbf(Assignment S) [CadoliGiovanardiSchaerfo8]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
V ;= next- outermost -unassigned-variable()

@ := is-existential(v) ? vV : A

return dpll-sat(Su{v— false}) @ dpll-sat(SU{v true})

18]

19|

The Crux of QBF

DCC'06, Vienna — A. Biere, FMV, JKU Linz

Why is QBF harder than SAT?

= YX.3dy. (X<y)

= dy. WXL (Xey)

Decision order matters!

State-of-the-Art in QBF Solvers

most implementations DPLL alike:

— learning was added

— top-down: split on variables from the |outside | to the

DCC'06, Vienna — A. Biere, FMV, JKU Linz

[Giunchiglia...01] [Letz01] [ZhangMalik02]

multiple quantifier elimination procedures:

— enumeration [PlaistedBiereZhu03] [McMillan02]

— expansion [Aziz-Abdulla...00] [WilliamsBiere...00] [AyariBasin02]

— bottom-up: eliminate variables from the |inside

g-resolution [KleineBuning. ..95],

symbolic representations

[Cadoli...98][Rintanen01]

inside

to the

outside

with expansion [Biere04]

[PanVardiO4] [BenedettiO5]

BDDs

20

21

Summary [22]
DCC'06, Vienna — A. Biere, FMV, JKU Linz

e applications fuel interest in SAT
— incredible capacity increase (last year: MiniSAT, SATelite)
— SAT solver competition affiliated to SAT conference

— SAT is becoming a core verification technology

e QBF is catching up
— solvers are getting better (first competetive QBF evaluation)
— new applications

— richer structure

“Easy” Parameterized Verification of Cross Clock
Domain Protocols

Geoftrey M. Brown Lee Pike*
Indiana University, Galois Connections,
Bloomington leepike@galois.com

geobrown@cs.indiana.edu

February 8, 2006

Abstract

This paper demonstrates how an off-the-shelf model checker that utilizes a Sat-
isfiability Modulo Theories decision procedure and k-induction can be used for ver-
ification applications that have traditionally required special purpose hybrid model
checkers and/or theorem provers. We present fully parameterized proofs of two
types of protocols designed to cross synchronous boundaries: a simple data syn-
chronization circuit and a serial communication protocol used in UARTSs (8N1).
The proofs were developed using the SAL model checker and its ICS decision pro-
cedures.

1 Introduction

This paper uses the bounded model checker and ICS decision procedures of SAL to
develop fully parameterized proofs of two types of protocols designed to cross synchronous
boundaries: a simple data synchronization circuit and a serial communication protocol,
8N1, used in UARTs.! Protocols such as these present challenging formal verification
problems because their correctness requires reasoning about interacting time events. The
proofs discussed in this paper are parameterized by expressing temporal constraints as a
system of linear equations. The proofs are “easy” in that they require few proof steps.
For example, we have previously presented a proof of the biphase mark protocol [1],
which is structurally similar to, though simpler than, 8N1. Our biphase mark proof
required 5 invariants, whereas a published proof using PVS required 37; our proof required
5 proof directives (the proof of each invariant is automated), whereas the PVS proof
initially required more than 4000 proof directives [2]. Our proofs are quick to check
— a few minutes computing time, while one published proof of biphase mark required

*The majority of this work was completed while this author was a member of the Formal Methods
Group at the NASA Langley Research Center in Hampton, Virginia.

!The SAL specifications and proofs are available at http://www.cs.indiana.edu/~lepike/pub_
pages/dcc.html.

five hours. Furthermore, our proofs identified a potential bug: in verifying the 8N1
decoder, we found a significant error in a published application note that incorrectly
defines the relationship between various real time parameters which, if followed, would
lead to unreliable operation [3].

dout > din ——»

rout —r1 — F— rin —|

Y

Japlwisuel |

JENNELEE

—»>
>

rclk

|e— ain — e al — < aout

telk

Figure 1: Synchronizer Circuit

The synchronizer circuit considered in this paper, illustrated in Figure 1, is constructed
entirely of D-type flip-flops. The circuit, which is commonly used, allows a transmitter
in one clock domain to reliably transmit data to a receiver in another clock domain
irrespective of the relative frequencies of the clocks controlling the digital circuitry. This
circuit allows the transmitter to send a bit (or in general a word) of data to the receiver
through an exchange of “request” (rout, rin) and “acknowledgment” signals (aout, ain).
A temporal illustration of the exchange between transmitter and receiver is presented in
Figure 2. Each event initiated by the transmitter must propagate to the receiver and
a response must be returned before the transmitter can initiate a new transfer. The
protocol followed by the transmitter and receiver is a simple token passing protocol
where the transmitter has the token and hence is allowed to modify its outputs only
when ain = rout, and the receiver has the token and is allowed to read its input data
din when rin != aout. For example, the transmitter sends data when rout = ain
by setting dout to the value that it wishes to send and by changing the state of rout.
Informally, the circuit satisfies a simple invariant:

rin # aout = din = dout (1)

Although the protocol is trivial, there is a fundamental issue that greatly complicates
the behavior of the circuit — metastability. The fact that the two clocks rclk and tclk
are not synchronized and may run at arbitrary relative rates means that we cannot treat
the flip-flops in the circuit as simple delay elements. In particular, the correct behavior
of a flip-flop depends upon assumptions about when its input may change relative to its
clock. Changes occurring too soon before a clock event are said to violate the “setup
time” requirement of the flip-flop while changes occurring too soon after a clock event
are said to violate the “hold time” requirement. Either violation may cause the flip-flop

rout,dout
\ rin.din

/ aout
ain
~rout,dout

~rin,din

/ ~aout

tx time rx time

~ain

Figure 2: Synchronizer Circuit Timeline

to enter a metastable state in which its output is neither “one” nor “zero” and which
may persist indefinitely. In practice, probabilistic bounds may be calculated which define
how long a metastable state is likely to persist. The illustrated circuit assumes that the
time between two events on a single clock is long enough to ensure that the metastability
resolution time (plus setup time) is shorter that the clock period with sufficiently high
probability. While there have been other proofs of this circuit, they did not model the
effects of metastability [4, 5]. An alternative approach has been proposed and is evidently
used in a commercial tool to reproduce synchronization bugs by introducing random one-
clock jitter in cross domain signals [6, 7]. A fundamental difference between our work
and those cited is that we explicitly model timing effects and rely upon clearly stated
timing assumptions to verify the circuit.

|
i
B

do d7
start bit stop bit

Figure 3: 8N1 Data Transmission

Metastability also is an issue in the behavior of the 8N1 implementation in which
a receiver must sample a changing signal in order to determine the boundaries between
valid data. To motivate the design of the 8N1 protocol, consider Figure 3 which illustrates
the encoding scheme utilized by this protocol. In a synchronous circuit, the data and
clock are typically transmitted as separate signals; however, this is not feasible in most
communication systems (e.g., serial lines, Ethernet, SONET, Infrared) in which a single
signal is transmitted. A general solution to this problem is to merge the clock and data
information using a coding scheme. The clock is then recreated by synchronizing a local
reference clock to the transitions in the received data. In 8N1 a transition is guaranteed
to occur only at the beginning of each frame, a sequence of bits that includes a start bit,
eight data bits, and a stop bit. Data bits are encoded by the identity function — a 1 is

a 1l and a 0 is a 0. Consequently, the clock can only be recovered once in each frame in
which the eight data bits are transmitted.

Thus, the central design issue for a data decoder is reliably extracting a clock signal
from the combined signal. Once the location of the clock events is known, extracting
the data is relatively simple. Although the clock events have a known relationship to
signal transitions, detecting these transitions precisely is usually impossible because of
distortion in the signal around the transitions due to the transmission medium, clock
jitter, and other effects. A fundamental assumption is that the transmitter and receiver
of the data do not share a common time base and hence the estimation of clock events is
affected by differences in the reference clocks used. Constant delay is largely irrelevant;
however, transition time and variable delay (e.g., jitter) are not. Furthermore, differences
in receiver and transmitter clock phase and frequency are significant. Any correctness
proof of an 8N1 decoder must be valid over a range of parameters defining limits on jitter,
transition time, frequency, and clock phase. Finally, any errors in detection can lead to
metastable behavior as with the synchronization circuit.

The temporal proofs presented in this paper may be reproducible using specialized
real-time verification tools such as Hytech, TReX and Parameterized Uppaal (we leave
it as an open challenge to these respective communities to reproduce these models and
proofs in the those tools) [8, 9, 10]. However, a key difference is that SAL is a general
purpose model checking tool and the real time verification we performed utilized the
standard decision procedures. Furthermore, the proofs are not restricted to finite data
representations — in the case of the data synchronization circuit our proofs are valid for
arbitrary integer data.

The remainder of the paper is organized as follows. In Section 2, we overview the
language and proof technology of SAL. The modeling and verification of the synchronizer
circuit is presented in Section 3. The model of the 8N1 protocol is presented in Section 4,
and its verification is described in Section 5. In Section 6, we first describe how to
derive error bounds on an operational model from a fully-parameterized one, and then
we describe how this the operational model reveals errors in a published application note.
We also mention future work.

2 Introduction to SAL

The protocols are specified and verified in the Symbolic Analysis Laboratory (SAL), devel-
oped by SRI, International [11]. SAL is a verification environment that includes symbolic
and bounded model checkers, an interactive simulator, integrated decision procedures,
and other tools.

SAL has a high-level modeling language for specifying transition systems. A transi-
tion system is specified by a module. A module consists of a set of state variables and
guarded transitions. Of the enabled transitions, one is nondeterministically executed at a
time. Modules can be composed both synchronously (||) and asynchronously ([]), and
composed modules communicate via shared variables. In a synchronous composition,
a transition from each module is simultaneously applied; a synchronous composition is
deadlocked if either module has no enabled transition. In an asynchronous composi-
tion, an enabled transition from one of the modules is nondeterministically chosen to be

applied.

The language is typed, and predicate sub-typing is possible. Types can be both
interpreted and uninterpreted, and base types include the reals, naturals, and booleans;
array types, inductive data-types, and tuple types can be defined. Both interpreted
and uninterpreted constants and functions can be specified. This is significant to the
power of these models: the parameterized values are uninterpreted constants from some
parameterized type.

Bounded model checkers are usually used to find counterexamples, but they can also be
used to prove invariants by induction over the state space [12]. SAL supports k-induction,
a generalization of the induction principle, that can prove some invariants that may not
be strictly inductive. By incorporating a satisfiability modulo theories decision procedure,
SAL can do k-induction proofs over infinite-state transition systems.?

Let (S, I, —) be a transition system where S is a set of states, I C S is a set of initial
states, and — is a binary transition relation. If £ is a natural number, then a k-trajectory
is a sequence of states sy — s; — ... — s (a O-trajectory is a single state). Let k be
a natural number, and let P be property. The k-induction principle is then defined as
follows:

e Base Case: Show that for each k-trajectory so — s; — ... — s, such that sy € I,
P(s;) holds, for 0 < j < k.

o Induction Step: Show that for all k-trajectories sp — s1 — ... — sy, if P(s;) holds
for 0 < j <k, then P(s;) holds.

The principle is equivalent to the usual transition-system induction principle when k£ = 1.
In SAL, the user specifies the depth at which to attempt an induction proof, but the
attempt itself is automated. The main mode of user-guidance in the proof process is
in iteratively building up inductive invariants. While arbitrary LTL safety formulas can
be verified in SAL using k-induction, only state predicates may be used as lemmas in a
k-induction proof. Lemmas strengthen the invariant. We have more to say about the
proof methodology for k-induction in Section 5.

3 Modeling and Verification of the Synchronizer Cir-
cuit

In this section we use a simple synchronizer circuit to illustrate the various modeling
techniques used in this paper through the creation of successively more accurate models
of the synchronizer circuit utilizing the transition language of SAL. In order to make the
problem slightly more interesting, we generalize the data transfered by the circuit (din,
dout) to arbitrary integers. Our initial model for the system of Figure 1 consists of two
asynchronous processes — a transmitter (tx) and a receiver (rx).

system : MODULE = rx [] tx;

2We use SRI's ICS decision procedure [13], the default SAT-solver and decision procedure in SAL,
but others can be plugged in.

FF : MODULE = BEGIN
INPUT d : BOOLEAN
OUTPUT q : BOOLEAN
INITIALIZATION
q = FALSE
TRANSITION
qQ’ =d
END;

Figure 4: Flip Flop

Thus, the transmitter and receiver execute in an interleaved fashion and at arbitrary rates;
however, each is made up from several processes that are composed synchronously (i.e.,
operate in lock step). For example, the transmitter is composed of an “environment”,
which follows the basic protocol described above, and two instantiated flip-flops modules
(described below) with their inputs and outputs suitably renamed.

tx : MODULE = ((RENAME d TO aout, q TO al IN FF)
|| (RENAME d TO al, q TO ain IN FF)
|| tenv);

Our initial flip-flop model in Figure 4 has no provision for capturing timing constraints.
Indeed, its behavior is simply an assignment that copies input d to output q without any
reference to an underlying clock. Our models depend upon synchronous composition to
force the flip-flops comprising the transmitter (and receiver) to execute in lock step.

As mentioned, the transmitter’s environment, shown in Figure 5, is constrained to
obey the underlying protocol. There are two subtle points in this definition — we allow
the data transmitted to take any randomly selected integer value, and we allow the trans-
mitter to “stutter” indefinitely when it is allowed to transmit a new value (stuttering is
expressed by guard --> where guard is a boolean expression). The syntax var IN range
defines a non-deterministic choice chosen from the set range. The infinite state model
checker of SAL that enables our verification of timing constraints also enables verification
with unbounded variables.

The receiver is similarly composed of an environment, flip-flops, and a data latch
(the flipflop module in which the input and output variables are generalized to arbitrary
integers).

rx : MODULE =
((RENAME d TO rout, q TO rl1 IN FF)
|| (RENAME d TO r1, q TO rin IN FF)
|| (RENAME d TO dout, q TO din IN LATCH)
|| renv);

The receiver environment module non-deterministically stutters or echos rin.

tenv : MODULE = BEGIN
INPUT ain : BOOLEAN
OUTPUT rout : BOOLEAN
OUTPUT dout : INTEGER
INITIALIZATION
dout IN { x : INTEGER | TRUE };
rout = FALSE

TRANSITION
[TRUE -—>
[l rout = ain --> rout’ = NOT rout;
dout’ IN {x : INTEGER | TRUE };
] END;

Figure 5: Transmitter’s Environment

renv : MODULE =
BEGIN
INPUT rin : BOOLEAN
OUTPUT aout : BOOLEAN
INITIALIZATION
aout = FALSE
TRANSITION
aout’ IN {aout, rin}
END;

The defined circuit can be verified by induction over the (infinite) state space using the
bounded model checking capabilities of SAL. In its current form, this circuit requires only
straight induction (k = 1) for verification. Because the circuit implements a token passing
protocol, a token counting lemma like the one in Figure 6 is key to its verification. Here,
a “token” exists where the input and output to a flip-flop differ or where the receiver or
transmitter environments are enabled to receive or send a value respectively; the syntax
is the LTL temporal logic where the G operator denotes that its argument holds in all
states in a trajectory through the transition system. This lemma is used to prove the key
theorem using simple induction:

Sync_Thm : THEOREM system |- G((rout /= ain) => (dout = din));

Not surprisingly, both 11 and Sync_Thm can be verified quickly by SAL; however,
the model as given does not capture any of the flip-flop timing requirements nor does it
model any of the negative effects due to violating these requirements. In the following,
we present a model that captures some of these requirements and allows us to verify the
circuit even in the face of failures to meet these requirements.

We begin by modeling clocks. The transmitter and receiver are each composed with
a local clock that regulates when that component may execute. The system we are
developing has the following form:

changing(i : BOOLEAN, o : BOOLEAN) : [0..1] =
IF (i /= o) THEN 1 ELSE O ENDIF;

11 : LEMMA system |- G(changing(rin, ril) +
changing(rl, rout) +
changing(rout,ain) +
changing(ain, al) +
changing(al, aout) +
changing(aout,NOT rin)
<= 1);

Figure 6: Counting Lemma

RPERIOD : { x : TIME | O < x};

rclock : MODULE = BEGIN
INPUT +tclk : TIME
OUTPUT rclk : TIME
INITIALIZATION
rclk IN { x : TIME | time(rclk,tclk) <= x }
TRANSITION
time(rclk,tclk) = rclk -->
rclk > IN { x : TIME | time(tclk,rclk) + RPERIOD <= x }

END;

Figure 7: Receiver Clock

(rx || rclock) [] (tx || tclock)

The basic idea, described as timeout automata by Dutertre and Sorea, is that the
progress of time is enforced cooperatively (but nondeterministically) [14, 15]. The receiver
and transmitter have timeouts, rclk and tclk, that mark the real-time at which they
will respectively make transitions (timeouts are always in the future and may be updated
nondeterministically). Each respective module representing the receiver and transmitter
is allowed to execute only if its timeout equals the value of time (rclk, tclk), which is
defined to be the minimum of all timeouts.

time(tl : TIME, t2: TIME): TIME =
IF t1 <= t2 THEN t1 ELSE t2 ENDIF;

The receiver clock is defined in Figure 7. The transmitter clock is identical except
for signal and constant names. As might be expected, the proof for the untimed model
continues to work without change for this timed model since the addition of the timeout
modules can only restrict the possible behaviors of the system and hence does not effect
the safety property we are interested in verifying.

FFnd : MODULE =

BEGIN

INPUT d : BOOLEAN

OUTPUT q : BOOLEAN
INITIALIZATION

q = FALSE
TRANSITION

q’ IN {TRUE, FALSE}
END;

Figure 8: Nondeterministic Flip Flop

tx2 : MODULE = ((RENAME d TO aout, q TO al IN FFnd)
|| (RENAME d TO al, q TO ain IN FF)
|| tclock || tenv);

rx2 : MODULE (RENAME d TO rout, q TO r1 IN FFnd)

| (RENAME d TO ri, q TO rin IN FF)
| (RENAME 4 TO dout, q TO din IN LATCHnd)
| rclock || renv);

]
_——

Figure 9: Transmitter and Receiver Modules

Our final refinement is to add a mechanism for defining timing constraints and for
introducing behaviors that model the effect of violating these constraints. The approach
we take is inspired by by a recent paper by Seshia et. al. describing the use of ”Gener-
alized Relative Timing ”[16]. Briefly, we modify the described circuit elements to allow
the aberrant behaviors that may arise due to violation of timing constraints and add
“constraint” processes to regulate the conditions under which these aberrant behaviors
may occur.

As mentioned previously, the behavior we wish to capture is due to metastability
occurring when the inputs to a flip-flop do not satisfy timing requirements. The circuit
design implicitly assumes that the period of the receiver and transmitter clocks are suffi-
ciently long that metastability occurring at the beginning of a clock period will have been
resolved prior to the next clock period. Thus, in the circuit described, the only signals
which may exhibit metastability are din, r1, and al. It is easy to demonstrate that the
circuit will fail if this assumption is not met. Furthermore, the value of a signal after
resolution of a metastable state is non-deterministic. We model this by replacing the key
circuit elements with non-deterministic versions of the existing elements. For example,
we define a non-deterministic flip-flop module in Figure 8. Similarly, we can define a
non-deterministic latch which randomly selects its next output. The transmitter and
receiver respectively are defined by appropriately renaming input and output variables,
as shown in Figure 9.

Constraint [stime : REAL] : MODULE =
BEGIN
INPUT dclk : TIME
INPUT qclk : TIME

INPUT d : BOOLEAN
INPUT q : BOOLEAN
OUTPUT ts : TIME
INITIALIZATION
ts = 0;
TRANSITION
L
dclk /= dclk’ AND (ts > time(dclk,qclk) OR q’ = d) -—>
[0 dclk = dclk’ AND d /= d’ --> ts’ = time(dclk,qclk) + stime
[] dclk = dclk’ AND 4 = 4’ -—>
]
END;

Figure 10: Constraint Module

Clearly, the circuit no longer satisfies its basic invariant. Our final step is to add
processes that execute in parallel with the this system to constrain the outputs of the
non-deterministic circuit elements. In particular, we assume that whenever rout, aout,
or dout change state there is a settling period during which attempts to latch the new
value will lead to metastability and hence a non-deterministic next state. As we shall
show, the constraint processes that we add force the non-deterministic circuit elements
to behave in a conventional manner outside these settling periods. The length of the
settling period is implementation dependent and may be the result of a combination of
factors such as signal propagation and circuit element setup time. In order to simplify the
presentation, we have chosen to ignore hold time requirements. In practice, it is feasible
to design flip-flops with zero-hold time requirements by inserting delays at the flip-flop
input (at the cost of additional setup time). Furthermore, in an acyclic system such as
8N1 described in Section 4, one can simply shift the perspective of where the clock edge
occurs to justify combining the setup and hold time requirements.

The system model, with the addition of the necessary constraints, has the form:

system : MODULE = (rx2 [] tx2) || constraints

Synchronous composition means that rx2 and tx2 can only execute when the necessary
constraints are satisfied. Consider a flip-flop with input d and output q. We need a
constraint module that monitors the d input for changes and constrains the q output to
meet the requirements for “normal” behavior outside the settling period that follows a
change, as shown in Figure 10 (note the module is a parameterized module; its parameter,
stime, acts as a constant in the module).

Consider the following constraint module, with appropriately renamed input and output
variables.

10

10 : LEMMA system |- G((rilts <= time(rclk,tclk) OR

(rits + TPERIOD - TSETTLE <= tclk)) AND
(d1ts <= time(rclk,tclk) OR

(d1ts + TPERIOD - TSETTLE <= tclk)) AND
(alts <= time(rclk,tclk) OR
(alts + RPERIOD - RSETTLE <= rclk)) AND
(alts <= time(rclk,tclk) + RSETTLE) AND
(d1ts <= time(rclk,tclk) + TSETTLE) AND
(rits <= time(rclk,tclk) + TSETTLE) AND
(time(rclk,tclk) <= rclk) AND
(time(rclk,tclk) <= tclk));

Figure 11: Lemma 10

(RENAME d TO rout, q to rl, dclk TO rclk, qclk TO tclk, ts TO rits IN
Constraint [TSETTLE])

Whenever rout changes value and rclk preserves its value (i.e., tx2 executes), the local
timer rits is set to a value equal to the current time plus the settling constant TSETTLE.
Whenever rclk changes value (i.e., rx2 takes a step) either r1 is assigned rout or the local
timer must be active. Finally, if neither condition occurs, the constraint module allows
tx2 to execute. To constrain the three possible sources of non-deterministic behavior,
there are three constraint modules with the local timers rits, alts, and d1ts monitoring
changes on rout, aout, and dout, respectively.

The three constraint modules utilize two settling constants TSETTLE (for rout and
dout) and RSETTLE (for aout). In verifying the circuit, we found that correct behav-
ior depends on establishing a relationship between settling times and clock periods. In
particular, the settling time of the transmitter must be less than the clock period of
the receiver (and vice versa). Violating these assumptions has the effect of “injecting”
additional tokens into the circuit whenever metastability occurs. Thus, we performed
verification under the following assumptions.

TSETTLE : { x : TIME | O <= x AND x < RPERIOD AND x < TPERIOD };
RSETTLE : { x : TIME | O <= x AND x < RPERIOD AND x < TPERIOD };

With the changes described above, verification of the circuit behavior is more chal-
lenging, requiring k-induction over a modified token counting lemma and an additional
helper lemma. To make the k-induction proof technique feasible, it is helpful to constrain
the state space whenever possible. Hence, we developed the lemma shown in Figure 11
to assert certain obvious facts about system timing.

It was necessary to augment the counting lemma with additional addends to account
for the possible spontaneous creation of tokens due to metastability, as shown in Figure 12.

Lemmas 10 and 11 can be proved at depth 1 (straight induction) with 11 using 10 as
an assumption. The main theorem, Sync_Thm, can be verified at depth 3 using 10 and
11 as assumptions.

11

11 : LEMMA system |- G(changing(rout, rl) +

changing(rl, rin) +

changing(rin,aout) +

changing(aout, al) +

changing(al,ain) +

changing(ain,NOT rout) +

if (rout=r1 AND rclk < rits) THEN
1 ELSE O ENDIF +

if (aout=al AND tclk < alts) THEN
1 ELSE O ENDIF

<= 1);

Figure 12: Lemma 11

4 Modeling the 8N1 Protocol

In this section we discuss the model of the 8N1 protocol —its proof is deferred to Section 5.
We model the protocol using two processes asynchronously composed — a transmitter (tx)

and a receiver (rx). The general arrangement of the two major modules is illustrated in
Figure 13. 3

system : MODULE = rx [] tx;

tclock rclock

— tbit —|
tenv tenc tdata % rdec |— rbit
[€— tready —

Figure 13: System Block Diagram

As with the synchronizer circuit of Section 3, the transmitter and receiver each have
a local clock module to manage their timeout. Recall that time is advanced whenever the
module with the minimum timeout value executes and that the current time is always
equal to the minimum timeout.

In addition to its local clock (tclock), the transmitter consists of an encoder (tenc)
that implements the basic protocol, and an environment (tenv) that generates the data
to be transmitted. These modules are synchronously composed.

tx : MODULE = tclock || tenc || tenv;

3Not shown are the shared variables used by the clock modules to compute the global “time”.

12

Similarly, the receiver consists of its local clock (rclock) and and a decoder (rdec)
that implements the protocol.

rx : MODULE = rdec || rclock;

The system is defined by the asynchronous composition of the transmitter and re-
ceiver which are then composed synchronously with a “constraint” module that models
uncertainty in signal propagation as well as timing constraints. For the moment, we
postpone discussion of the constraint module.

system : MODULE = (rx [] tx) || constraint;

The clock and environment modules for the transmitter are illustrated in Figure 14.
The environment determines when new input data should be generated and is regulated
by tenc. Whenever tready is true, a random boolean datum is selected; otherwise the
old datum is preserved.

The timing model for the transmitter is similar to that for the synchronizer circuit.
We assume an arbitrary clock period consisting of a settling phase (TSETTLE) and a
stable phase (TSTABLE). The settling phase captures both setup requirements for the
receiver as well as propagation delay. We will assume that reading the output of the
transmitter tdata during the settling phase yields a non-deterministic result. As with
the synchronizer, we assume that the receiver is implemented in such a manner that any
metastability is resolved within the minimum clock period of the receiver. TSETTLE and
TSTABLE are uninterpreted constants; however they are parameterized, which allows us to
verify the model for any combination of settling time and receiver clock error (described
subsequently). The transmitter settling time can be used to capture the effects of jitter
and dispersion in data transmission as well as jitter in the transmitter’s clock. In the
case of the settling period, the model can be viewed as less deterministic than an actual
implementation which might reach stable transmission values sooner. This means we
verify the model under more pessimistic conditions than an actual implementation would
face. As with the synchronization circuit, we do not actually model non-boolean values,
rather we model a receiver that detects random values for signals that are not stable (as
determined by the separate “constraint” module).

The transmitter encoder is defined as a simple state machine — state 0 corresponds to
the start bit, states 1-8 correspond to the 8 data bit transmission states, and state 9 is the
stop state. The encoder model is illustrated in Figure 15. Notice that the model allows
the transmitter to stutter at state 9 indefinitely. The output tdata is either current value
of tbit (states 1-8), FALSE (state 0), or TRUE (state 9).

The receiver clock is more complicated than the transmitter because of the manner
in which a UART is implemented. Consider Figure 3. There may be an arbitrary “idle”
period between frames during which the signal is high (TRUE). The behavior of a UART
receiver is to “scan” for the high-to-low transition that marks the beginning of a frame.
Once this transition is detected, the receiver predicts, based upon its local time reference,
the middle of the 8 data and 1 stop bit times. There are two different intervals used for
this prediction — the time between the detected “start” transition and the middle of the
first data bit and the “period” between successive data samples. In an implementation,
the bit period is generally an integer multiple of the scan time and the start interval is 1.5

13

TPERIOD :
TSETTLE :

: TIME | 0 < x};
: TIME | 0 <= x AND x < TPERIOD};

{x
{x
% function to compute current time

time(tl : TIME, t2 : TIME) : TIME = IF t1 <= t2 THEN t1 ELSE t2 ENDIF;

tclock : MODULE =

BEGIN
INPUT rclk : TIME
OUTPUT tclk : TIME
INITIALIZATION

tclk IN {x : TIME | O <= x AND x <= TSTABLE};
TRANSITION
[tclk = time(tclk, rclk) --> +tclk’ = tclk + TPERIOD;]
END;

tenv : MODULE =

BEGIN
INPUT tready : BOOLEAN
OUTPUT tbit : BOOLEAN
TRANSITION
[
tready --> tbit’ IN {TRUE, FALSE}
[] ELSE -—>
]
END;

Figure 14: Transmitter Environment and Clock

times the bit period. Generally the bit time of the receiver is approximately that of the
transmitter; however, in practice jitter and frequency errors mean that each measurement
interval is subject to error. In our model we associate all errors with the receiver and
assume that the transmitter runs at a constant rate.

The various receiver clock periods are expressed in terms of linear equations that
define lower and upper bounds for “SCAN”, “START”, and “PERIOD”. The details of
these equations can be viewed as part of the proof — we verify the protocol subject to
these bounds — and are postponed to Section 5. The receiver clock along with the various
is illustrated in Figure 16. The specific timeout interval depends upon the state of the
decoder; i.e., whether the decoder is scanning, sampling the first data bit, or sampling
subsequent data bits.

14

tenc : MODULE =
BEGIN
OUTPUT tdata : BOOLEAN
OUTPUT tstate : [0..9]
OUTPUT tready : BOOLEAN

INPUT tbit : BOOLEAN
INITIALIZATION
tdata = TRUE;
tstate = 9;
DEFINITION
tready = tstate < 8
TRANSITION
[
tstate = 9 ——>
[] tstate = 9 --> tdata’ = FALSE;
tstate’ = 0;
[] tstate < 9 --> tdata’ = (tbit’ OR tstate = 8);
tstate’ = tstate + 1;
]
END;

Figure 15: Transmitter Encoder

The decoder is illustrated in Figure 17. There are three transitions — the first two
model the non-deterministic choice that occurs when scanning for the start bit and a
third models sampling the data bits. The receiver has 10 states (numbered [0..9]) where
the 8 data bits are received in states 0-7, the stop bit is received in state 8, and scanning
for a new start bit occurs in state 9.

As with the synchronizer, the value of the bit read is always chosen non-deterministically,
though the next state may depend upon the specific choice. Furthermore, the choice is
constrained by a separate module that determines when the sampled value should reflect
the input (tdata) and when the sampled value may be random. The constraint module
is also presented in Figure 17. The only significant difference between this and the con-
straint modules used with the synchronizer is the extra output stable which is used in
developing the proof.

15

timeout (min : TIME, max : TIME) : [TIME -> BOOLEAN] =
{ x : TIME | min <= x AND x <= max};

rclock : MODULE =
BEGIN
INPUT tclk : TIME
INPUT rstate : [0..9]
OUTPUT rclk : TIME
INITIALIZATION
rclk IN { x : TIME | O <= x AND x < RSCANMAX };
TRANSITION
[
rclk = time(rclk, tclk) -—>
rclk’ IN IF (rstate’ = 9) THEN
timeout (rclk + RSCANMIN, rclk + RSCANMAX)
ELSIF (rstate’ = 0) THEN
timeout (rclk + RSTARTMIN, rclk + RSTARTMAX)

ELSE
timeout (rclk + RPERIODMIN, rclk + RPERIODMAX)
ENDIF;
]
END;

Figure 16: Receiver Clock

5 Verification of the 8N1 Protocol

Our main goal is to prove that the 8N1 decoder reliably extracts the data from the signal
it receives.

Uart_Thm : THEOREM system |- G(rstate < 9 AND
rstate > 0 AND
rclk >= tclk => ((tstate = rstate) AND
(rbit = tbit)));

Briefly, the theorem states that immediately after the receiver executes each of its
8 bit receive states (0..7), the received bit is equal to the currently transmitted bit.
This interpretation of the theorem depends upon the knowledge that the states of the
transmitter and receiver obey the following sequence. This sequence is verified with
theorem t0 to be discussed subsequently.

(tstate,rstate) = (9,9),(0,9),(0,0),(1,0),(1,1),...(9,8), (9,9) (2)

As mentioned previously, an important component of the proof is the set of bounds
on the various time constants utilized in the decoder model. We derived the bounds
by assuming worst case (minimum or maximum) and then determining how temporal

16

rdec : MODULE =
BEGIN
INPUT tdata : BOOLEAN
OUTPUT rstate : [0..9]
OUTPUT rbit : BOOLEAN
INITIALIZATION
rbit = TRUE;
rstate = 9;
TRANSITION
[
rstate = 9 --> rbit’ = TRUE
[rstate = 9 --> rbit’ = FALSE;

rstate’ = 0
[1 rstate /= 9 --> 1rbit’ IN {FALSE, TRUE};
rstate’ = rstate + 1
]
END;
constraint : MODULE =
BEGIN
INPUT tclk : TIME
INPUT rclk : TIME
INPUT rbit : BOOLEAN
INPUT tdata : BOOLEAN

OUTPUT stable : BOOLEAN

LOCAL changing : BOOLEAN
DEFINITION

stable = (NOT changing OR (tclk - rclk < TSTABLE));
INITIALIZATION

changing = FALSE
TRANSITION

C

rclk’ /= rclk AND (stable => rbit’ = tdata) -->

[J tclk’ /= tclk --> changing’ = (tdata’ /= tdata)
]
END;

Figure 17: Receiver Decoder and Constraint Module

errors accumulate by the 10th bit time (the stop bit). Informally, the correct behavior of
the protocol requires that all samples other than the initial scan fall during the “stable”
portion of the transmitter clock. We derived these bounds by considering the execution
sequence described and with the knowledge that the correct behavior of the receiver
requires that in receiver states 0..8, we require the clock events fall during the “stable”
period of the transmitter. Consider the case of the “scan” operation. In order to detect
the start bit, we must guarantee that the receiver sample tdata with a period that is no
longer that the stable period — if the interval were longer, then the start bit might might

17

be missed because two successive samples by the receiver fall outside the stable interval.

RSCANMIN : { x : TIME | 0 < x };
RSCANMAX : { x : TIME | RSCANMIN <= x AND x < TSTABLE };

Once the start bit is detected, the receiver waits for a “start” time before reading the
first data bit. Reading this data bit must fall in the stable region for transmitter state 1.

RSTARTMIN : { x : TIME | TPERIOD + TSETTLE < x };
RSTARTMAX : { x : TIME | RSTARTMIN <= x AND
TSETTLE + RSCANMAX + x < 2 % TPERIOD };

In subsequent states the receiver clock error accumulates. Thus, the constraint on the

receiver “period” depends upon the accumulated error at the point of sampling the stop
bit.

RPERIODMIN : { x : TIME | 9 * TPERIOD + TSETTLE < RSTARTMIN + 8 * x };
RPERIODMAX : { x : TIME | RPERIODMIN <= x AND
TSETTLE + RSCANMAX + RSTARTMAX + 8 * x < 10 * TPERIOD };

The proofs of t0 and Uart_Thm require supporting lemmas. In general, when a k-
induction proof attempt fails, two options are available to the user: the proof can be
attempted at a greater depth, or supporting lemmas can be added to restrict the state-
space. A k-induction proof attempt is automated, but if the attempt is not successful for
a sufficiently small & (i.e., the attempt takes too long or too much memory), additional
invariants are necessary to reduce the necessary proof depth. The user must formulate
the supporting invariants manually, but their construction is facilitated by the counterex-
amples returned by SAL for failed proof attempts. If the property is indeed invariant,
the counterexample is a trajectory that fails the induction step but lies outside the set
of reachable states, and the state-space can be appropriately constrained by an auxiliary
lemma based on the counterexample. The following lemmas are built by examining the
counterexamples returned from proof attempts for the main theorem and the successive
intermediary lemmas.

Once it is determined what property the states fail to have that makes them unreach-
able, this property can be stated (and proved) as an additional predicate. This predicate
is used as a lemma to support the proof original of the original property. The following
lemmas capture some simple facts about the relationships between the two clocks. Of
these, 11, is the least obvious and was derived along with theorem t0 in order to reduce
the required induction depth. Each of these lemmas is inductive and hence can be proved
at depth 1.

11 : LEMMA system |- G(tclk <= (rclk + TPERIOD) OR stable);
12 : LEMMA system |- G(rclk <= tclk + RSTARTMAX OR

rclk <= tclk + RSCANMAX OR
rclk <= tclk + RPERIODMAX);

18

t0 : THEOREM system |- G(
% idle
((rstate = 9) AND
(tstate = 9) AND
(tdata AND rbit) AND
stable AND
(rclk - tclk <= RSCANMAX))
OR 7% start bit sent, not detected
((rstate = 9) AND
(tstate = 0) AND
(NOT tdata AND rbit) AND
(rclk - tclk <= RSCANMAX - TSTABLE))
OR % —--- unwind all the other cases
rec_states(8, tstate, rstate, tdata, rbit, rclk, tclk, stable));

The key part of our proof of 8N1 is an invariant that describes the relationship between
the transmitter and receiver. We must relate them both temporally and with respect to
their discrete state (e.g., tstate with rstate and tdata with rbit). The number of and
the complexity of the supporting lemmas necessary to prove the main results is signifi-
cantly reduced by proving a disjunctive invariant [17]. A disjunctive invariant has the
form V;c; P; where each P, is a state predicate (predicates P; and P; need not be disjoint
for i # j). Disjunctive invariants are easier to generate iteratively than conjunctive in-
variants. If a disjunctive invariant fails to cover the reachable states, additional disjuncts
can be incrementally added to it (in a conjunctive invariant, additional conjunctions must
hold in all the reachable states). Although this is a general proof technique, it is particu-
larly easy to build a disjunctive invariant in SAL. The counterexamples SAL returns can
be used to iteratively weaken the disjunction until it is invariant.

Theorem t0 has 20 disjuncts corresponding to the 20 unique states in equation 2. Of
the disjuncts, 18 follow a simple pattern and are defined in SAL with a recursive function.
The following defines theorem t0.

The recursively defined disjuncts use the following pattern for n = 0..8.

In general, each disjunct defines the control state (tstate and rstate), the constraints
on the data signals if any, and describes the relative difference between tclk and rclk.
A bug in ICS which involved multiplication of uninterpreted constants required a work-
around in which we defined multiplication recursively. This theorem can be proved at
depth 3, while the main theorem (Uart_Thm) can then be proved at depth 2 with t0 as
a lemma.

6 Discussion

Our proof of the 8N1 protocol is verified with respect to bounds on the various timing
constants. In a practical implementation, the receiver scan period is defined relative to the
nominal transmitter bit period and the receiver start and bit periods are integer multiples
of this. What an implementor ultimately cares about is the the trade off between settling
time (in general due to signal dispersion over a given transmission medium) and frequency

19

((tstate = n + 1) AND
(rstate = n) AND
(rclk - tclk <=
mult(n, RPERIODMAX) - mult(n+1, TPERIOD) + RMAX - TSTABLE) AND
(rclk - tclk >=
mult(n, RPERIODMIN) - mult(n+1, TPERIOD) + RSAMPMIN - TPERIOD))

OR
((tstate = n) AND
(rstate = n) AND
stable AND
(tdata = rbit) AND
(rclk - tclk <=
mult(n, RPERIODMAX) - mult(n, TPERIOD) + RMAX - TSTABLE) AND
(rclk - tclk >=
mult(n, RPERIODMIN) - mult(n+1, TPERIOD) + RSAMPMIN));

RSTARTMAX : TIME = TSTART * (1 + ERROR);
RSTARTMIN : TIME = TSTART * (1 - ERROR);
RSCANMAX : TIME = 1 + ERROR;

RSCANMIN : TIME = 1 - ERROR;

RPERIODMAX : TIME = TPERIOD * (1 + ERROR);
RPERIODMIN : TIME = TPERIOD * (1 - ERROR);

Figure 18: Receiver Parameters Defined with respect to Error

error.

In the following, we show how the bounds that we have verified can be used to de-
rive error and settling time bounds in a form that is more convenient for a protocol
implementer. These derived bounds are somewhat more restrictive than what we have
verified since we require the maximum allowable frequency error to be symmetric about
the nominal frequency. As before, let TPERIOD be the nominal period duration. We intro-
duce another uninterpreted constant in the operational model representing the nominal
duration the receiver waits for the start bit (“START”).

TSTART : TIME;

Now, let ERROR be an uninterpreted constant from TIME, and then the constants in Fig-
ure 10 are defined in terms of ERROR. By replacing these defined terms in the parameteri-
zation of the types in Sec 5, we compute the bound on the error. For example, RSTARTMAX
is an uninterpreted constant from the following parameterized type:

RSTARTMAX : { x : TIME | RSTARTMIN <= x AND
TSETTLE + RSCANMAX + x < 2 * TPERIOD };

Replacing RSTARTMIN and RSCANMAX by their definitions from Figure 18, we get

20

RSTARTMAX : { x : TIME | TSTART * (1 - ERROR) <= x AND
TSETTLE + 1 + ERROR + x < 2 * TPERIOD };

By replacing each term with its definition, the type parameters are defined completely
in terms of TPERIOD, TSETTLE, and ERROR. Isolating ERROR in the system of inequalities
gives bounds on ERROR. For the 8N1 protocol, ERROR is thus parameterized as follows:

ERROR : { x : TIME | 0 <= x AND
(9 * TPERIOD + TSETTLE <
8 * TPERIOD * (1-x) + TSTART * (1-x)) AND
((8 * TPERIOD * (1+x) + TSTART * (1+x) + (1+x) + TSETTLE) <
10 * TPERIOD) };

This derived model can be verified using the same invariants proved at the same depth
as in the verification described in Section 5.

As mentioned in Section 1, we discovered significant errors in the analysis in an
application note for UARTSs [3]. For TPERIOD = 16 and TSTART = 23, the authors suggest
that if TSTABLE is TPERIOD/2 (they call this the “nasty” scenario), then a frequency error
of £2% is permissible. In fact, even with zero frequency mismatch, the stable period
is too short — if we assume “infinitely” fast sampling, it is possible to show that the
settling time must be less than 50% of TPERIOD. In other words, the type parameterizing
ERROR is empty when TSTABLE is TPERIOD/2 (this can be shown using SAL or by a simple
calculation). With our choice of time constants, the longest settling time must be less
than 7 (43.75%). In reading the article, it becomes clear that the authors neglected the
temporal error introduced by sampling the start bit. They describe a “normal” scenario
with TSETTLE = TPERIOD/4 and assert that a frequency error of £3.3% is permissible.
As our derivation above illustrates, the frequency error in this case is limited to £3/151 =
+1.9%.

This paper describes the use of SAL to model and verify a data synchronization
circuit and the 8N1 protocol. We show, by example, how models of these can be refined
in the language of SAL to capture timing constraints and environmental effects such as
metastability and settling. Future work includes extending this framework to other cross
domain protocols as well as developing the theory for refinement.

Acknowledgments

We thank Leonardo de Moura, John Rushby, and anonymous reviewers for a recent
paper [1] for their suggestions and corrections.

References

[1] Geoffrey M. Brown and Lee Pike. Easy parameterized verification of biphase mark
and 8N1 protocols. In The Proceedings of the 12th International Conference on
Tools and the Construction of Algorithms (TACAS’06), 2006. To appear. Available

at http://www.cs.indiana.edu/~lepike/pub_pages/bmp.html.

21

2]

[10]

[11]

[12]

[13]

F. W. Vaandrager and A. L. de Groot. Analysis of a Biphase Mark Protocol with
Uppaal and PVS. Technical Report NIII-R0455, Nijmegen Institute for Computing
and Information Science, 2004.

Maxim Integrated Products, Inc. Determining Clock Accuracy Requirements for
UART Communications, June 2003. Available at http://www.maxim-ic.com/
appnotes.cfm/appnote number/2141.

Tsachy Kapschitz and Ran Ginosar. Formal verification of synchronizers. In
CHARME 2005 — to appear, 2005.

Tsacky Kapschitz, Ran Ginosar, and Richard Newton. Verifying synchronization in
multi-clock domain SoC. In DVCon 2004, 2004.

Tai Ly, Neil Hand, and Chris Ka-Kei Kwok. Formally verifiying clock domain cross-
ing jitter using assertion-based verification. In DVCon 2004, 2004.

Karen Yorav, Sagi Katz, and Ron Kiper. Reproducing synchronization bugs with
model checking. In CHARME, pages 98-103, 2001.

T. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the Hytech experi-
ence. In Proceedings of the 40th Annual Conference on Decision and Control, pages
2887-2892, 2001.

Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu. TReX: A tool for
reachability analysis of complex systems. In Computer-Aided Verification, CAV’01,
pages 368-372, London, UK, 2001. Springer-Verlag.

F. W. Vaandrager and A. L. de Groot. Analysis of a biphase mark protocol with
Uppaal and PVS. Technical Report NIII-R0445, Radboud University Nijmegen,
2004.

Leonardo de Moura, Sam Owre, Harald Ruefl, John Rushby, N. Shankar, Maria
Sorea, and Ashish Tiwari. SAL 2. In Computer-Aided Verification, CAV’04, volume
3114 of LNCS, pages 496-500, Boston, MA, July 2004. Springer-Verlag.

Leonardo de Moura, Harald Ruef}; and Maria Sorea. Bounded model checking and
induction: From refutation to verification. In Computer-Aided Verification, CAV’03,
volume 2725 of LNCS, 2003.

Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby, and N. Shankar. The
ICS decision procedures for embedded deduction. In 2nd International Joint Con-
ference on Automated Reasoning (IJCAR), volume 3097 of LNCS, pages 218-222,
Cork, Ireland, July 2004. Springer-Verlag.

Bruno Dutertre and Maria Sorea. Timed systems in SAL. Technical Report SRI-
SDL-04-03, SRI International, 2004.

Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-tolerant real-
time startup protocol using calendar automata. In FORMATS/FTRTFT, pages
199-214, 2004.

22

[16] Sanjit A. Seshia, Randal E. Bryant, and Kenneth S. Stevens. Modeling and verifying
circuits using generalized relative timing. In ASYNC, pages 98-108, 2005.

[17] John Rushby. Verification diagrams revisited: Disjunctive invariants for easy ver-
ification. In Computer-Aided Verification, CAV’00, volume 1855 of LNCS, pages
508-520, Chicago, IL, July 2000. Springer-Verlag.

23

A Coverage Analysis for Safety Property Lists
Talk Abstract

Koen Lindstrom Claessen
Chalmers University of Technology
koen@chalmers.se

1 Background

In property-based verification, a natural question that often arises is "Have
we specified enough properties?’” Simulation-based coverage notions do not
help us to answer this question. Therefore, there exist notions of coverage
in formal verification, where it is checked how much of the design under
verification is actually needed in the formal proof [1]. A disadvantage of these
methods is that they include the actual design in the coverage analysis, which
makes the complexity of the analysis dependent on the size of the design, and
which also implies that the coverage analysis has to be re-done every time
the design changes.

We present a complement to existing notions of property coverage that is
design-independent. The idea is simple: Given a list of safety properties,
and a set of output signals from the design, our analysis checks if there
exists a "forgotten case”: a trace where there exists a point in time where a
particular output signal is not constrained by the properties. In other words,
given a trace where the values of all other signals and the values of all other
points in time are known, and given that the list of properties holds, it is
still not known what the value of that particular output at that particular
point in time should be.

The analysis works for all typical specification logics in which safety proper-
ties can be expressed. Here, we use a simple variant of LTL.

get—— —A#—num
put—— FIFO —#—first

IN—7f—> ——err

Figure 1: A simple FIFO interface

2 An Example

Consider the following specification of a simple FIFO. As depicted in figure
1, the input signals are get, put and a vector in, and the output signals are
err and vectors fst and num. For simplicity, we specify that putting takes
priority over getting. When we try to put something in a full FIFO, or get
something from an empty FIFO, the signal err becomes 1 for one clock cycle.
The output fst always indicates the first element of the FIFO, and the output
num indicates the number of elements currently in the FIFO (maximum n).
An initial attempt to create a list of safety properties formalizing the above
description might look as follows.

O(put=1Anum=n = next err=1)

O(put =1 A num <n = next num = num+ 1
A next err = 0)

O(put =1 A num =0 = next fst = in)

O(put=1A0< num<n = next fst = fst)

O(get=1Aput=0Anum=0 = nexterr=1)

O(get=1Aput=0A0< num = next num = num — 1

A next err = 0)

We can now analyze this list of properties using the proposed analysis, in
order to discover forgotten cases in our specification. Note that we are only
analyzing the list of properties, not the design. At this stage, having the
design ready for formal verification is not neccessary.

When we ask the analysis about the property coverage of output err, it
immediately replies that err is not constrained by the properties at time
point 1, as the following trace shows:

get
put
m
num

fst

err

~\'J©O‘©OO

No matter what the value of the 7 in the trace, the property list is still
fulfilled. Indeed we should have added a property err = 0 at time 0. After
this, the analysis complains about err being unconstrained when we do not
put or get something from the FIFO:

get |0 O
put| 0 O
m|0 0
num| 0 0
fst10 0O
err| 0 7

And indeed, we should have added a property that says that errors do not
occur when we do not change the contents of the FIFO:

O(get = 0 A put = 0 = next err = 0).

Now, the analysis is happy about err.
Next, we analyze the output num. We find out that num is not constrained
in the first point in time either:

get
put
m
num

fst

err

oo'\:‘ooo

This counter example leads to us adding the property num = 0. Next, the
analysis complains about num being unconstrained when we do not put or
get:

get| 0 O
put| 0 O
m|0 0
num |0 7
fst{0 0
err|0 O

This is easily fixed by adding the property:

O((get = 0 A put = 0) = next num = num,).

However, the analysis is still not happy. It reports:

get|1 O
put|1 O
m|0 0
num |0 7
fst|0 0
err|0 1

In other words, when an error occurs, it is not specified what should happen
with num. We fix this by adapting the last property we added thus:

O((get = 0 A put = 0) V err = 1 = next num = num).

Finally, the analysis is happy about the output num.

3 Free signals

Dealing with the signal fst, there appear to be two problems. Firstly, it is
not always the case that we want to specify what the value of a signal is in
all cases. For example, when the FIFO is empty, we would like to leave fst
unspecified, since there is no first value in the FIFO. At the moment, the
analysis would simply complain about this case, making it rather useless in
this case.

Secondly, sometimes it is hard or impossible to completely formally specify
the exact behavior of a particular signal in a temporal logic, and as a specifier
one wants to be able to take the pragmatic decision of not specifying the
behaviour completely. Again, the analysis would immediately find holes in

the specification, holes which have deliberatly been put there. In the case of
the signal fst, formally specifying the exact FIFO behavior for general n is
impossible in a limited logic like LTL.

One solution to this problem is simply not to use the analysis on the output
free. This has an obvious drawback, namely that we will not be able to
find real forgotten cases, as opposed to the intended forgotten cases that we
already know about. So, we would like to argue for another solution, namely
one where the specifier explicitly indicates what in what cases an output
is allowed to be underconstrained. We therefore introduce a new construct
freex to the specification logic, that can be used to express that the output x
is allowed to be unconstrained. As a logical construct, freez is simply true,
but to the analysis, it is a way to suppress complaints about the signal .
For example, our analysis complains about the output fst being unconstrained
in the beginning, when the FIFO is empty. This can be remedied by adding
the following property:

O(num = 0 = free fst).

The above property explicitly expresses the unconstrainedness of fst in the
case when num = 0.

Our analysis also complains about the output fst being unconstrained when
we put two elements in the FIFO, and get an element out once!:

get| 0 0 1 O
put| 1 1 0 O
m |17 5 0 0
num| 0 1 2 1
fst| 0 17 17 7
err{f 0 0 0 O

And indeed, we have not said anything about this particular case. If the
specifier decides not to specify the exact FIFO behavior, this can be fixed by
adding next free fst to the right-hand side of the last property:

O(get=1Aput=0A0< num = next num = num — 1
A next err=0
A next free fst)

!The actual counter example that was generated was slightly edited for presentational
reasons.

In other words, when we remove an element from the FIFO, we are not quite
sure what the new first element is going to be.

Even now, our analysis still reports a forgotten case, namely when we do not
put or get at all, fst is unconstrained:

get
put
m
num

fst
err|0 O

We solve this by adding next fst = fst to the right-hand side of the second
property we added when we analyzed num:

o O O
== R en i an)

o O
~ O

O((get = 0 A put = 0) V err = 1 = next num = num A next fst = fst).

After adding this property, the analysis is happy.

4 Implementation

The implementation of our analysis is quite straightforward. We first build
the safety property observer belonging to the property list [4]. A safety prop-
erty observer is sometimes also called ”checker circuit”; a circuit that has as
inputs all signals appearing in the properties, and that has only one output
"OK?”, that is always high if and only if the properties hold. Observers can
be constructed automatically for formulas in many logics [5, 6, 2.

Then, we build a circuit using two copies of the observer, a main copy and
a shadow. The signals that the two observers are observing are the same,
except for the output signal we are analyzing, which we call out for the main
copy and out’ for the shadow copy.

Now, we can ask a standard LTL model checker (such as SMV [3]) to look
for traces where both observers say OK, but where the values of out and
out’ differ at exactly one point. This indicates a forgotten case, because the
property lists hold for both variants of the discovered trace.

The size of the analyzed circuit is linear in the size of the property observer.

5 Discussion

There are basically three reasons for not fully specifying the behaviour of
all output signals: (1) The output is supposed to be underconstrained in
the specification; (2) By choice, the specifier has decided to leave the output
underconstrained; (3) The specifier has forgotten a case. We argue for an
analysis that can discover the 3rd case, by forcing the specifier to explicity
document in the properties if cases (1) or (2) are meant. We believe this leads
to specifications of higher quality, which in turns leads to more dependable
verification results. The analysis can be used in both simulation-based and
formal property verification.

References

[1] Hana Chockler, Orna Kupferman, Robert P. Kurshan, and Moshe Y.
Vardi. A practical approach to coverage in model checking. In Computer

Aided Verification (CAV), 2001.

2] IBM. FoCs — Formal Checkers, 2002. http://www.haifa.il.ibm.com/-
projects/verification /focs/.

3] K. McMillan. The SMV model checker, 2002. http://www-
cad.eecs.berkeley.edu/“kenmcmil /smv/.

[4] F. Lagnier N. Halbwachs and P. Raymond. Synchronous observers and
the verification of reactive systems. In Third Int. Conf. on Algebraic
Methodology and Software Technology (AMAST’93), 1993.

[5] J.-C. Fernandez N. Halbwachs and A. Bouajjanni. An executable tempo-
ral logic to express safety properties and its connection with the language

lustre. In Sizth International Symp. on Lucid and Intensional Program-
ming (ISLIP’93), 1993.

[6] P. Raymond. Recognizing regular expressions by means of dataflows net-
works. In 23rd International Colloguium on Automata, Languages, and
Programming (ICALP’96), LNCS 1099. Springer Verlag, 1996.

Is Feature-Oriented Verification Useful for Hardwadre?

Kathi Fisler
WPI Dept. of Computer Science
kfisler@s.wpi.edu

Shriram Krishnamurthi
Computer Science Dept., Brown University
sk@s. brown. edu

Abstract

Many in the software and programming languages commurtitee been exploring de-
sign modularizations based on features rather than physicaponents. Features engender
a modular verification methodology that avoids many of thallehges that underlie conven-
tional theories of modular verification, such as design anggrty decomposition. We present
an overview of features and discuss our prior work in exjpigifeatures for software verifica-

tion. We hope this paper will spark discussion about whefibeiures have a meaningful role
in designing hardware for verifiability.

1 Introduction

Verifying large systems automatically often requires teghes for identifying design fragments
that can be analyzed tractably. Because isolating suchfats is challenging, verifiers frequently
rely on the modular structure of the design for guidance.odohately, the portions of designs
that impact properties can span several modules. As a réseilterification engineer either has to
decompose the properties around the design modules or eyl sophisticated decomposition
methods that do not directly exploit the modular structufdis seems a lost opportunity, and
raises a question: are there modularizations that enabigras to naturally express more of their
knowledge that matters for verification?

Modules in hardware description languages generally spard to physical subcomponents
of a system (such as tleeu or RAM). Aligning design modules with physical components seems
natural, particularly in the hardware domain in which thel eesult is actual chips. Over the
last decade, however, many researchers in software emgigesd programming languages have

*This work is partially supported by the U.S. National Scefoundation grants CCR-0132659, CCR-0305834
and CCR-0305950.

explored modules that encapsulate user-defiieatliresrather than fragments of implementa-
tions [2, 9, 17, 24, 25]. Intuitively, a feature is a piece ygtem functionality that is meaningful to
an end user (an identifiable piece of functionality that ash@ser would pay for). A single system
is a composition of the features that the end user wants. drige humber of systems definable
from a common set of features formpeoduct-line In a hardware context, an appropriate analog
for an end user might be the overall system architect, whasvachip to implement a particular
set of algorithms or optimizations.

Feature-oriented modules are attractive for verificatiecalnse properties often describe user-
identifiable traits of a system. Many properties align withadl sets of features. This alignment
reduces, and often eliminates, the need for property deositign. Features also support incre-
mental reasoning about designs as they evolve. They suggeststage verification methodology
in which properties are first checked against individuatifess to determine constraints that the
feature places on the rest of the system. As features areagsmdpnto products, the constraints
are checked using lightweight analysis techniques. Thetcaints enable incremental verification
and amortize verification costs over many products builhftbe same core features.

The first author began exploring feature-based verificaditer hearing a talk by Ken McMil-
lan in 1998 describing his verification of a hardware implatagon of Tomosulo’s algorithm [23].
McMillan effectively decomposed the implementation ardsome of the key dataflows through
the architecture. This decomposition isolated the partthefdesign that affected key proper-
ties of the algorithm, enabling them to be verified efficigntsing a combination of abstraction
and other model-reduction techniques. The fragments hadpirit of features as were being
described in the software community, but were not identifieguch at the design level. Feature-
based constructs are uncommon, but not new, in hardwaréispgan languages. Thextend
construct in Verisity’se language was also motivated by the work on features fromdfte/are
community [13]. To the best of our knowledge, however, thasiy team has not exploited this
modularization for verification. The question then is wieetfeature-based decompositions could
help capture complicated manual decompositions such asil\hcig.

Over the last five years, we have been developing theoriegcoémental and modular model
checking for feature-oriented systems expressed as staf@imes [5, 18, 21]. Our work has shown
that features induce a form of module composition that Ietsveen purely sequential and purely
parallel composition [10]. Furthermore, modular verifioatin this framework is best viewed as a
combination of constraint generation and constraint sglviather than as compositions of results
from straightforward model checking [5]. Our work to datdasgely theoretical but has been
prototyped (with implementation) against some actuavgari® designs.

The position paper has two goals: first, to give an overviethefbenefits, assumptions, and
challenges of feature-oriented modeling and verificats@epnd, to spark discussion as to whether
this style has a meaningful role for hardware. Key questincisde (1) the extent to which features
are useful for large-scale organization of hardware desi) how hardware design flows might
exploit the opportunities for incremental verificationttfeatures enable, and (3) how well feature-
based decompositions align with challenging hardwardigation tasks. As this paper is more of
an overview than a presentation of new results, the presemtis informal, with references to
other published papers containing the formal details.

3 Bldn g B2dn
i .— isp toggle 1
3 @ Blup B :
3 ! w W i Base System
Blup 3
B2up™ (disp |
date |

Bldn Bldn TBldn iTimer Feature

B2dn ms=b ;

resume) |
Split B2dn 3
ms—b !

ms—by

Figure 1: A feature-oriented design for a sportswatch.

2 Modularizing Systemsby Features

We motivate the structure of feature-oriented systemsautiivdwo small yet illustrative examples.
Every design has base systeroontaining its core functionality. Features extend theelsstem
with additional functionality. Both the base system and féstures consist of state machines
that get composed into larger state machines in a partiewdgr As the base and features are
indistinguishable at the level of formal models, the reghefpaper views the base as just another
feature (but one that happens to be included in every system)

The simplest feature-oriented systems use a single stateimesfor each feature (including the
base). Figure 1 shows the design of a stopwatch expressearia of feature$.The base contains
four display nodes: clock display, alarm time display, digplay, and an alarm status display that
supports toggling the alarm status. One feature adds a titmeh the user can reset, resume, and
stop; this feature also supports a split timer for captutinge instantaneously. Another feature
enables setting the alarm time. The watch is controlleduiinawo buttons (B1 and B2) and a
mode switch that can be in the forward (ms-f) or back (ms-Is)tpms.

In this example, each state in the overall design belongstedeature. Most of the transitions
fall within features, but some connect features. The latgersitions are added when features are
composed into larger systems. Each feature heasnatruction interfacendicating which states

1This example is due to Jia Liu, graduate student at UT Austin.

intrain/"train-in"

S else train-in

: else Original protocol
| else @ outtrain/ ginal p

Lels lintrain

"tunnel-clear"

intrain & 'tunnel clear/ outtrain/ two-in

|
|

tunnel-clear _
"two-in" "tunnel-clear”

Figure 2: A feature-oriented design for a track-operatoncmnication protocol.

can have transitions to and from other features (the figuptiartly identifies these states). When
a designer composes two features (or adds a feature to dimgxagstem), he indicates which of
the interface states should be used as the source and smkefioch piece. Composition entails
inserting edges between the chosen states. In the stopesachple, the interface for the base
system useslispclockas both the source and the sink of transitions that connectfeatures,
while the timer feature usessetas itsentry state and the other four states aseit# states back
to the overall system. All of the transitions that span theeband the timer feature connect to the
interface states. Once the timer feature is added, thergrsign change the construction interface
for the composed system to transfer control out aréisetstate and in at thdispclockstate. The
alarm time feature attaches at this revised interface.

This example suggests that features compose sequerdibiiyt potentially creating cycles as
they direct control flow back to other features. They do indeébough the composition model
becomes more complicated for features that span multiple shachines, as the next example
illustrates.

Figure 2 shows an example of a communications protocol szprkas features over multiple
state machines. This protocol, taken from Holzmann’s badk [governs communication between
operators at either end of a long train tunnel covering awagtrack. The two state machines
model the human operators on either end of the tunnel. Unialdee one another, the operators
communicate messages about the status of the tunnel. Inighead protocol (the base system),
the operators communicate when trains are entering andgxite tunnel. The inbound operator
sends drain-in message to the outbound operator when a train enters theltuAme outbound
operator sends @ain-clear message to the inbound operator when a train exits the tufinel
base system consists of the protocol for exchanging thesetegsages.

Although the protocol was designed to prevent two trainsxfever being in the tunnel simul-
taneously, an accident occurred when a second train entezgdnnel (in the same direction as
the first train) before the first one left; although the inbdwperator suspected the problem, the
communication protocol was too weak to convey the situdiiotme outbound operator. One so-
lution is to add messages to the protocol that convey thammétion accurately. The extension
(feature) adds &vo-in message from the inbound to the outbound operator; it alds sidtes to
both operator machines so that the outbound operator dée&nd therain-clear message until
both trains have left the tunnel.

As the figure shows, features that span multiple state mashiontain a fragment for each

state machine in the overall system (features may omit feagefor state machines that they do
not affect; they may also introduce new state machines igéneral model). Each fragment con-
nects to its corresponding fragment in another featurautfitonterface states as in the single state
machine case. Thus, connection interfaces remain at takd&the individual state machines. The
global state machine for this design is the cross-produttte@€ompositions of the individual state
machine fragments from the feature. This definition app&atese the sequential composition
model used for single features. Furthermore, it does najestdrow we get a cross-product state
machine for an individual feature. We address both issuedigh

3 Verifying Systems by Features

Features enable two related styles of verification. Fiteha@ system properties can be established
incrementally as new features are added to the system. &epoyperties can be proven of an
individual feature and then shown to hold after the featsi@mposed into an existing system. In
both cases, property preservation checks should traveigere new portions of the state space:
the new feature for incremental verification, and (portiof)ghe larger system for feature-specific
properties.

Our work supports these styles of verification through thiewang tasks:

1. Proving acTL property of an individual feature or composition of feagir& his requires
building a single state machine representing the stateespfaan individual feature.

2. Deriving a set of interface constraints for a feature #natsufficient to preserve a particular
property after composition (th@reservation constrainjs

3. Proving that a feature satisfies the preservation canttraf another feature (or existing
system).

These activities correspond to a kind of modular verifiagatiwwhere the features are modules. As
in standard approaches to modular verification, we aredsted in proving properties of mod-
ules and in preserving those properties upon composititim @ther modules. Our work differs
from standard modular verification because features usffaaadit composition semantics than
the purely sequential or purely parallel models that uneeibther theories of modular verifica-
tion. The motivation for modular reasoning is also diffdrenour context. Since features largely
compose sequentially, modular reasoning has less impacactability than under parallel com-
position. The main benefit of modularity in our context corfresn amortizing verification effort
across different systems that are built from the same featuModularity in this view is more
about design methodology than verification methodology¢fh we propose exploiting the fruits
of the former to simplify the latter.

Intuitively, items 2 and 3 perform modular model checkinguaming sequential composition.
Item 2 essentially caches the subformula labels ascribedtéoface states duringTL model
checking (we useTL instead ofL.TL because the algorithm for the former associates subfosnula

Figure 3: Two approaches to constructing composed systems.

with states). Item 3 uses model checking to prove that a natuife preserves the cached subfor-
mula labels at the interface states to which it connects.eQisting papers describe these steps in
more detail [10, 19]; Section 4 explains some limitationghas intuitive model.

Item 1 is the interesting step for this paper, because itiresja single state machine for
each feature which is not readily available in the multiplachine model. Consider the feature
extension in the tunnel protocol, which consists of the ttadesmachines in the lower dashed box
in Figure 2. We cannot simply form the cross-product of threaehines using their interface states
as the initial states because the two machines might ndt tease interface states simultaneously.
For example, the inbound operator may notice the secomn ltiefore the outbound operator has
registered that there is a train in the tunnel. The initialet of the feature’s cross-product therefore
depends on the synchronization of the interface state®iotter system to which the new feature
connects. We can compute this information in the form of tiiegsaph of the existing system that
contains its interface states; this subgraph in turn pewvithe initial states for constructing the
cross-product of the new feature. The details of this casttin appear in an earlier paper [10].

Interface subgraphs allow us to compose features in a msstjyential manner (sans the lim-
ited interleaving of behavior across features in the iamfsubgraph). Figure 3 shows two views
of a feature-oriented system, one in which cross-produetsaken at the level of the composed
machines (left) and one in which cross-products are takéimedevel of features, which are then
composed sequentially (right). The model on the right, Whaar verification methodology ex-
ploits, shows that the composition model underlying featumsed systems guasi-sequential
a sequential composition (between features) over welpasdgarallel compositions (within fea-
tures).

The quasi-sequential model is reasonable when featureatedargely independently of one
another, an assumption that holds in some feature-orieyteéms [2] but not all [15]. If the fea-
tures themselves, rather than their components, opergi@ratiel, the interface subgraphs could
possibly induce state explosion. More experience withuieabriented designs is needed to deter-
mine the extent of this problem in practice.

4 Challengesand Status

We have outlined a model of feature-oriented designs andthadelogy for verifying systems
incrementally and for verifying features in isolation. Aseowould expect, this approach faces
several challenges and open problems:

@/@\@/@ Base syster
@\ Feature

Figure 4. How composition can induce cyclic reasoning.

Cyclic Reasoning

Modular reasoning theories must handle dependencies eetwedules that lead to cyclic reason-
ing. In the context of features, cyclic reasoning ariseswérdding a feature creates a new cycle
in the global state space that visits states from both th&tiagisystem and the new feature. Fig-
ure 4 shows a simple case in which a naive sequential modekehmight incorrectly determine
that A[pUq| holds after adding a new feature to the system. This fornabel$ all states in the
(fragment of the) base system shown. When the feature iddadd®aive sequential composition
algorithm might assume the formula is true at the point ohtgeto the base and use that to (in-
correctly) infer that the formula is true at all states in t@se. Such situations can be handled
correctly by verifying additional properties about disaiag eventualities on paths between in-
terface states and altering the modular verification algorislightly based on the results of those
checks [18].

Handling Environment M odels

Verifying the train communication protocol requires emvironment modedf the trains that can
enter and exit the tunnel. The model, which generates tmalksiotrain andouttrain used in the
protocol machine, must encode constraints such as “no ¢eairexit the tunnel before it enters
the tunnel”. Environment models always compose in paralitf the systems that consume their
outputs; this is true for feature-oriented systems as Wakhgine that we want to verify a property
about a new featurg' in isolation, and that’ references signals defined in the environment model.
We therefore must take the cross product of the environmendehwith the feature prior to verifi-
cation, but what is the initial state of the environment madé¢his cross product? The initial state
of the environment model synchronizes with the initial stat the global composed system. The
feature in the train protocol is only reached once a traifresaady in the tunnel, however, which is
not true at the initial state of the environment model.

This scenario demonstrates that verifying features iratgwh requires ways to determine the
state of the environment at the point when features mighibeked. We proposed a preliminary
approach to this problem in the context of the train prot¢&6], but much more work needs to
be done on a wider range of case studies. This problem isasitoilthat of generating a testing
harness for a feature-oriented design [27].

Lifting Feature Propertiesto the Entire System

When global system properties are verified incrementallyeagfeatures are added to the system,
our methodology guarantees that those properties aretttbe mnitial state of the final composed
system (assuming that initial state is part of the base). @adular methodology guarantees
that properties proven of individual features remain troeeothe feature is composed with other
features, but this merely proves that the feature propsertyue at the initial state of the feature,
not of the global system. In practice, we often want to lithyperties proven of individual features
to the initial state of the global system. A naive way to Harttis is to incrementally verify a
system relative to all desired properties of individuakfees, but this doesn’t exploit the benefit
of features, namely that each feature contains the majoiritye system detail needed to verify its
properties. When lifting properties of a featureo the system level, other features often contribute
nothing more than paths from the initial statefo Dominguez exploits this observation to lift
feature properties without verifying those propertiesiasfaall features [7]. Shmuel Katz at the
Technion is also working on modular approaches to provig@ities introduced by individual
features’

I nter actions Between Features

A property that holds of one feature in isolation may not hiolé global system due to interac-
tions between the features. Some interactions are desitabth as when the operation of one
feature takes priority over another, thus changing the itiond under which the first feature is
invoked); others are not. Feature interaction is an estaddi problem with an extensive research
literature [16]. Verification methodologies based on feesumust be able to detect when features
have interacted and provide ways to reason about the consglitinder which features may interact
safely. Our core methodology using sequential model cingckandles the former. Handling the
latter amounts to reasoning about the (sequentially-camghoenvironments in which a feature
can operate without violating its properties.

Asking designers to attach environment models to eachreatdividually is onerous. We
have therefore developed initial techniques to automiatiganerate the environment constraints
that will preserve specific properties of individual fe&si{5]. This approach relies on a two
phases—constraint generation on individual features andtint discharge when features are
composed-to verify global system properties. Our expedeuggests that model checking, with
its binary output decision, may not be sufficiently fine-ged to analyze features in the face of
potential feature interactions.

Using Featuresto Repair Failed System Properties

We have discussed how to preserve properties of systemsahdds as features are composed
into larger systems. Sometimes, features are introducethi® a system satisfy a property that
does not hold without the feature. The tunnel protocol gtesian example: the base system

2pPersonal communication; results not yet published.

alone is not safe if two trains get into the tunnel, but theuearepairs the protocol to satisfy this
property. Modular approaches for determining that feastoepair failed properties is an open area
of research.

Sharing Code Across Features

The features model presented in Section 2 assumes that eaitiief module is self-contained.
Real systems, however, may need to share support code &sats®s, either in the form of code
libraries (software) or shared devices (hardware). We ateaware of models of features that
enable sharing of common infrastructure. Example systéatsutilize such sharing would help
drive research into this issue.

5 Related Work

Many researchers have proposed system decompositionreseatble features in spirit; these in-
clude layers [3], collaborations [24], aspects [17] andauf8]. A brief sampling of successful de-
signs in this vein includes a military command-and-corgaa@nario simulator [2], a programming
environment [8], network protocols and database systends 2], and verification tools [11, 26].

Laster and Grumberg proposed the first algorithm for modutaatel checking under sequential
composition [20]. This work aims at decomposing systemsifipd as a single, monolithic, state
machine; in particular, it lacks a design framework, sucfeatures, that drives the decomposition
of the system. Other work uses hierarchical state machiijesnfd StateCharts [6] to guide the
decomposition, but the resulting systems are still mohialitin contrast, our work is designed to
support systems that are conceived and built incremerdalisombinations of features. Features
can be developed in isolation of one another, without kndgdeof which other features will be
included in the final system. This basis and our handling oftiple state machines per feature
distinguish our approach from these others.

The Horus/Ensemble project [22] builds network protochtetigh compositions of features.
They have discussed feature-oriented verification, butvauk differs from theirs in several ways:
first, they do not appear to verify features in isolation frone another; second, their work con-
centrated on a particular set of features, while we are @ioga general framework for this style
of verification; third, their work uses theorem proving mtithan model checking. We have done
a preliminary extension of our work to theorem proving [12].

6 Summary

This paper has given an overview of feature-oriented demigiverification. Features are promis-
ing for verification because they naturally decompose aasigto fragments that align with prop-
erties. This simplifies modular verification without redogr designers to decompose properties
around the modular structure. Exploiting this promise, éasv, requires methodologies and mod-
els for capturing realistic hardware designs as sets afifeat We hope this paper will spark dis-

cussion about the possible role of features in capturinggdesand the extent to which problems
such as feature interaction arise in a hardware context.

References

[1] Alur, R. and M. Yannakakis. Model checking of hierarcilistate machines. 18ymposium

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

on the Foundations of Software Engineeripgges 175-188, 1998.

Batory, D., C. Johnson, B. MacDonald and D. von Heedermiéwing extensibility through
product-lines and domain-specific languages: A case sti@ Transactions on Software
Engineering and Methodolog$1(2):191-214, April 2002.

Batory, D. and S. O’Malley. The design and implementatif hierarchical software systems
with reusable componentACM Transactions on Software Engineering and Methodqglogy
1(4):355-398, October 1992.

Biagioni, E., R. Harper, P. Lee and B. G. Milnes. Signatufor a network protocol stack: A
systems application of Standard ML. ACM Symposium on Lisp and Functional Program-
ming, 1994.

Blundell, C., K. Fisler, S. Krishnamurthi and P. Van Hentyck. Parameterized interfaces for
open system verification of product lines. IBEE International Symposium on Automated
Software Engineeringpages 258-267, September 2004.

Clarke, E. M. and W. Heinle. Modular translation of Sttarts to SMV. Technical Report
CMU-CS-00-XXX, Carnegie Mellon University School of ContpuScience, August 2000.

Dominguez, A. L. J. Verification of DFC call protocol ceatness criteria. Master’s thesis,
University of Waterloo Department of Computer Science, 2200

Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S.sKrniamurthi, P. Steckler and
M. Felleisen. DrScheme: A programming environment for $okeJournal of Functional
Programming 12(2):159-182, 2002.

Findler, R. B. and M. Flatt. Modular object-oriented gramming with units and mixins. In
ACM SIGPLAN International Conference on Functional Pragraing pages 94-104, 1998.

Fisler, K. and S. Krishnamurthi. Modular verificatiofh anllaboration-based software de-
signs. InSymposium on the Foundations of Software Engineepages 152-163. ACM
Press, September 2001.

Fisler, K., S. Krishnamurthi and K. E. Gray. Implemeagiextensible theorem provers. In
International Conference on Theorem Proving in Higher-@rdlogic: Emerging Trends
Research Report, INRIA Sophia Antipolis, September 1999.

10

[12] Fisler, K. and B. G. Roberts. A case study in using ACL2f&ature-oriented verification. In
Proceedings of the ACL2 Workshdyovember 2004.

[13] Hollander, Y., M. Morley and A. Noy. The language: A fresh separation of concerns. In
Proceedings of TOOLS Europigarch 2001.

[14] Holzmann, G.Design and Validation of Computer ProtocoRrentice-Hall, 1991.

[15] Jackson, M. and P. Zave. Distributed feature compmsitA virtual architecture for telecom-
munications service$EEE Transactions on Software Engineerj@g(10):831-847, October
1998.

[16] Keck, D. O. and P. J. Kuehn. The feature and serviceanten problem in telecommuni-
cations systems: A survejlEEE Transactions on Software Engineer,r&(10):779-796,
October 1998.

[17] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. @gpJ. Loingtier and J. lrwin.
Aspect-oriented programming. EBuropean Conference on Object-Oriented Programming
pages 220-242, 1997.

[18] Krishnamurthi, S. and K. Fisler. Foundations of incesttal aspect model-checkinghCM
Transactions on Software Engineering and Methodolofgcepted pending minor edits,
2005. Preliminary versions appeared in other cited worRs 19].

[19] Krishnamurthi, S., K. Fisler and M. Greenberg. Vernifgiaspect advice modularly. kRCM
SIGSOFT International Symposium on the Foundations ohW@&agtEngineeringpages 137—
146, November 2004.

[20] Laster, K. and O. Grumberg. Modular model checking dfwgare. InConference on Tools
and Algorithms for the Construction and Analysis of Systdrag8.

[21] Li, H., S. Krishnamurthi and K. Fisler. Modular verifittan of open features through three-
valued model checkingJournal of Automated Software Engineeriri®(3):349-382, July
2005.

[22] Liu, X., C. Kreitz, R. van Renesse, J. Hickey, M. HaydénBirman and R. Constable. Build-
ing reliable, high-performance communication systemsifommponents. IBymposium on
Operation System Principlepages 80-92. ACM Press, 1999.

[23] McMillan, K. L. Verification of an implementation of Toasulo’s algorithm by compositional
model checking. Innternational Conference on Computer-Aided Verificatib®98.

[24] Mezini, M. and K. Lieberherr. Adaptive plug-and-plagraponents for evolutionary software
development. INPACM SIGPLAN Conference on Object-Oriented Programminde8ys,
Languages & Applicationgages 97-116, October 1998.

11

[25] Ossher, H. and P. Tarr. Multi-dimensional separatibonamcerns in hyperspace. Technical
Report RC 21452(96717), IBM, April 1999.

[26] Stirewalt, K. and L. Dillon. A component-based apptio&c building formal-analysis tools.
In International Conference on Software Engineeria@01.

[27] Xie, T. and J. Zhao. A framework and tool supports for grating test inputs of AspectJ
programs. IrProc. 5th International Conference on Aspect-Orientedvé&e Development
(AOSD 2006)March 2006.

12

Another Dimension to High Level
Synthesis: Verification

Malay K. Ganai Akira Mukaiyama
Aarti Gupta Kazutoshi Wakabayshi
NEC Labs America Central Research Lab
Princeton, NJ, USA NEC, Tokyo, Japan
Outline

» Introduction
» High level synthesis
» Verification techniques (strengths and weaknesses)
» Parameters controlling HLS
» Area, performance and power trade-off
» Impact on verification
» Case Study
» Experimentation with Cyber and DiVer Industrial Tools
» Paradigm Shift: Synthesis for Verification
» Generate verification “aware” model
» Maximize the benefit of current verification techniques
» Open discussion

1/31/2006 Ganai et al ONEC Laboratories America 2

Design Flow & Levels of Abstraction

System level C, English, Japanese

o [SW/HW Co-design]
+ Behavior-level C,C++, S‘stemc C-based Behavior Synthesis
(Behavior Synthesizer) *1))
C-based Logic Synthesis
% s |
RT level g ﬁ.ﬁg}
(VHDL, Verilog) O
controller ’ datapath *1: A Behavioral Synthesis tool
generates Functional Dscrptn.
. . So, technically, it should be
(LOgIC Synthesuer) called as “Functional Synthesizer”.
1%
A
gate-level . =
Level of (netlist) o il
Abstraction Ik
’ e
(Place & Route) m) Mask Pattern (Chip)
1/31/2006 Ganai et al ©NEC Laboratories America 3

Why Upper Level leads to High Productivity?
- Less Design Size

Behavior RTL

Gate
I Benavior (Verilog) Logic (netlist)
1 Synthesis 7 Synthesis

alwa @(mgut ab or idata_a or x_val) begin

input_ab == 1) adder_inputl <= idata_a;
- e adder_inputl <= x_\ val
end // of alway

. . ys

X =idata_a_t + idata_b_t; alwa @(input_ab or idata_b or idata_d) begln

ictl_c_t=ictl_c; input_ab == 1) adder_input2 <= idata_b;

if (ictl_c_t) { e adder_input2 <= idata_d;
HELCLi= Tk el end / of always
\data_d_t = idata_d ; assign adder_output = adder. |ngg!1+adder input2;
odata_y_t=x +idata_d_t; alwa @(odata_en or x_val)

Yelse{ data en== 1) od Ly <=x_val;
odata_y_t=2*x; = 0

end // of alway

ys
always @(posedge CLOCK or negedge RESET) begin
= |f RESET) X val <=

case (x_val_sel)

1: x_val <= adder_output;

0 x_val<={x.\ vaﬂP 0], 1°b0};
default: x_val <= =
endcase

end // of alway

ys
endmodule // main_datapath
K -continue j

40KL 300KL 1MGate

1/31/2006 Ganai et al ONEC Laboratories America 4

What is “Behavior Synthesis”

S

—

—>

i
i
i

L Logic .
Behaviorin C 49 synthesis
[charABCD;) +. o9
char EF;)
main(){ = 1cycle
char X; constraints Delay:2T
X=A+B; RTL
E=X D; N S0
F=(B+C)*X; —
} &0 +:1 L s
- AR 2 —
8 Lines l s2
100 lines |3 cycl Delay:1T
1/31/2006 Ganai et al ©NEC Laboratories America

@

Steps of Behavioral Synthesis

Allocate
Scheduling
Binding

No o r~wDNRE

Module Generation

Generation of Controller

1/31/2006 Ganai et al ONEC Laboratories America

Create behavior description into DFG
Source code level optimization

1: Create DFG

f = (a+b)*d;
g = (b-c)*e;
1/31/2006 Ganai et al ©NEC Laboratories America

2: Source Code Optimization

» Extract common sub-expression

e a=(Xx+y)*z; b=x+y-z; t=x+y; a=t*z;b=t-z,
» Multi-dimensional array to one-dimensional array

» a2[4][5]=>al[20],x=a2[i][j]=>x=al[i*5+j]=>al[i<<2+i+|]
» Constant propagation

* a*2=> a::0; a=1+b, b=2 => a=3
» Automatic Bit adjustment (automatic cast)

a(4bit) = b(2bit) => a=00::b or a=b(0)::b(0)::b;
 Loop unrolling, Loop folding, Pipelining
 Function inline expansion
* Dead Code Elimination
* Tree balancing (for extracting parallelism)

1/31/2006 Ganai et al ONEC Laboratories America

3: Allocate set of usable FUs

(#of FUs, bit width, multi-function, etc)

a b C

1/31/2006 Ganai et al ©NEC Laboratories America 9

4: Schedule an operation to a cycle

Area constraint: Extract parallelism, speculation,
operation chaining, pipeline FUs

Time Constraint: Extract conditional mutual exclusion

a b

cycle 1

cycle 2

cycle 3

f

f g
Schedule A Schedule B

1/31/2006 Ganai et al ONEC Laboratories America 10

5: Bind operations, variables, databtransfer

Add_1[F - sub_1 AddSub_1

f g foy
Mul_1
Operations: Adders, ALUs, Shifters g
Variables: Registers, Memories
Data Transfers: Wire, MUX, Bus
1/31/2006 Ganai et al ©NEC Laboratories America 11
6. Generation of Controller: FSMD
(N\
Enable
» i
@ Select *
>\MU
Kind
@ @ Results
Enables
. J
Controller Ctl.Signals Datapath
Each Behavior Synthesis tool has their own target architecture.
FSMD is a natural architecture for Behavior Synthesis.
Some tools generate Micro-code based architecture or more processor oriented
architecture. Synthesis algorithms are somehow different for
such cases from the method in this tutorial.
1/31/2006 Ganai et al ©NEC Laboratories America 12

Current Syn

thesis + Verification flow

Detailed trade-off Designer 1in char A,8.c,D;
analysis results in the out char 01,02;
optimum implementation ?mcess ALV ()
: char TMP;
Large e Design TMP = A + B;
&) constraint 01 = TMP * D-
o 02 = (B +C) * X;
Area e }
T et
B,
Small
fast performance Sslow
Q o Q \\ ﬂ
s
1 o1 Y -
st —
RTL
} S ; ﬂ
Controlling circdit Data path /’ & Golden
FSM To physical Model
d 02 ‘ implementation
1/31/2006 Ganai et al ©NEC Laboratories America 13
De_sign EENUITES AG (req -=> AF (ack + error)
NEC Design =mulifel) C.IO.CKS’ gated “request always followed
esigns
-level sensitive latches by an ackor error”
Verified -embedded memories
- NECOBUS bus core ErviemmEni:
- CGX memory arbiter Property / .
- DMA Controller Design Constraints Fairness
- 3M hardware platform
- Snowman USB Core KNeW Technology:
- MIF memory interface DiVer Formal Verification
biver BMC: Find bugs efficiently
Verification D-BMC: Find bugs using
System Features Platform distributed resources
- For PBIA: Find irrelevant logic and
. chlvjautorated Digital reduce model size
; advanced/algorithms Systems BMC+EMM: Find bugs on
- handles large designs embedded memory system
pemaigdebuggey e BMC+EMM+PBIA: Find irrelevant]
goagneleiiectivelthan Verification logic and memory modules
simulation Report Induction, BDD, UMC: Proofs
#__SOURCE .
. ANNOTAT
1/31/2006 Ganai et al ©NEC Laboratories America 14

Wheel of Verification Engines

. Engines for finding Bugs Legend
A BMC = Bounded Model Checking
BMC UMC = Unbounded Model Checking

/\ Find bugs EMM = Efficient Memory Modeling
. - N < PBIA = Proof-Based lterative Abstraction
Engines for finding Proofs R efficiently SAT = Boolean Satisfiability Solver

BDD = Binary Decision Diagrams

Prover
Proves correctness of
properties using
Unbounded Model
Checking and Induction

Distributed BMC
Find bugs on network
of workstations

\\Efficient
Representation
(circuit'simplifier)

Boolean Sglver
(SAT, BDR)

BMC + EMM + PBIA
Reduce model size by
identifying & removing

irrelevant memories

and logic
Paper on DiVer Platform
™. presented
N, at TACAS in April '05
1/31/2006 Ganai et al ©NEC Laboratories America 15
Verification Flows
System w/o Embedded BUG Embedded Memory System

Memory

Find Bugs
(BMC or D-BMC)

No bug found,
safety property No bug found,

liveness property

No bug found,
safety or liveness

Identify & remove
irrelevant memory
and irrelevant logic
(BMC+EMM+PBIA)

Abstract Completeness Abstract
model bounds (m, n) model
Prove property Prove property Prove property
correct by correct by correct by

Induction or UMC Induction Induction
with invariants with invariants with invariants

N

PROOF '] PROOF

1/31/2006 Ganai et al ©NEC Laboratories Americ;

16

Hybrid SAT

—Ganai et al, DAC'02

Problem Representation
» Gate Clauses: typically short, maintained as 2-input gate
» Learned clauses: typically large, maintained as CNF

» Deduction Engine — Hybrid BCP
» Circuit-based BCP on gate clauses using fast table lookup
» CNF-based BCP on learnt clauses using lazy update

» Decision Engine
» Use of circuit-based information, CNF Heuristics
» Diagnostic Engine
» Record both clauses and gate nodes as reasons for conflict

1/31/2006 Ganai et al ©NEC Laboratories America 17

Strengths/Weaknesses: SAT Solver

» Strengths
» Good at finding a satisfying solution
» Search scales well with problem size

» Incremental learning: Low overhead and improves subsequent
solves drastically

» Performs well on disjoint-partitioned sub-structures
» Matured and well-known heuristics exist
» Hybrid SAT: advantageous over CNF/Circuit SAT solvers

» Weakness
> Muxes are detrimental

» Not good for problems arising from optimized circuits with heavy
sharing of registers and function units

» Not good at enumerating solutions

1/31/2006 Ganai et al ONEC Laboratories America 18

Bounded Model Checking

Unroll Circuit for bgunded length _Biere et al DAC’00
Translate problem into a Boolean formula
Use SAT solver to check for awitness

YV V V

» Dynamic Circuit Transformation
> Propagation of initial state constants

> Subgraph isomorphism detection and removal state-of-the-art

» Reuse of Learned Property Constraints features
» Time-based Partitioning _
> Smaller sub problems, incremental formulation) —Ganai etal, DAC'02,
» Incremental Hybrid SAT Solver VLSI'02, DAC'05
1/31/2006 Ganai et al ©NEC Laboratories America 19
SAT-based Distributed BMC
—Ganai et al
CHARME'03

ate=PS, NS,=P
Sa

? Partition unrolled circuit and Distribute SAT check

» Ubiquitous Ethernet LAN
» Standard, Cheap

» Network of Workstations (NOW)
» Easily available, Idle mostly (esp. Manager’s)

» BMC problem provides natural disjoint partitioning
» Parallelizing partition specific tasks like BCP

1/31/2006 Ganai et al ONEC Laboratories America 20

BMC/UMC Proof for G(p) with Invariants

—Gupta et al CAV'03

K-depth Inductive Step: ~ Sheeran et al FMCAD'00

> If Unsat(!p_k), then property is true

p p
SAT(! p)?
Arbitrary
State o
Fr=1

Additional constraint F* on the arbitrary starting state
» F* is overapproximated forward reachable states
» Provides an induction invariant
» Frequently allows induction proof to succeed

1/31/2006 Ganai et al ©NEC Laboratories America 21

Strengths/Weaknesses: SAT-based BMC
» Strengths

» Finds shortest length counter-example efficiently

» Successive problems overlap, allowing incremental formulation
and incremental learning for SAT

Provides natural disjoint partitioning of problems; allowing
distributed BMC to overcome memory requirements

Reached states are not explicitly stored
Insensitive to number of registers, search scales well
State-of-the-art improvisations exist, well matured technology

\7%

v VYV

> Weaknesses

» Problem size grows linearly with unroll depth, computation can
only worse

» Sensitive to the size of the model
» Incomplete, stopping criteria is difficult to determine

» Not good when model is heavily sequentialized (few events per
cycle); longer search depths

1/31/2006 Ganai et al ONEC Laboratories America 22

BMC with SAT Proof Analysis

— McMillan et al TACAS'03
— Gupta et al ICCAD’03, VLSI'05
X3 X4

» Suppose no counterexample at depth k
— Derive an unsatisfiable core R(k) using SAT solver

» Intuition for Abstraction
> Abstract model with R(k) implies no counterexample at depth k
» The abstract model may be correct for k’ > k, maybe all k’
» Typically R(k) is much smaller than entire design

1/31/2006 Ganai et al ©NEC Laboratories America 23

Strengths/Weaknesses: Proof-based
Abstraction

» Strengths
» Identifying and removing irrelevant logic
Identifies irrelevant memory and ports
Can be applied iteratively
Often leads to proof or deeper bounded proof

Reduces the refinements requirements by eliminating all counter-
example for a bounded depth

Y V V VY

> Weaknesses

» Sharing of functional unit is detrimental, increases unsatisfiable
core size

» Other weakness similar to SAT-based BMC with or without EMM

1/31/2006 Ganai et al ONEC Laboratories America 24

Efficient Memory Model Approach

Observation: (1 Mem, 1 Port)

» At most one address valid per cycle RO/ WEM

» At most one mem write per cycle WE

Single
Port

MEM —_—
—Ganai et al CAV’04, DATE’'05

EMM: Remove memories, but add constraints lazily
» Forwarding semantics is maintained
» Exclusivity of a read-write pair is captured explicitly
» Constraints are represented efficiently

1/31/2006 Ganai et al ©NEC Laboratories America 25

Strengths/Weaknesses: SAT-based BMC+EMM
» Strengths

» EMM is sound and complete, memory semantics is preserved

No examination or translation of design module is required
Memory is not modeled explicitly; reduces design size significantly
Exclusivity of read-write pair is captured; reduces muxes
Constraints grow lazily (quadratically) with unrolling

Supports multiple memories and ports; can be exploited to reduce
the sequential depth of the design

Good for properties dependent on fewer memory accesses
» Works well with arbitrary or uniform memory initialization

V VY VYV

Y

» Weaknesses
» Large memory accesses is detrimental
» Non-uniform memory initialization increases memory cycles
» Other weaknesses similar to SAT-based BMC

1/31/2006 Ganai et al ONEC Laboratories America 26

SAT-based Unbounded Model Checking
» Symbolic backward traversal using unrolled TR

Wl W2 W. [Ganai et al. 04]

X Bad=-p(X;)

SEZ Circuit cofactors are enumerated by using
CF, SAT
» Issues in practice

» State sets (represented as circuit cofactors) may blow up

» Performance is not as good as SAT-based BMC (search for
bugs), which avoids computation of state sets

» Complementary to BDD-based UMC for deriving proofs

1/31/2006 Ganai et al ©NEC Laboratories America 27

Strengths/Weaknesses: UMC

» Strengths

Efficient SAT solution enumerations

Uses efficient representation for states

Several low-overhead heuristics to enlarge solution states
Efficient pre-image computation, uses unrolled transition relation
Effective when primary inputs are large

Effective when the backward diameter is small

A\

YV V VYV

» Weaknesses
» Not good for forward image computation
» Not effective in quantifying out relational variables

1/31/2006 Ganai et al ONEC Laboratories America 28

Parameters Controlling HLS (1/4)

» Increase use of Functional Units, Registers
» Area: Increases
» Performance: Can increase by reduction in control steps
» Power: Increases due to increase in output capacitance,
leakage current

» Reuse of Functional Units, registers
» Area: Decreases, assuming mux area is small
» Performance: Decreases due to increase in control steps
» Power: Increases due to increased switching activities

1/31/2006 Ganai et al ©NEC Laboratories America 29

Parameters Controlling HLS (2/4)

» Reduction in Control Steps
» Area: Increases due to increase use of FUs
» Performance: Increases if frequency of control clock is
unchanged
» Power: Decreases due to decrease in switching activity. For
afixed throughput, frequency of control clock and hence,
supply voltage can be reduced to allow power reduction

» Speculative Execution
» Area: Increase if more FUs are required for speculative
branch
» Performance: Increases as control steps reduces

> Power: Increases due to increase switching, speculative
execution and reuse of FUs

1/31/2006 Ganai et al ONEC Laboratories America 30

Parameters Controlling HLS (3/4)

» Pipelines
» Area: Increase due to increase use of FUs
» Performance: Increases through puts
» Power: Increase due reuse of Regs, switching.

» Parallelization (conditional mutual exclusion)
» Area: Decrease by reuse of FUs
» Performance: Increases as c-steps reduces
» Power: Increase due to increase switching, reuse of FUs

1/31/2006 Ganai et al ©NEC Laboratories America 31

Parameters Controlling HLS (4/4)

» Operations reuse
» Area: Decreases due to fewer FUs
» Performance: Decreases if critical length increases
» Power: Decreases due to less switching

» Increase of Clock freq (f) and supply voltage (V)
» Area: Increases due to use of faster but larger FUs

» Performance: Increases if control steps does not change;
otherwise, can affect throughput

» Power: Increases a. (f.V?

1/31/2006 Ganai et al ONEC Laboratories America 32

Impact of HLS parameters on Verification

» Re-use of FUs, Regs
» Adversely affects due to use of muxes
» Increase use of FUs, Regs
» Not good in general. But better than re-use.
» Reduction in control steps
» Definitely good. Reduces the sequential depth
» Speculative execution/ Parallelization
» Good if FUs are not re-used. Reduces the sequential depth.
» Pipelines

> Increases verification complexity without adding any functional
behavior. FUs re-used and is not good.

» Operation re-use
» Good in general. Reduces number of operations.

» Clock/Voltage change

» Selection of FUs affects verification complexity

1/31/2006 Ganai et al ©NEC Laboratories America 33

Cyber Work Bench: C-based Design Flow
Behavior level Behavior level (source) debu
© Property out res =

Highlight buggy code

heson ez R AN gL T
Transform N oSG gL
Cyber using HLS —

S
RTL S
Verilog

Waveform for Behavior level variabl

Translation
into Behavior level

S
Witness/
» Cyber Work Bench (CWB)

» Developed by CRL (Wakabayashi-san) for C-based design

» Generates property monitors automatically for VeriSol

» Provides source-level debugging based on bugs found by VeriSol
» Provides a seamless integration, with look-and-feel of a single tool

RTL Property
(LTL)

» VeriSol is a key feature of NEC’s C-based design flow
» Provides verification of RTL designs

1/31/2006 Ganai et al ONEC Laboratories America 34

Property 2: F(RAM[rptr]+50 ==

Case Study

FiFo: Address Width=7 Data Width=7
Design: Data-in <= wptr
Property 1: F(full_flag);// FIFO_LENGTH=24

wptr);// FIFO_LENGTH=128

C-step #FU MEM/REG/ | PRP | #MUX | #REG Verification

(1 RST) SLICE id

1+1R 2+2 REG 1 891 1165 243s, D=25
1+1R 2+2 SLICE 1 93 109 135s, D=25
3+1R 2 REG 2 4398 | 5748 143s, D=150
3+1R 5 REG 2 4341 | 5748 52s, D=150
1+1R 3+2 REG 2 4314 | 5741 64s, D=52
3+1R 2 MEM:R1,W1 2 177 116 33s, D=150 EMM
3+1R 5 MEM: R1,W1 2 126 116 30s, D=150 EMM
1+1R 3+2 MEM:R2,W1 2 93 109 10s, D=51 EMM

1/31/2006 Ganai et al ©NEC Laboratories America 35

Paradigm Shift: Synthesis for Verification

Detailed trade-off

analysis results in the
optimum implementation

Designer

Large
iul

N =
Area \%!

P

Small

fast performance Sslow

Q

Q

S

@Stat s
l s

Controlling
FSM

circyit

Data path| //

,
,
g
/

02

1/31/2006

Design CIC++
constraint

i 1

RTL

§l
To physical

\\ /—-\
| I

implementation

/| in char A,B,C,D;
out char 01,02;
process ALU ()

{

char TMP;

TMP = A + B;

01 = TMP * D;

02 = (B +C) *X;

Verification

ll

Golden
Model

Ganai et al ONEC Laboratories America

36

Various RTLs can be checked against
Golden Reference Model (GRM)

Various Requests

® | | | clock: 50 MHz

60 —1 FU=32,State=61 / Thru.put: CIF, 30fps
) \ 7
© FU=16,State=63
350 P clock: 60 MHz
545 FU:8,State:E/ thru.put: CIF, 30fps
= > = =
< 40 FU=3,State=103 FU=1,State=214

FU=4,State=90 m— |
35 FU=2,State=129 clock: 60 MHz
| >
30 thru.put: CIF, 15fps
400 600 800 1000 1200 1400 1600
cycle

Various circuits for IDCT: #. of REGs, FUs, States

1/31/2006 Ganai et al ©NEC Laboratories America 37

Synthesis for Verification “aware” Model

VVVVYYVYVVYY

Y VY

No Re-use of FUs, Regs

Minimize the use of muxes, sharing

Reduce control steps

Speculative execution/ Parallelization: No re-use of FUs
Pipelines: avoid

Select “verification friendly” FUs

Operation reuse

Slice statements using data flow analysis as source code
optimization

Support “assume” and “assert” in the language

Use external memories instead of register arrays to take
advantage of EMM modeling

..... (open discussion forum)

1/31/2006 Ganai et al ONEC Laboratories America 38

1/31/2006

Thank you!

Ganai et al ©NEC Laboratories America

39

Applications of the DE2 Language

Warren A. Hunt, Jr. and Erik Reeber
February 16, 2006

Abstract

We have developed a formal verification approach that permits the
mechanical verification of circuit generators and hardware optimiza-
tion procedures, as well as existing hardware designs. Our approach
is based on deeply embedding the DE2 HDL into the ACL2 logic [3];
we use the ACL2 theorem-proving system to verify the circuit gen-
erators. During circuit generation, a circuit generator may generate
circuits based on variety of non-functional criteria. For example, a
circuit generator may produce different structural circuit descriptions
depending on wire lengths, circuit primitives, target technology, and
circuit topology.

In this paper, we show how we have applied the DE2 system to a
simple circuit generator—the n-bit ripple-carry adder. We then show
how we have applied the DE2 system to the verification of components
of the TRIPS microprocessor design.

1 Introduction

We have developed a hardware description language, DE2, which has a num-
ber of features that make it suitable for the verification of modern hardware
designs. DE2 has a simple semantics and includes capabilities for specify-
ing and verifying non-functional properties, circuit generators, and hardware
optimization programs.

Our verification system is based on the deep embedding of DE2 within
the ACL2 logic and theorem prover. Furthermore, we have built a fully
automatic SAT-based proof engine that can verify invariants of machines

designed in DE2. This SAT-based proof engine involves an extension to the
ACL2 theorem-proving system so that it can use external SAT solvers.

In this paper, we discuss related work in Section 2. We provide some
background on the ACL2 theorem prover, the DE2 language, and our veri-
fication system, in Section 3. Next, in Section 4, we show how to apply our
system to the verification of a ripple-carry adder. In Section 5, we show how
we apply our system to the verification of a communication protocol used in
the TRIPS processor.

2 Related Work

This work builds on our previous work with the DE2 language [3], as well
as our previous work with the verification of the FM9001 microprocessor
[8]. In our earlier work, we only employed theorem-proving techniques, but
our current effort also permits the use of SAT and BDD based techniques.
In addition, our current approach to verifying circuit generators permits a
circuit generator to make choices based on non-functional criteria. For exam-
ple, a circuit generator may produce different structural circuit descriptions
depending on wire lengths, circuit primitives, target technology, and circuit
topology.

This work is similar in spirit to work by the functional language commu-
nity to generate regular circuits using functional programs. For instance, the
WIRED language has been used to improve performance of multipliers by
incorporating layout information into the design of circuit generators [1].

Many model-checkers, and other automated verification tools, verify FSM
properties automatically. UCLID, for example, uses SAT solvers to verify
high-level FSMs with uninterpreted function symbols [5]. Another example
is the FORTE tool, which has been used at Intel to verify components of
processor designs [2].

3 Background

3.1 The ACL2 Theorem Prover

ACL2 stands for A Computation Logic for Applicative Common Lisp. The
ACL2 language is a functional subset of Common Lisp. For a thorough
description of ACL2 see Kaufmann, Manolios, and Moore’s book [4].

(defun concatn (n a b)
(if (zp n)
b
(cons (car a)
(concatn (- n 1) (cdr a) b))))

(defun uandn (n a)
(if (zp n)
t
(if (car a)
(uandn (- n 1) (cdr a))
nil)))

(defun bequiv (a b)
(if a b (not b)))

(defthm example-thm
(implies (and (not (zp x))
(not (zp y)))
(bequiv (uandn (+ x y) (concatn x a b))
(and (uandn x a) (uandn y b)))))

Figure 1: ACL2 Definitions and a Bit-Vector Concatenation Theorem

Figure 1 illustrates several ACL2 definitions. Here, function concatn
concatenates two bit vectors, uandn returns the conjunction of the bits in a
bit vector. The ACL2 function bequiv determines whether two ACL2 values
represent the same Boolean value. We also make use of the built-in ACL2
function (zp n), which returns nil if n is a positive integer and t otherwise.

The functions uandn and concatn are defined recursively. In order for
such definitional axioms to be added to the ACL2 theory, one must first prove
that the definition terminates for all inputs. In this case, the proof follows
from the fact that the function argument n decreases on every recursive call.

Figure 1 also illustrates an ACL2 theorem. This theorem states that
the unary-and of the concatenation of two bit vectors is equivalent to the
conjunction of the unary-and of each individual bit vector.

3.2 The DE2 Evaluator

The semantic evaluation of a DE2 design proceeds by binding actual (eval-
uated) parameters (both the inputs and the current state) to the formal
parameters of the module to be evaluated; this in turn causes the evaluation
of each submodule. This evaluation process is recursively repeated until a
primitive module is encountered. This recursive-descent/ascent part of the
evaluation can be thought of as performing all of the “wiring”; values are
“routed” to appropriate modules and results are collected and passed along
to other modules or become primary outputs. Finally, to evaluate a primi-
tive, a specific primitive evaluator is then called after binding the necessary
arguments. This set of definitions is composed of four (two groups of) func-
tions (given below), and these functions contain an argument that permits
different primitive evaluators to be used.

The following four functions completely define the evaluation of a netlist
of modules, no matter which type of primitive evaluation is specified. The
functions presented in this section constitute the entire definition of the sim-
ulator for the DE2 language. This definition is small enough to allow us to
reason with it mechanically, yet it is rich enough to permit the definition of
a variety of evaluators. The se function evaluates a module and returns its
outputs as a function of its inputs and its internal state. The de function
evaluates a module and returns its next state; this state will be structurally
identical to the module’s current state, but with updated values. Both se
and de have sibling functions, se-occ and de-occ respectively, that iterate
through each sub-module referenced in the body of a module definition. We

present the se and de evaluator functions to make clear the importance we
place on making the definition compact.

The se and de functions both have a flg argument that permits the
selection of a specific primitive evaluator. The fn argument identifies the
name of a module to evaluate; its definition should be found in the netlist.
The ins and st arguments provide the primary inputs and the current state
of the fn module. The params argument allows for parametrized modules;
that is, it is possible to define modules with wire and state sizes that are
determined by this parameter. The env argument permits configuration or
test information to be passed deep into the evaluation process.

The se-occ function evaluates each occurrence and returns an environ-
ment that includes values for all internal signals. The se function returns
a list of outputs by filtering the desired outputs from this environment. To
compute the outputs as functions of the inputs, only a single pass is required.

(defun se (flg fn params ins st env netlist)
(if (consp fn)
;3 Primitive Evaluation.
(cdr (flg-eval-lambda-expr flg fn params ins env))
;3 Evaluate submodules.
(let ((module (assoc-eq fn netlist)))
(if (atom module)
nil
(let-names
(m-params m-ins m-outs m-sts m-occs)
(m-body module)

(let*

((new-env (add-pairlist m-params params nil))

(new-env (add-pairlist (strip-cars m-ins)
(flg-eval-list flg ins env)
new-env))

(new-env (add-pairlist m-sts
(flg-eval-expr flg st env)
new-env))

(new-netlist (delete-assoc-eq-netlist fn netlist)))
(assoc-eq-list-vals

(strip-cars m-outs)

(se-occ flg m-occs new-env new-netlist))))))))

(defun se-occ (flg occs env netlist)

(if (atom occs) ;; Any more occurrences?
env
;; Evaluate specific occurrence.
(let-names
(o-name o-outs o-call o-ins)
(car occs)
(se-occ flg (cdr occs)
(add-pairlist
(o-outs-names o-outs)
(flg-eval-list
flg (parse-output-list
o-outs
(se flg (o-call-fn o-call)
(flg-eval-list flg
(o-call-params o-call)
env)
o-ins o-name env netlist))
env)
env)
netlist))))

Similarly, the functions de and de-occ perform the next-state compu-
tation for a module’s evaluation; given values for the primary inputs and a
structured state argument, these two functions compute the next state of
a specified module. This result state is structured isomorphically to its in-
put (internal) state. Note that the definition of de contains a reference to
the function se-occ; this reference computes the value of all internal signals
for the module whose next state is being computed. This call to se-occ
represents the first of two passes through a module description when DE is
computing the next state.

(defun de (flg fn params ins st env netlist)
(if (consp fn)
(car (flg-eval-lambda-expr flg fn params ins env))
(let ((module (assoc-eq fn netlist)))
(if (atom module)
nil
(let-names
(m-params m-ins m-sts m-occs) (m-body module)
(letx*
((new-env (add-pairlist m-params params nil))

(new-env (add-pairlist (strip-cars m-ins)
(flg-eval-list flg ins env)

new-env))
(new-env (add-pairlist m-sts
(flg-eval-expr flg st env)
new-env))
(new-netlist (delete-assoc-eq-netlist fn netlist))
(new-env (se-occ flg m-occs new-env new-netlist)))

(assoc-eq-list-vals
m-sts
(de-occ flg m-occs new-env new-netlist))))))))

(defun de-occ (flg occs env netlist)
(if (atom occs)
env
(let-names
(o-name o-call o-ins) (car occs)
(de-occ flg (cdr occs)
(cons
(cons
o-name
(de flg (o-call-fn o-call)
(flg-eval-list flg (o-call-params o-call) env)
o-ins o-name env netlist))
env)
netlist))))

This completes the entire definition of the DE2 evaluation semantics.

This clique of functions is used for all different evaluators; the specific kind
of evaluation is determined by the flg input. We have proved a number of
lemmas that help to automate the analysis of DE2 modules. These lemmas
allow us to hierarchically verify FSMs represented as DE2 modules. We have
also defined simple functions that use de and se to simulate a DE2 design

through any number of cycles.

An important aspect of this semantics is its brevity. Furthermore, since
we specify our semantics in the formal language of the ACL2 theorem prover,
we can mechanically and hierarchically verify properties about any system

defined using the DE2 language.

Verilog English Spec, C Model

Design | and Test Suite
) Testing & ;
Automatic Inspection ! Manual
Translation ' Translation
Optimizations ¥
. DE
& Reductions Desi ACL2 Spec
o esign
(verified)
Verified /\ Guided
Translation SAT-Based : Proof
Decision V
Procedure .
ACL2 Model Simplified
Invariants

Figure 2: An overview of the DE2 verification system

3.3 The Verification System

Having an evaluator for DE2 written in ACL2 enables many forms of ver-
ification. In Figure 2, we illustrate our verification system, which is built
around the DE2 language.

We typically use the DE2 verification system to verify Verilog designs.
These designs are denoted in the upper left of Figure 2. Currently, our subset
of Verilog includes arrays of wires (bit vectors), instantiations of modules,
assignment statements, and some basic primitives (e.g. &, ?: and |). We
also allow the instantiation of memory (array) modules and vendor-defined
primitives.

We have built a translator that translates a Verilog description into an
equivalent DE2 description. Our translator parses the Verilog source text
into a Lisp expression, and then an ACL2 program converts this Lisp expres-
sion into a DE2 description.

We have also built a translator that converts a DE2 netlist into a cycle-
accurate ACL2 model. This translator also provides an ACL2 proof that
the DE2 description is equivalent to the mechanical produced ACL2 model.
The process of translating a DE2 description into its corresponding ACL2
model includes a partial cone-of-influence reduction; an ACL2 function is
created for each module’s output and parts of the initial design which are
irrelevant to that output are removed. The DE2 to ACL2 translator allows

us to enjoy both the advantages of a shallow embedding (e.g. straightforward
verification) and the advantages of a deep embedding (e.g. syntax resembling
Verilog).

We start with an informal specification of the design in the form of English
documents, charts, graphs, C-models, and test code which is represented in
the upper right of Figure 2. This information is converted manually into a
formal ACL2 specification. Using the ACL2 theorem prover, these specifica-
tions are simplified into a number of invariants and equivalence properties.
If these properties are simple enough to be proven by our SAT-based deci-
sion procedure, we prove them automatically; otherwise, we simplify such
conjectures using the ACL2 theorem prover until we can successfully appeal
to some automated decision procedure.

We also use our system to verify sets of DE2 descriptions. This is ac-
complished by writing ACL2 functions that generate DE2 descriptions, and
then proving that these functions always produce circuits that satisfy their
ACL2 specifications.

Since DE2 descriptions are represented as ACL2 constants, functions that
transform DE2 descriptions can be verified using the ACL2 theorem prover.
By converting from Verilog to DE2 and from DE2 to back into Verilog, we
can use DE2 as an intermediate language to perform verified optimizations.
Another use of this feature involves performing reductions or optimizations
on DE2 specifications prior to verification. For example, one can use a
decision procedure to determine that two DE2 circuits are equivalent and
then use this fact to avoid verifying properties of a less cleanly structured
description.

We can also build static analysis tools, such as extended type checkers, in
DE2 by using annotations. In DE2, annotations are first-class objects (i.e.
annotations are not embedded in comments). Such type checkers, since they
are written in ACL2, can be analyzed and can also assist in the verification of
DE2 descriptions. Furthermore, annotations can be used to embed informa-
tion into a DE2 description to assist with synthesis or other post-processing
tools.

4 Ripple-Carry Adder Generator Verification

In this section we present a definition of a simple parametrized ripple-carry
adder to show how the DE2 verification system is applied to verify circuit

generators. The following two ACL2 functions generate the DE2 definition
of the top-level module of the ripple-carry adder:

(defun generate-ripple-occs (n)
(if (zp n)
nil
(append (generate-ripple-occs (1- n))
‘((, (de-make-n-name ’carry n)

((q ,(1- n) ,(1- n)) (carry ,n ,n))
(full-adder)
((gx ,(1-n) ,(1-n)) (gy ,(1-n) ,(1- n))
(g carry ,(1- n) ,(1- n))))N))

;3 Make an n-bit ripple-carry adder
(defun generate-ripple-carry (n)
“(, (de-make-n-name ’ripple-carry n)
(type module)
(params)
(outs (q ,n) (c_out 1))
(ins (x ,n) (y ,n) (c_in 1))
(sts)
(wires (carry ,(1+ n)))
(occs
(carry_0 ((carry 0 0)) (bufn 1) ((g c_in 0 0)))
, (append (generate-ripple-occs n)
‘((carry_out ((c_out 0 0))
(bufn 1)
((g carry ,n ,n))))))))

The function generate-ripple-occs creates the occurrence list by recur-
sively laying down one full-adder for each output bit. The function
generate-ripple-carry then uses this occurrence list to create the top-
level ripple-carry adder definition. For example, the following is the four bit
ripple-carry adder produced by (generate-ripple-carry 4):

(RIPPLE-CARRY_4

(TYPE MODULE)

(PARAMS)

(0UTS (Q 4) (C_OUT 1))
(INS (X 4) (Y 4) (C_IN 1))

(STS)
(WIRES (CARRY 5))
(0CCS (CARRY_O ((CARRY 0 0))
(BUFN 1)
((G C_IN 0 0)))
(CARRY_1 ((Q 0 0) (CARRY 1 1))
(FULL-ADDER)
((GX00) (GYOO) (GCARRY 0 0)))
(CARRY_2 ((Q 1 1) (CARRY 2 2))
(FULL-ADDER)
((GX11) (GY11) (GCARRY 1 1)))
(CARRY_3 ((Q 2 2) (CARRY 3 3))
(FULL-ADDER)
((GX22) (GY22) (GCARRY 2 2)))
(CARRY_4 ((Q 3 3) (CARRY 4 4))
(FULL-ADDER)
((G X33 (GY 3 3) (GCARRY 3 3)))
(CARRY_OUT ((C_OUT 0 0))
(BUFN 1)
((G CARRY 4 4)))))

We next define a ripple-carry adder in ACL2 which follows the same
structure as the one defined in DE2. The following is the top-level definition
of the ACL2 ripple-carry adder and the main theorem we prove about it:

(defun acl2-ripple-adder (n x y c_in)
(if (zp n)
(list nil (get-sublist c_in 0 0))
(let* ((adder_1b
(acl2-full-adder (get-sublist x 0 0)
(get-sublist y 0 0)
(get-sublist c_in 0 0)))
(sub_adder (acl2-ripple-adder (1- n)
(nth-cdr 1 x)
(nth-cdr 1 y)
(cadr adder_1b))))

(1ist (append-n 1 (car adder_1ib) (car sub_adder))
(append-n 1 c_in (cadr sub_adder))))))

(defthm acl2-ripple-adder-adds
(implies
(and (equal n (len a))
(equal (len b) (len a)))
(equal (v-to-nat
(car (acl2-ripple-adder n a b
(list (bool-fix c_in)))))
(mod-2-n (+ (if c_in 1 0)
(v-to-nat a)
(v-to-nat b))
n))))

The above theorem states that the ACL2 functional definition of the ripple-

carry adder implements modular addition, as defined by ACL2’s addition

axioms. We prove this theorem by making use of ACL2’s induction and

simplification proof engines, as well as the library of lemmas that has been

created to assist ACL2 users in the verification of arithmetic properties.
Next we verify the theorem below:

(defthm generate-ripple-se-rewrite
(implies
(and (not (zp n))
(generate-ripple-carry-& n netlist))
(equal
(se ’bvev
(de-make-n-name ’ripple-carry n)
params ins st env netlist)
(let ((x (get-value ’bvev ins env))
(y (get-value ’bvev (cdr ins) env))
(c_in (get-sublist (get-value ’bvev
(cddr ins)
env)
0
0)))
(1ist (car (acl2-ripple-adder n x y c_in))
(get-sublist (cadr (acl2-ripple-adder n
X
y
c_in))
n

n))))))

This theorem states that, given certain conditions, the DE2 ripple-carry
adder produces the same result as the ACL2 ripple-carry adder. The hy-
potheses of the theorem are that the number of bits is a positive inte-
ger and that the ripple-carry adder modules occurs in the given netlist,
along with its submodules. This theorem is proven using ACL2’s induc-
tion proof engine, which we use to show that each occurrence produced by a
recursive step of generate-ripple-occs corresponds to a recursive step in
acl2-ripple-adder.

Once we have verified generate-ripple-se-rewrite, we can prove the
final theorem below:

(defthm generate-ripple-se-adds
(implies
(and (not (zp n))
(generate-ripple-carry-& n netlist)
(equal (len (get-value ’bvev ins env)) n)
(equal (len (get-value ’bvev (cdr ins) env)) n))
(equal
(v-to-nat (car (se ’bvev
(de-make-n-name ’ripple-carry n)
params ins st env netlist)))
(let ((x (get-value ’bvev ins env))
(y (get-value ’bvev (cdr ins) env))
(c_in (get-sublist (get-value ’bvev (cddr ins) env)
0
0)))
(mod-2-n (+ (if (car c_in) 1 0)
(v-to-nat x)
(v-to-nat y))
n)))))

This theorem states that if the n-bit, ripple-carry adder module is in the
netlist, along with its submodules, and the first two inputs are n bit, bit
vectors, then the natural number representation of the output of the ripple-
carry adder is equal to the modular addition of its inputs.

Note we proved this theorem entirely using the standard ACL2 theorem
proving techniques, without the use of SAT solvers or BDDs. That is because
we completed this proof before our SAT-based proof engine was fully in
place. In the next section we will show how we are verifying next-generation
hardware using a mixture of SAT-solving and theorem proving.

5 Verifying TRIPS Processor Components

We are using our verification system to verify components of the TRIPS
processor. The TRIPS processor is a prototype of a next-generation processor
that has been designed at the University of Texas [7] and being built by IBM.
One novel aspect of the TRIPS processor is that its memory is divided into
four pieces; each piece has its own memory control tile, with its own cache
and Load Store Queue (LSQ). We plan to verify the LSQ design, based on
the design described in Sethumadhavan et. al., [6], using our verification
system. In this section, we present our verification of a part of the LSQ that
manages communication with other LSQs.

We first use our verification system, mentioned in Section 3.3, to “com-
pile” the Verilog design that implements the LS(Q communication protocol
into a DE2 module. We then used our automatic translation engine to com-
pile the DE2 description into an ACL2 model and prove their equivalence
relative to the DE2 semantics.

5.1 Verification of the Exception Protocol

One reason that the LSQ units must communicate is to conglomerate ex-
ceptions generated in various tiles into a single mask. Figure 3 presents an
overview of the protocol that conglomerates exceptions. Each tile receives a
four-bit input denoting the exception generated this cycle—a three-bit ad-
dress plus a one-bit enable signal. The exceptions are decoded into an eight-
bit mask, that each tile passes to the tile above it. Exceptions are removed
when the instruction that generated the exception is flushed. The schematic
of the design that implements this protocol is shown in Figure 4.

To verify the multi-tile design in Figure 3, we prove that it is equivalent
to the single-tile design in Figure 5. This equivalence is broken into the
following two properties:

(defthm exception-safety
(implies
(and (integerp tao)
(<= 0 tao)
(Tth-inputs-goodp tao input-list))
(submaskp
8
(out-udt_miss_ordering_exceptions

Multi-Tile Design

Flush_mask Exception_mask
Tile 0 UDT_EX_Mask
@®——————=| Flush_mask
T0_Except Local_Except
DDT_EX_Mask
REG <
Tile 1 UDT_EX_Mask|
@ = Flush_mask
T1_Except Local_Except
DDT_EX_Mask|
REG <
Tile 2 UDT_EX_Mask|
@ ——— Flush_mask
T2_Except Local_Except
DDT_EX_Mask|
REG
Tile 3 UDT_EX_Mask
Flush_mask
T3_Except Local_Except
DDT_EX_Mask|

Figure 3: An overview of the four tile exception protocol design.

Single Tile Design

UDT_EX_mask

3 8
Flush_mask
N
R (0]
R
E R
G A E
A g G
4 8 A

Local_Except / EN-DECODE

~ O

DDT EX mask
Figure 4: A look into the internals of a tile within the exception protocol.

Specification Machine

Flush_mask [
- NOT
8
Spec_EX_mask
4 8 -
TO0_Except
— EN-DECODE
. 4 8 A R
T1_Except E
— EN-DECODE N G
o D
R
4 8 A

.
T2 Except | EN-DECODE

. 4 8
T3 Except _ | /| EN-DECODE

-

* This input has been modified: an exception is disabled if it occurs in an
insturction that has already been flushed.

Figure 5: A simplified machine that produces the exception mask.

*t 0%

(Tth-internal-state tao input-list)
(nth tao input-list))
(spec—miss_ordering

(Tth-spec-state tao input-list)
(nth tao input-list)))))

(defthm exception-liveness

(implies
(and (integerp tao)
(<= 3 tao)
(Tth-inputs-goodp tao input-list))
(submaskp
8
(bv-or
8

(recent-flushes 3 tao *tO* input-list)
(spec-miss_ordering
(Tth-spec-state (- tao 3) input-list)
(nth (- tao 3) input-list)))
(out—udt_miss_ordering_exceptions
xt0
(Tth-internal-state tao input-list)
(nth tao input-list)))))

The first property proves that, for any cycle number tao, assuming good
inputs, the exception mask generated by tile zero is a subset of the exception
mask generated by the single-tile machine. The second property proves that
the exception mask generated by the single tile machine is a subset of the
combination of the exception mask generated by tile zero and the last three
flush masks. In effect, these properties prove that our multi-tile exception
design only produces exceptions produced by the specification and eventually
produces all exceptions produced by the specification.

We prove these properties by reducing them to the proof of an invariant;
we prove these invariants through a mixture of theorem proving and SAT
solving. The following example illustrates the type of lemma that we prove
with SAT. This lemma is proven by telling ACL2 to automatically call the
SAT-based proof engine once its simplification rules reach a fix point.

(defthm sub-of-spec-mask-t0

(implies
(and
(equiv-bvp

8

(in-ddt_miss_ordering_exceptions *t0* ins)

(internal-st-udt_miss_ordering *tl* internal-state))
(equiv-bvp
8

(in-flush_mask *tO* ins)

(internal-st-flush_mask *tl* internal-state))
(sub-of-spec-mask-tile *t0* spec-st internal-state)
(sub-of-spec-mask-tile *tl* spec-st internal-state))

(sub-of-spec-mask-tile

*t 0%

(update-spec-st spec-st internal-state ins)
(update-internal-state internal-state ins))))

5.2 Verification of an Arrived-Store Protocol

The LSQ units also communicate to create a mask of arrived stores; these
are used to generate exceptions, wake deferred loads, and detect comple-
tion. Figure6 presents an overview of the arrived-store-mask protocol. This
protocol is more complex than the exception protocol, because tiles send in-
formation to both the tile above and the tile below them. Also, since the
arrived store mask is 256 bits, the whole mask is never sent. Instead up to
three, nine-bit store signals are sent to each neighboring tile, informing each
neighbor of all the new stores it has received in the last cycle.

We used the same methodology to verify the arrived-store-mask protocol
as we used to verify the exception-mask protocol. We first define a single-tile
design that produces the store mask. This design is shown in Figure 7. Next,
we prove the equivalence of the single-tile and multi-tile designs using the
following two theorems. Note that these theorems prove an equivalence over
all tiles, whereas the exception mask equivalence only dealt with tile zero.

(defthm arrived-safety

(implies
(and (integerp tao)
(<= 0 tao)

(Tth-inputs-goodp tao input-list))

Store Mask Design

) ccc ccc
Tleo 9835 93§
N B O N B O
[Flush_mask 112, o o 'o
. . S 35 O S S S
Commit_mask TO_Store_mask
TO_Store Store_mask
- Local_store
U oo U O o
SSS §9Y
SRS RS
gge 553
| REG <
) ccc ccc
el 993 98§
N = O N = O
[Flush_mask |5, Is, |5, oo o
® _ i SE&
Commit_mask T1 Store_mask
T1 Store Store_mask
— = Local_store
588 g9%g
335 5399
e BPEe
gge 553
[rREG <
) ccc ccc
Tile2 g O O O 0 O
S H 3 S H3
Flush_mask By o1
¢ ® ——— —commitmesk - - ° gegeg
— T2_Store_mask
T2 Store Store_mask
- ——= Local_store
555 989
335 9539
SEe PES
ggg 553
[Res < L]
) ccc ccc
Tile2 [SBeR] T O O
S H3 N3
Flush_mask 112, oo 'o
S5 3 O
ji sSss
Commit_mask T3 Store mask
T3 Store Store_mask
- —— Local_store
555 9%9
333 239
Il e
ggg 555

Figure 6: An overview of the protocol for generating the mask of arrived
stores. Note that the tile inputs that are unconnected are either grounded
or known to always be low.

Store Mask Specification Machine

Flush_mask 8
Commit_mask NOR Fxpand Mask
256
- 256 Store_mask
9 256
TO_Store
-
R
9 256
T1_Store * N o
. EN-DECODE N G
(e} D
R
. 9 256 A
T2_Store EN-DECODE
N 9 256
T3 Store | /| EN-DECODE

r

* This input has been modified: a store is removed if it occurs in an
insturction that has already been flushed.

Figure 7: A simplified machine that produces the mask of arrived stores.

(submaskp
8
(out-arrived_mask
tile
(Tth-internal-state tao input-list)
(nth (- tao 3) input-list))
(spec-arrived_mask
(Tth-spec-state tao input-list)
(nth tao input-list)))))

(defthm arrived-liveness
(implies
(and (integerp tao)
(<= 3 tao)
(Tth-inputs-goodp tao input-list))
(submaskp
8
(bv-or

8
(expand-mask 8 256 (recent-flushes 3 tao tile input-1list))
(bv-or
8
(expand-mask 8 256 (recent-commits 3 tao tile input-list))
(spec-arrived_mask
(Tth-spec-state (- tao 3) input-list)
(nth (- tao 3) input-list))))
(out-arrived_mask
tile
(Tth-internal-state tao input-list)
(nth tao input-list)))))

6 Conclusion

The verification of an automatically generated circuit description usually
involves verifying the netlist post-synthesis. Through our ripple-carry adder
example, we have shown how we can verify the correctness of the circuit
generators directly, thus obviating the need to verify the resultant circuit
descriptions.

To aid our verification effort, we have combined the complementary tech-
niques of theorem proving and SAT solving. We show the usefulness of this
combination through the verification of a Verilog implementation of a com-
munication protocol used in the TRIPS processor.

An extension of our approach is to show how circuit generators can be
used within the verification of the TRIPS processor. Rather than partition
memory into four pieces, one could design a TRIPS processor with memory
partitioned into a parametrized number of pieces. This type of verification fits
well into the modular nature of the TRIPS processor design and showcases
the advantages of the DE2 language. Furthermore, this verification effort
will allow us to explore the applications and limitations of fully automated
verification techniques, like SAT, when used to verify large circuit generation
designs.

Moving beyond circuit generators, there are many other potential appli-
cations for the DE2 verification system. For example, we can use the DE2
language to verify hardware optimization programs and non-functional prop-
erties. The flexibility of the DE2 language and the ACL2 theorem proving
system provides the opportunity to verify many types of applications, many

of which are rarely, if ever, been formally verified.

References

1]

[7]

8]

Emil Axelsson, Koen Claessen, and Mary Sheeran. Wired: Wire-Aware
Circuit Design. In Correct Hardware Design and Verification Methods
(CHARME 2005), volume 3725 of Lecture Notes in Computer Science,
pages 5—19. Springer, 2005.

Robert B. Jones, John W. O’Leary, Carl-Johan H. Seger, Mark Aagaard,
and Thomas F. Melham. Practical Formal Verification in Microprocessor
Design. IEEE Design € Test of Computers, 18(4):16-25, 2001.

Warren A. Hunt Jr. and Erik Reeber. Formalization of the DE2 Lan-
guage. In Correct Hardware Design and Verification Methods (CHARME
2005), volume 3725 of Lecture Notes in Computer Science, pages 20-34.
Springer, 2005.

Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer
Aided Reasoning: An Approach. Kluwer Academic, 2000.

Shuvendu K. Lahiri and Randal E. Bryant. Deductive verification of
advanced out-of-order microprocessors. In Computer Aided Verification,
15th International Conference (CAV 2003), volume 2725 of Lecture Notes
in Computer Science, pages 341-353. Springer, 2003.

Simha Sethumadhavan, Rajagopalan Desikan, Doug Burger, Charles R.
Moore, and Stephen W. Keckler. Scalable hardware memory disambigua-
tion for high ilp processors. In Proceedings of the 36th Annual Inter-
national Symposium on Microarchitecture (MICRO 36), pages 399-410.
ACM/IEEE, 2003.

Tera-op Reliable Intelligently adaptive Processing System,
www.cs.utexas.edu/users/cart /trips.

Warren A. Hunt, Jr. and Bishop C. Brock. A Formal HDL and its Use in
the FM9001 Verification. In Mechanized Reasoning and Hardware Design,
pages 35-47, Upper Saddle River, NJ, USA, 1992. Prentice-Hall, Inc.

Evolution and Impact of a Large Industrial Proof

Robert B. Jones Noppanunt Utamaphethai
Strategic CAD Labs Low Power Technologies Group
Intel Corporation Intel Corporation
Hillsboro, OR, USA Austin, Texas, USA
robert.b. jones@intel.com noppanunt .utamaphethai@intel.com

The InteP 1A-32 instruction-set architecture includes several hundred opcodes of varying length [3].
Certain instructions have optional bytes that specify register modes, memory modes, and address
offsets. Instructions vary in length from one to twelve bytes. An additional complication arises
from prefix byteghat can change the semantics and even length of the subsequent instruction.

Decoding the IA-32 instruction-set in a high-frequency pipeline is challenging. Recent proces-
sor implementations divide the decoding process into separate activities; the firgissraation-
length decode(ILD) that marks instruction boundaries.

This talk at DCC 2006 will overview the evolution and impact of a formal proof about the
ILD. The proof has evolved as it has been applied to multiple microprocessor designs over almost
a decade. The proof has detected bugs in almost every design it has been applied to, and has
largely replaced simulation-based validation of ILD functionality on some projects. This talk will
consider the evolution of the proof in the face of hardware changes and additions to the instruction
set. Technical details of an early version of the proof have been published previously [1, 2, 4].

We have learned several important lessons about specification and verification during the evo-
lution of the ILD proof.

e Formal specifications should avoid implementation details when possible. Current ILD im-
plementations are significantly different from the first ILD pipeline that was verified. Writ-
ing the formal specification to reason about the ILD as a “black box” has been an important
aspect of applying it on multiple hardware designs.

e Proofs need to be amenable to variations in proof complexity induced by design changes. We
found that certain hardware changes made the BDDs underlying the proof simpler. On the
other hand, changes usually made the proof BDDs more complex. Managing this complexity
was one of the main challenges as the proof evolved. With the benefit of hindsight, we can
see techniques that would have made complexity management easier.

e Certain classes of specifications must be written in an extensible way. It was fortunate that
the original ILD specification was extensible. In the years since the original specification
was created, multiple features have been added to Intel microprocessors that required new
instructions. More recently, the introduction of a 64-bit mode to the Intel architecture re-
sulted in extensive additions to the instruction set—and to its formal specification.

The ILD proof has been very successful and a wide range of bugs have been found over the
proof’s lifetime. Some might have escaped simulation-based validation, and, as far as we know,
the formal proof has not missed any bugs in its targeted area. We will highlight examples of bugs
and their underlying causes. As the proof has matured, the ability to apply it early in the design
process has proven particularly useful.

References

[1] M. D. Aagaard, R. B. Jones, and C.-J. H. Seger. Combining theorem proving and trajectory
evaluation in an industrial environment. Dresign Automation Conference (DA@pges 538—
541. ACM Press, June 1998.

[2] M. D. Aagaard, R. B. Jones, and C.-J. H. Seger. Formal verification using parametric repre-
sentations of Boolean constraints. Design Automation Conference (DA@pges 402—-407.
ACM Press, June 1999.

[3] 1A-32 IntelR) Architecture Software Developer's Manual, Volumes 2A and 2B: Instruction
Set Referencelntel Corporation, September 2005. Document numbers 253666 and 254667.
Available athttp://www.intel.com.

[4] R. B. Jones.Symbolic Simulation Methods for Industrial Formal Verificatidkluwer Aca-
demic Publishers, 2002.

Synchronous Elastic Networks

Sava Krsti¢!, Jordi Cortadella?, Mike Kishinevsky!, and John O’Leary!

1 Strategic CAD Labs, Intel Corporation, Hillsboro, Oregon, USA
2 Universitat Politécnica de Catalunya, Barcelona, Spain

Abstract. We formally define a class of networks obeying a protocol
that tolerates any variability in the latency of the components. We study
behavioral properties of these networks and prove fundamental composi-
tionality results. The paper contributes to bridging the gap between the
theory of latency-insensitive systems and the correct implementation of
efficient control structures for such systems.

1 Introduction

The conventional abstract model for a synchronous circuit is a machine that
reads inputs and writes outputs at every cycle. The outputs at cycle ¢ are pro-
duced according to a calculation that depends on the inputs at cycles O,. .., 1.
Computations and data transfers are assumed to take zero delay.

Latency-insensitive design [2] aims to relax this model by elasticizing the
time dimension and so decoupling the cycles from the calculations of the circuit.
It enables the design of circuits tolerant to any discrete variation (in the number
of cycles) of the computation and communication delays. With this modular
approach, the functionality of the system only depends on the functionality of
its components and not on their timing characteristics.

The motivation for latency-insensitive design comes from the difficulties with
timing and communication in nanoscale technologies. The number of cycles re-
quired to transmit data from a sender to a receiver is governed by the distance
between them, and often cannot be accurately known until the chip layout is
generated late in the design process. Traditional design approaches require fix-
ing the communication latencies up front, and these are difficult to amend when
layout information finally becomes available. Elastic circuits offer a solution to
this problem. In addition, their modularity promises novel methods for microar-
chitectural design that can use variable-latency components and tolerate static
and dynamic changes in communication latencies, while—unlike asynchronous
circuits—still employing standard synchronous design tools and methods.

The recent paper [4] presents a simple elastic protocol, called SELF (Synchro-
nous Elastic Flow) and describes methods for efficient implementation of elastic
systems and for conversion of regular synchronous designs into elastic form.
Inspired by the original work on the latency-insensitive design [2], SELF also
differs from it in ways that render the theory developed in [2] hardly applicable.

In this paper we give theoretical foundations of SELF. The paper is self-
contained, but for lack of space all proofs are omitted. The interested reader can
find them in the accompanying technical report [7].

Note: This paper has
been submitted to a
conference. The extended
version [7] contains an
appendix with complete
proofs and auxiliary
material, including a brief
overview of SELF.

1.1 Overview

Figure 1(a) depicts the timing behavior of a conventional synchronous adder that
reads input and produces output data at every cycle (boxes represent cycles).
In this adder, the i-th output value is produced at the i-th cycle. Figure 1(b)
depicts a related behavior of an elastic adder—a synchronous circuit too—in
which data transfer occurs in some cycles and not in others. We refer to the
transferred data items as tokens and we say that idle cycles contain bubbles.

~-[3]5[2]1
[3[s]2[1]

(a

Fig. 1. (a) Conventional synchronous adder, (b) Synchronous elastic adder.

Put succinctly, elasticization decouples cycle count from token count. In a
conventional synchronous circuit, the i-th token of a wire is transmitted at the
i-th cycle, whereas in a synchronous elastic circuit the i-th token is transmitted
at some cycle k > i.

Turning a conventional synchronous adder into a synchronous elastic adder
requires a communication discipline that differentiates idle from non-idle cycles
(bubbles from tokens). In SELF, this is implemented by a pair of single-bit control
wires: Valid and Stop. Every input or output wire X in a synchronous component
is associated to a channel in the elastic version of the same component. The
channel is a triple of wires (X,validx,stopy), with X carrying the data and
the other two wires implementing the control bits, as shown in Figure 2(b). A
token is transferred on this channel when validx =1 and stopy = 0: the sender
sends valid data and the receiver is ready to accept it. Additional constraints
that guarantee correct elastic behavior are given in Section 3. There we define
precisely what it means for a circuit A°® to be an elastization of a given circuit
A. In particular, our definition implies liveness: A® produces infinite streams
of tokens if its environment produces infinite streams of tokens at the input
channels and is ready to accept infinite streams at the output channels.

data
—_—

channel
valid =
_—

stop

(a (b)

Fig. 2. A synchronous network (a) and its elastic counterpart (b).

Suppose N is a network of standard (non-elastic) components, as in Fig-
ure 2(a). Suppose we then take elasticizations of these standard components and
join their channels accordingly, as in Figure 2(b), ignoring the buffer. Will the
resulting network A® be an elasticization of A'? Will it be elastic at all? These
fundamental questions are answered by Theorem 4 of Section 4, which is the main
result of the paper. The answers are “yes”, provided a certain graph A°(N°)
associated with A® is acyclic. This graph captures the information about paths
inside elastic systems that contain no tokens—analogous to combinational paths
in ordinary systems. Importantly, A®(N*) can be constructed using only local
information (the “sequentiality interfaces”) of the individual elastic components.

Since elastic networks tolerate any variability in the latency of the compo-
nents, empty FIFO buffers can be inserted in any channel, as shown in Fig-
ure 2(b), without changing the functional behavior of the network. This practi-
cally important fact is proved as a consequence of Theorem 4.

Synchronous circuits are modeled in this paper as stream transformers, called
machines. This well-known technique (see [8] and references therein) appears to
be quite underdeveloped. Our rather lengthy preliminary Section 2 elaborates
the necessary theory of networks of machines, culminating with a surprisingly
novel combinational loop therorem (Theorem 1).

Figure 3 illustrates Theorem 1 and, by analogy, Theorem 4 as well. It relies on
the formalization of the notion of combinational dependence at the level of input-
output wire pairs. Each input-output pair of a machine is either sequential or
not, and the set of sequential pairs provides a machine’s “sequentiality interface”.
When several machines are put together into a network N, their sequentiality
interfaces define the graph A(N), the acyclicity of which is a test for the network
to be a legitimate machine itself.

Elasticizations of ordinary circuits are not uniquely defined. On the other
hand, for every elastic machine A there is a unique standard machine, denoted
AT, that corresponds to it. We do not discuss any specific elasticization proce-
dures in this paper, but state our results in the form that only involves elastic
machines and their unique standard counterparts. This makes the results poten-
tially applicable to multiple elasticization procedures.

-1 A B
! 2 5 6> l—vl A B
-3 4 8 25 66—
3 3 8B 4 8
: ' | |
7 9 7 9
107 11 120 101l 12
C D C D

Fig. 3. A network A/ (middle) and its acyclic dependency graph A(N) (right). The
nodes of A(N) are wires; internal wires get two labels. The arcs of A(N) are non-
sequential input-output wire pairs of component circuits. Dotted arcs indicate that
(1,2) and (7,10) are sequential pairs for A and C resp.; they are not part of A(N).

1.2 Related Work

Carloni et al. [2] pioneered a theory of latency-insensitive systems based on their
notion of patient systems. We could not rely on this theory for proving prop-
erties of SELF since it does not cover systems with combinational propagation
of signals, an important class for most practical applications. In addition, the
papers [2] and its companion [3] do not specify a particular implementation pro-
tocol, nor the properties required for its correctness. Our recovery of the protocol
specification based on [3] and the private communication with the author proved
that SELF cannot be covered by the theory of patient systems and requires a
separate theory.

Suhaib et al. [11] revisited and generalized Carloni’s elasticization procedure,
validating its correctness by a simulation method based on model checking.

Lee et al. [9] study causality interfaces (pairwise input-output dependencies)
and are “interested in existence and uniqueness of the behavior of feedback
composition”, but do not go as far as deriving a combinational loop theorem.

In their work on design of interlock pipelines [6], Jacobson et al. use a protocol
equivalent to SELF, without explicitly specifying it.

2 Circuits as Stream Functions

In this section we introduce machines as a mathematical abstraction of circuits
without combinational cycles. For simplicity, this abstraction implicitly assumes
that all sequential elements inside the circuit are initialized. Extending to par-
tially initialized systems appears to be trivial. While there is a large body of
work studying circuits or equivalent objects with good (e.g. constructive [1])
combinational cycles and their composition (e.g. [5]), we deliberately restrict
consideration to the fully acyclic objects, since neither logic synthesis nor timing
analysis can properly treat circuits with combinational cycles.

Most of the effort in this section goes into establishing modularity conditions
guaranteeing that a system obtained as a network of machines (the feedback
construction in particular) is a machine itself.

2.1 Streams

A stream over A is an infinite sequence whose elements belong to the set A. The
first element of a stream a is referred to by a[0], the second by a[l], etc. For
example, the equation a[i] = 37 + 1 describes the stream (1,4,7,...).

The set of all streams will be denoted A°°. Occassionally we will need to
consider finite sequences too; the set of all, finite or infinite, sequences over A is
denoted A¥.

We will write a ~; b to indicate that the streams a and b have a common
prefix of length k. The equivalence relations ~q, ~1, ~s, ... are progressively finer
and have trivial intersection. Thus, to prove two sequences a and b are equal, it
suffices to show a ~j b holds for every k. Note also that a ~q b holds for every
a and b.

We will use the equivalence relations ~j, to express properties of systems and
machines viewed as multivariate stream functions. All these properties will be
derived from the following two basic properties of single-variable stream func-
tions f: A — B,

causality: Va,b e A .Yk >0. a ~, b= f(a) ~; f(b)
contraction: Va,be A°.Vk >0. a~, b= f(a) ~k1t1 f(b)

Informally, f is causal if (for every a) the first k elements of f(a) are determined
by the first k elements of a, and f is contractive if the first k elements of f(a)
are determined by the first £ — 1 elements of a.

Lemma 1. If f: A>® — A is contractive, then it has a unique fixpoint.

Remark 1. One can define the distance d(a,b) between sequences a and b to be
1/2%, where k is the length of the largest common prefix of @ and b. This gives
the sets A*° and A“ the structure of complete metric spaces and Lemma, 1 is an
instance of Banach Fixed Point Theorem. See [8] for more details and references
about the metric semantics of systems. We choose not to use the metric space
terminology in this paper since all “metric reasoning” we need can be as easily
done with equivalence relations ~y, instead. See [10] for principles of reasoning
with such “converging equivalence relations” in more general contexts.

2.2 Systems

Suppose W is a set of typed wires; all we know about an individual wire w is
a set type(w) associated to it. A W-behavior is a function o that associates a
stream o.w € type(w)™ to each wire w € W. The set of all W-behaviors will
be denoted [W7]. Slightly abusing the notation, we will also write [w] for the
set type(w)®. Notice that the equivalence relations ~j extend naturally from
streams to behaviors:

on~po iff YweW. ow ~y o' w

Notice also that a W-behavior o can be seen as a single stream ([0}, o[1],...)
of W-states, where a state is an assignment of a value in type(w) to each wire w.

Definition 1. A W-system is a subset of [W].

Ezxample 1. A circuit that at each clock cycle receives an integer as input and
returns the sum of all previously received inputs is described by the W-system
S, where W consist of two wires u, v of type Z, and S consists of all stream pairs
(a,b) € Z>= x Z* such that b[0] = 0 and b[n] = a[0] + - + a[n — 1] for n > 0.
Each stream pair (a, b) represents a behavior o such that o.u = a and o.v = .

We will use wires as typed variables in formulas meant to describe system
properties. The formulas are built using ordinary mathematical and logical no-
tation, enhanced with temporal operators next, always, and eventually, denoted
respectively by (L)1, G, F. For example, the system S in Example 1 is character-
ized by the property v = 0 A G (vt = v + u). Also, one has S = FG (u > 0) =
F G (v > 1000), where = is used to denote that a formula is true of a system.

2.3 Operations on Systems

If W' C W, there is an obvious projection map o — o [W': [W] — [W'].
These projections are all one needs for the definition of the following two basic
operations on systems.

Definition 2. (a) If S is a W-system and W C W, then hiding W’ in S
produces a (W — W')-system hidew(S) defined by

7 € hidey (S) iff FJo€S. 7=0l(W-W').

(b) The composition of a Wi-system S; and a Wy-system Sy is a (W1 U Wa)-
system S1 U Sy defined by

ceSUS, Zﬁ alWleSl/\alWQESg.

If W and W' are disjoint wire sets, o € [W], and 7 € [W'], then there is
a unique behavior ¥ € [W U W’] such that ¢ = ¢ |W and 7 = ¢ | W’. This
“product” of behaviors will be written as ¢ = o 7. (If W is the empty set, then
[W] has one element—a “trivial behavior” that is also a multiplicative unit for
the product operation *.) We will also use the notation [u — a,v +— b,...] for
the {u,v,...}-behavior ¢ such that o.u = a, o.v = b, etc.

Hiding and composition suffice to define complex networks of systems. To
model identification of wires, we use simple connection systems: by definition,
Conn(u,v) is the {u, v}-system consisting of all behaviors o such that o.u = o.v.

Now if &y, ...,S,, are given systems and uy,...,U,,V1,...,0, are some of
their wires, the network obtained from these systems by identifying each wire u;
with the corresponding wire v; (of equal type) is the system

(S1,- o, S |ur = v2, .o up = y)
= hidegy, . up 01,03 (S1 U U S, U Conn(ug, vy) U -+ - U Conn(up, vy))
The simplest case (m = n = 1) of networks is the construction
(S |u = v) = hideg, ,1(S U Conn(u,v)),

used for a feedback definition in Section 2.5. A behavior o belongs to (S |u = v)
if and only if o * [u — a,v +— a] € S for some a € [u].

2.4 Machines
Suppose I and O are disjoint sets of wires, called inputs and outputs, corre-
spondingly. By definition, an (I, O)-system is just an (I U O)-system. Consider
the following properties of an (I, O)-system S.

deterministic: Vw,w' €S. wl]I=w |l = w|0=w'|0

functional: Vo e[I].3r€[O].cxTeS

causal: Vo, w' €S VE>0. wll~p W [T = w| O~ |0

Clearly, functionality implies determinism. Conversely, a deterministic system is
functional if and only if it accepts all inputs. Note also that causality implies
determinism: if w | I =’ | I, then w | I ~; ' | I holds for every k, so w | O ~y
w’ | O holds for every k too, sow | O =w’' | O.

Definition 3. An (I, O)-machine is an (I, O)-system that is both functional and
causal.

A functional system S uniquely determines and is determined by the function
F: [I] — [O] such that F(¢) = 7 holds if and only if o * 7 € S. The causality
condition for such S can be also written as follows:

Vo,0’ € [I].Vk > 0. 0 ~ 0’ = F(o) ~ F(o").

The system in Example 1 is a machine if we regard v as an input wire and
v as an output wire. The same is true of the system Conn(u,v): its associated
function F' is the identity function.

2.5 Feedback on Machines

We will use the term feedback for the system (S|u = v) as mentioned in Sec-
tion 2.3 when § is a machine and the wires u and v of the same type are an
input and output of S respectively. Our concern now is to understand under
what conditions the feedback produces a machine.

To fix the notation, assume S is an (I, O)-machine given by F': [I] — [O],
with wires u € I, v € O of the same type A. By the note at the end of Section 2.3,
we have that for every o € [I — {u}] and 7 € [O — {v}],

ox7€(S|lu=v) iff Ja€ A®. F(o*[ur a]) =71 [v— a]),

so (S|u = v) is functional when the function F7, : A — A defined by
F? (a) = F(o * [u — al]).v has a unique fixpoint. By Lemma 1, this is guaran-
teed if F7, is contractive. The following definition introduces the key concept of
sequentiality that formalizes the intutive notion that there is no combinational
dependence of a given output wire on a given input wire. Sequentiality of the
pair (u,v) easily implies contractivity of F2, for all o.

Definition 4. The pair (u,v) is sequential for S if for every k > 0, every
o,0" € [I —{u}], and every a,a’ € [u] one has

0 ~pr10 Nar~gad = Flox[u— a))w~ge F(o! x [uw ad'])w

Lemma 2 (Feedback). If (u,v) is a sequential input-output pair for a machine
S, then the feedback system (S |u = v) is a machine too.

Ezample 2. Consider the system S with I = {u,v}, O = {w, z}, specified by
equations
w=u® ((0)#v) z2=v®v,

where all wires have type Z, the symbol & denotes the componentwise sum of
streams, and # denotes concatenation. Since z does not depend on u, the pair
(u, z) is sequential. The pair (v, w) is also sequential since to compute a prefix of
w it suffices to know (a prefix of the same size of u and) a prefix of smaller size
of v. The remaining two input-output pairs (u,w) and (v, z) are not sequential.

To find the machine (S |v = w), we need to solve the equation v = u®((0)#v)
for v. For each u = (ag, ay,as,...), the equation has a unique solution v = 4 =
(ap,ap+a1,ap+as+asg,...). Substituting the solution into z = v@®wv, we obtain a
description of (S|v = w) by a single equation that relates its input and output:
z = 4 @ 4. The other feedback (S|u = z) is easier to calculate; it is given by
equation w = v ® v & ((0)#v).

2.6 Networks of Machines and the Combinational Loop Theorem

Consider a network N = (Sy,...,Sn |u1 = v1,...,up = v,), where Sy,...,8n
are machines with disjoint wire sets and the pairs (u1,v1),. . .,(tn, v,) involve n
distinct input wires u; and n distinct output wires v;. (There is no assumption
that u;,v; belong to the same machine S;.) Our goal is to understand under
what conditions the system N is a machine.

Note that N = (S|u; = va,...,up = vp), where § = & U---US,,. It is
easy to check that an input-output pair (u,v) of S is sequential if either (1)
(u,v) is sequential for some S;, or (2) u and v belong to different machines.
Thus, the information about sequentiality of input-output pairs of the “parallel
composition” machine § is readily available from the sequentiality information
about the component machines S;, and our problem boils down to determining
when a multiple feedback operation performed on a single machine results in a
system that is itself a machine.

Simultaneous feedback specified by a set of two or more input-output pairs of
a machine does not necessarlily produce a machine even if all pairs involved are
sequential. Indeed, in Example 2 we had a system S with two sequential pairs
(u, z) and (v,w), but (u, z) ceases to be sequential for (S|v = w). Indeed, if z
and u are related by z = 4 9 4, then knowing a prefix of length k& of z requires
knowing the prefix of the same length of u; a shorter one would not suffice.

To ensure that a multiple feedback construction produces a machine, it is
necessary that, in addition to the wire pairs to be identified, sufficiently many
other input-output pairs are also sequential. A precise formulation for a double
feedback is given by a version of the Beki¢ Lemma: for the system (S|u =
w,v = z) to be a machine, it suffices that three pairs of wires be sequential—
(u,w), (v, 2), and one of (u, z), (v, w). This non-trivial auxiliary result is needed
for the proof of Theorem 1 below, and is a special case of it.

Given an (I,O)-machine S, let its dependency graph A(S) have the vertex
set TUO and directed edges that go from u to v for each pair (u,v) € I x O that
is not sequential. For a network system N = (Sy,...,Sm |u1 = v1, ..., up = vy),
its graph A(N) is then defined as the direct sum of graphs A(Sy),..., A(Sy)
with each vertex u; (1 < ¢ < n) identified with the corresponding vertex v;
(Figure 3).

Theorem 1 (Combinational Loop Theorem). The network system N is a
machine if the graph AN) is acyclic.

3 Elastic Machines

In this section we give the definition of elastic machines. Its four parts—input-
output structure, persistence conditions, liveness conditions, and the transfer
determinism condition—are covered by Definitions 5-8 below.

3.1 Input-output Structure, Channels, and Transfer

We assume that the set of wires is partitioned into ordinary, valid, and stop
wires, so that for each ordinary wire X there exist associated wires validx and
stop y of boolean type. (In actual circuit implementations, validx and stop y need
not be physical wires; it suffices that they be appropriately encoded.)

Definition 5. Let 1,0 be disjoint sets of ordinary wires. An [I,O]-system is
an (I',0")-machine, where I' = I U {validx |X € I} U {stopy |Y € O} and
O’ =0 U{validy |Y € O} U {stopy | X € I}.

The triples (X, validx,stopy) (X € I) and (Y, validy, stopy) (Y € O) are to
be thought of as elastic input and output channels of the system.

Let transferz be a shorthand for validz A —stop, and say that transfer along
Z occurs in a state s if s |= transferz. Given a behavior o = (0[0], o[1],0[2],...)
of an [I,O]-system and Z € I U O, let oz be the sequence (perhaps finitel!)
obtained from 0.Z = (0[0].Z,0[1].Z,0[2].Z,...) by deleting all entries o[i].Z
such that transfer along Z does not occur in o[i]. The transfer behavior oT
associated with o is then defined by 07.Z = o4. If all sequences oz are infinite,
then o7 is an (IUQO)-behavior; in general, however, we only have oz € type(Z)¥.

For each wire Z of an [I,O]-system S we introduce an auxiliary transfer
counter variable tctz of type Z. The counters serve for expressing system prop-
erties related to transfer. By definition, tctz is equal to the number of states that
precede the current state and in which transfer along Z has occurred. That is,
for every behavior o of S, we have o.tctz = (tg,t1,...), where ¢;, is the number
of indices ¢ such that ¢ < k and transfer along Z occurs in o[i]. Note that the
sequence o.tcty is non-decreasing and begins with ¢ty = 0.

The notation min_tctg, for any subset S of I U O will be used to denote the
smallest of the numbers tctyz, where Z € S.

3.2 Definition of Elasticity

An elastic component, when ready to communicate over an output channel must
remain ready until the transfer takes place.

Definition 6. The persistence conditions for an [I,O]-system S are given by

S [G (validy Astopy = (validy)™), for every Y € O. (1)

The most useful consequence of persistence is the “handshake lemma”:
S = GFvalidy A GF —stopy. = GF transfery

Liveness of an elastic component is expressed in terms of token count: if
all input channels have seen k transfers and there is an output channel that has
seen less, then the communication on output channels with the minimum amount
of transfer must be eventually offered. The following definition formalizes this,
together with a similar commitment to eventual readiness on input channels.

Definition 7. The liveness conditions for an [I, O]-system are given by

S | G (min_tctp > tcty A min_tct; > tcty = Fvalidy), for every Y € O (2)
S = G (min_tctyyo > tctx = F-stopy), for every X € T (3)

In practice, elastic components will satisfy simpler (but stronger) liveness
properties; e.g. remove min_tctp > tcty from (2) and replace min_tctyo > tetx
with min_tcto > tcty in (3). However, a composition of such components, while
satisfying (2) and (3), may not satify the stronger versions of these conditions.

Consider single-channel [I,O]-systems satisfying the persistence and live-
ness conditions: an elastic consumer is a [{Z},0]-system C satisfying (4) be-
low; similarly, an elastic producer is a [, {Z}]-system P satisfying (5) and (6).

P |= G (validz A stop, = (validz)™) (5)

F- 4
C = GF —stop, (4) P = GFvalidz (©)

Let Cz be the {Z,validz, stop }-system characterized by condition (4)—the
largest (in the sense of behavior inclusion) of the systems satisfying this condi-
tion. Similarly, let Pz be the {Z, validz, stop, }-system characterized by proper-
ties (5) and (6). Finally, define the [I, O]-elastic environment to be the system

Envio =Jxer Px UllyeoCy-

Note that Envy o is only a system; it is not functional and so is not a machine.

When a system satisfying the persistence and liveness conditions (1-3) is
coupled with a matching elastic environment, the transfer on all data wires
never comes to a stall:

Lemma 3 (Liveness). If S satisfies (1-8), then for every behavior w of S U
Envy o, all the component sequences of the transfer behavior wT are infinite.

As an immediate consequence of Liveness Lemma, if S satisfies (1-3), then
ST={wT|lweSUEnv; o}

is a well-defined (I, O)-system.

Definition 8. An [I,O]-system S is an [I, Ol-elastic machine if it satisfies the

properties (1-8) and the associated system ST is deterministic.

10

The liveness conditions (2,3) are visibly related to causality at the transfer
level: k transfers on the input channels imply k& transfers on the output channels
in the cooperating environment. Thus, it is not surprising that the determinism
postulated in Definition 8 suffices to derive the causality of ST:

Theorem 2. If S is an [I,O]-elastic machine, then ST is an (I,O)-machine.

In the situation of Definition 8, we say that S is an elasticization of ST and
that ST is the transfer machine of S.

4 Elastic Networks

An elastic network N is given by a set of elastic machines Sy, ...,S,, with no
shared wires, together with a set of channel pairs (X1,Y1),..., (X,,Ys), where
the X; are n distinct input channels and the Y; are n distinct output channels.
As a network of standard machines, the elastic network A is defined by

N =(S1,...,8n | X; =Y, validx, = validy,, stopy, = stopy. (1 <i < n)),
for which we will use the shorter notation
N: <<81,...,Sm|]X1 :Yl,,XnZYn»

We will define a graph that encodes the sequentiality information about the
network A" and prove in Theorem 4 that acyclicity of that graph implies that A/
is an elastic machine and that NT=(ST,...,8 | X1 =Y1,..., X, = Y,,).

4.1 Elastic Feedback

FElastic feedback is a simple case of elastic network:
(SIP=Q) =(S|P=Q,validp = validg, stopp = stop,)-

Definition 9. Suppose S is an elastic machine. An input-output channel pair
(P, Q) will be called sequential for S if

S | G (min_tctyuo > tctg A min_tct;_gpy > tctg = Fvalidg). (7)

Condition (7) is a strengthening of the liveness condition (2) for channel Q.
It expresses a degree of independence of the output channel @ from the input
channel P; e.g., the first token at @ need not wait for the arrival of the first
token at P. This independence can be achieved in the system by storing some
tokens inside, between these two channels. Note that (7) does not guarantee
that connecting channels P and @) would not introduce ordinary combinational
cycles. Therefore the acyclicity condition in the following theorem is required to
ensure (by Theorem 1) that the elastic feedback, viewed as an ordinary network,
is a machine.

Theorem 3. Let S be an elastic machine and F the elastic feedback system
(S|P = Q). If the channel pair (P,Q) is sequential for S, then: (a) the wire
pair (P, Q) is sequential for ST. If, in addition, A(F) is acyclic, then: (b) F is
an elastic machine, and (¢) FT = (ST|P = Q).

11

4.2 Main Theorems

Sequentiality of two channel pairs (P, @), (P’, @) of an elastic machine does not
imply their “simultaneous sequentiality”

S = G (min_tctjuo > tctg A min_tct;_gp pry > tctg = Falidg).

This deviates from the situation with ordinary machines, where the analogous
property holds and is instrumental in the proof of Combinational Loop Theorem.
To justify multiple feedback on elastic machines, we have thus to postulate
that simultaneous sequentiality is true where required. Specifically, we demand
that elastic machines come with simultaneous sequentiality information: If S is
an [I, O]-elastic machine, then for every Y € O a set §(Y) C I is given so that

S | G (min_tctyuo > tctg A min_tct;_sg) > tctg = Fvalidg). (8)

Note that if P € §(Q), then the pair (P, Q) is sequential, but the converse is not
implied. A function §: O — 2! with the property (8) will be called a sequentiality
interface for S.

For an [I, Ol-elastic machine S with a sequentiality interface J, we define
A°(S,0) to be the graph with the vertex set I U O and directed edges (X,Y)
where X ¢ 6(Y). By Theorem 3(a), A%(S,d) contains A(ST) as a subgraph.

Given an elastic network N = {(S1,..., S [X1 = Y1,..., X,, = Y,,)), where
each S; comes equipped with a sequentiality interface d;, its graph A°(N) is by
definition the direct sum of graphs A¢(Sy,61),. .., A%(Sm, d,m) with each vertex
X; (1 <4< mn) identified with the corresponding vertex Y;.

Theorem 4. If the graphs AN) and A°(N) are acyclic, then the network

system N is an elastic machine, the corresponding non-elastic system N =
(8T,...,8T | X1 =Y1,..., X, =Y,) is a machine, and NT =N

As in Theorem 3, acyclicity of A(N) is needed to ensure (by Theorem 1) that
N defines a machine. Elasticization procedures (e.g. [4]) will typically produce
elastic components with enough sequential input-output wire pairs, so that A(N)
will be acyclic as soon as A°(N) is acyclic.

Note, however, that cycles in A°(N) need not correspond to combinational
cycles in NV seen as an ordinary network, since empty buffers with sequential
elements cutting the combinational feedbacks may be inserted into A/. Even
though non-combinational in the ordinary sense, these cycles contain no tokens
and therefore no progress along them can be made.

Theorem 4 impies that insertion of empty elastic buffers does not affect the
basic functionality of an elastic network, as illustrated in Figure 2(b).

Definition 10. An empty elastic buffer is an elastic machine S such that ST =
Conn(X,Y) for some X,Y.

Theorem 5 (Buffer Insertion Theorem). Let B be an empty elastic buffer
with channels XY . Let N = {S1,...,Sm [X1 =Y1,...,. X, =Y,,) and M =
<<B,81,.. 78m|]X = Y17X1 = KXQ = YVQ,...,Xn = Yn>> IfA(N), A(M), and
A®(N) are acyclic, then M is an elastic machine, and MT = NT.

12

The precise relationship between graphs A(M) and A(N) can be easily de-
scribed. In practice they are at the same time acyclic or not, as a consequence
of sequentiality of sufficiently many input-output wire pairs of B.

5 Conclusion

We have presented a theory of elastic machines that gives an easy-to-check con-
dition for the compositional theorem of the form “an elasticization of a network
of ordinary components is equivalent to the network of components’ elasticiza-
tions”. Verification of a particular SELF implementation, such as in [4], is reduced
to proving that conditions of Definition 8 are satisfied for all elastic components
used, and that the graph A®(AN®) is acyclic for every network A/ to which the
elasticization is applied. While the definition of the graphs A° may appear com-
plex because of the sequentiality interfaces involved, it should be noted that the
elasticization procedures, e.g. [4], are reasonably expected to completely preserve
sequentiality: a channel P belongs to 6(Q) if the wire-pair (P, Q) is sequential in
the original non-elastic machine. This ensures A°(N°¢) = A(N) and so testing
for sequentiality is done at the level of ordinary networks.

Future work will be focused on proving correctness of particular elasticization
methods, on techniques for mechanical verification of elasticity, and on extending
the theory to more advanced SELF protocols.

References

1. G. Berry. The Constructive Semantics of Pure Esterel. Draft book, available at
www.esterel.org, version 3, 1999.

2. L. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of latency-
insensitive design. IEEE Tr. on CAD, 20(9):1059-1076, 2001.

3. L. P. Carloni and A. L. Sangiovanni-Vincentelli. Coping with latency in SoC design.
IEEE Micro, Special Issue on Systems on Chip, 22(5):12, 2002.

4. J. Cortadella, M. Kishinevsky, and B. Grundmann. SELF: Specification and design
of a synchronous elastic architecture for DSM systems. TAU 2006 (to appear).
Available at www.1lsi.upc.edu/~jordicf/gavina/BIB/reports/self _tr.pdf.

5. S. A. Edwards and E. A. Lee. The semantics and execution of a synchronous
block-diagram language. Sci. Comput. Program., 48(1):21-42, 2003.

6. H. M. Jacobson et al. Synchronous interlocked pipelines. In Proc. Int. Symp. on
Advanced Research in Asynchronous Clircuits and Systems, pp. 3—-12, 2002.

7. S. Krsti¢, J. Cortadella, M. Kishinevsky, and J. O’Leary. Synchronous elastic
networks. 2006. Available at www.lsi.upc.edu/~jordicf/gavina/BIB/reports/
elastic_nets.pdf.

8. E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of
computation. IEEE Tr. on CAD, 17(12):1217-1229, 1998.

9. E. A. Lee, H. Zheng, and Y. Zhou. Causality interfaces and compositional causality
analysis. Invited paper in Foundations of Interface Technologies (FIT 2005).

10. J. Matthews. Recursive function definition over coinductive types. In Proc. 12th
Int. Conf. on Theorem Proving in Higher Order Logics, pp. 73—90, 1999.

11. S. Suhaib et al. Presentation and formal verification of a family of protocols for
latency insensitive design. TR 2005-02, FERMAT, Virginia Tech, 2005.

13

900¢ ‘9¢-GZ yoie|N ewisny ‘euusip doysyiops 900

1 /88€10 ‘€LY LLY0 ‘Y6620 stuesb 4SN :Aq papoddng
ABojouyos | jo ainiisu| eibioan)
Buinndwo? Jo aba|j0)

soljoue (819d) snoibeued

saulyoe\ pauljadid [9A87-11Y
JO uolnealLIB A 8yl bunrewolny

S[00) (IV)) [BUOIIUIAUOD BIA TT(IN POIJIIdA
wo.ay ‘ouj ‘21307 ST Aq padnpoad yoid a1p

9J1A3P 1006

pajedLiqey

EEEEEEEEEEEN
[] o
[] |
[] o
[]]
[| o
3 - seinsn 510100100701 1100
[| o T
| | m "IAN [errod TTTT00T000TOTTITO
] m TT000000T00TO0
[| m TTO000TOTOTTTO
[| o

JAPO0J Uurydewr

= = vﬁccau.\“rﬂ

AR s7001d pavjooyd

S (ZAdavD WNS) Aqredrueydaw £q

H=(TXJI¥D " TWNS) 0L P3)E[a.1 S[opoul [ewL10}y

ANT AT

0 8T > 7T
TNOILONNA THAFT dooTt
HAYD WS SLO4dLNO ‘0 =:13UT i JIen

Ien)3InW eanpenold

2dTY SLNdNI

'swv)sAs paubisap Ajjelosawwod Jnoge paAotd JeAd swaloay) paledl|dwod
Jsow pue 1sab.e| ay] Jo swos aA0ud 0] pasn Wa)SAS uonedljlId A

¢ 10V YIM UONEJIUBS A |lempleH

SHIANIL
NOLLILYVd

HITIOUINOD | /1o
LdNYYILNI

|
ﬂ =i M e * © 7" uiod bugeold iy
Ww i e "LINP SUlljoD [[emyo0y
ﬁ’T LERE f w v w ‘|aulay uoneledas paljlIaA
P VS = T g™ *J0ssao0ud 0)dAIo J18Y) J0)
VSN wol} uoneosynt=o /-1v4 STIN
o = - - LdINVV SUll|OD |[PMYO0Y

" ‘'swelbold apo20.dIW paljLIBA
"9p020.2IW Ul UoIjoslap piezey
auljadid Jo sSBU}081100 PaA0ld
‘Topow A\dS uey] sia)ise) uny
‘lopow a)eindoe-a|0Ao/ig

'dSd dVO E|0I0j0N

«««««««

R i Anpepmie
I _ EIE
===
{t L UL

g2y
Hﬁ-« — 43000
sz — z
e 1430
uuuuu — Wy
uuuuuuuuu ———| 3Tv4HIINIISOH
o0TRY —
SIPUCTY e
o

¢ 10V YHUM UONEJUIBS A |lempleH

670°L €0C | /81 9L | €cLlie | ¥8L L. 8
¥06 Gl | 091 GL | 0LO°6GL | LiPv'ES .
06€°L 69C | €9¢ 9 2ce’T, | 8Lv've 9
02’} 8¢eZ | €€¢ G 0S€LL | 6VL'¥C G
GLSG') Goe | 00¢€ G €69°0L | €16'€C 14
G9. A 62 € Gz6'9e | G6v'Cl €
94 € 4) LG¥'GL | 982'G 4
9l € 4) LG¥'GL | 982'G)
[sAep] | I1B10L [8bais |AITON| sesne|y | siep PO
A [99s] @I70N 4AND 4NO

al1on yum
UoIIESIIDA duIydepy pauljadid

‘'sasealoul Alixa|dwod sulyoew se aslie sanssi buljeog
‘'subisap |9A9]-1Ig ‘1Y O] 81B|aJ 0] MOy Jes|o JON
"SoljuBWaS ou aAey swelboud Jnoge uoseald 0) Aem ON
"9|geIN28Xad 10 |9A3]-1Ig WoJj Je
*0160| |0JJU0D ¥ B1e]S BIIXS ppe 0] SN S82.0} :0160| pa1oLsay
‘'so|npow ou :abenbue| Bulepow pajoLsay
‘pajusawWwa|dwi }18S uoljonJIsuUl Jo 18sgns |jlews AjuQ
‘Aeme pajoedisge 019 ‘1apo2ap ‘Yiedele(

‘Buljspol) |oA8]-wio |
"9|qIssaldxa sI Wwaloay) 8109,

"MN1D Ul 8|qissaldxs Jou Juswale]s SSaul0allo)

S8JNPa20.d
uoISI99d/AITON JO SuonEeNwWI

am ZW LI X3 al

E|

OWaN
uononJjsu|

A

ajepljeAu|

o160 |je1s

Buljes

)

21607

uonoipasdsiy Buipoosaq

94
J9)s16ay

|

N

9N duiyoe|y pauljadid

gM 2N LN X3 al c¢dl L4l

OW3
uoijonJIsu|
Aoway /)
ejeqg
ajepijeAu
| [o160 [11e38
Buleis
- f
1 |- uonoIpaidsI mhwm%o._wc od |+
dg
a|l4
19)s169y

|

N}/

L duiyoe pauijadid

gM 2N LN X3 al Gdl ¥4l €41 241 L4l

oW
uoloNnJIsuj

A

ajepijeAu]
—————

o160 |l1eIS
Buljes

)

21607
Buiposaq

uonoipasdsi

9|4
19)s169y

|

N}/

0L 8ulyoe pauljadid

gM 2N LN X3 al Gdl ¥4I €41 241 L4l

Aowapy
uolonJisuj

Aowspy enond |
= uonjonJjsu|

ajepljeAu]

ayoe)
uononJsuj
)

s1607 |l1B38
Buijjeis

)

91607
Buipooaq

uonjoipaJdsiy

od

ClE
19)s169y

|

N

0LIN @ulyoe|y pauljadid

aM 2N N X3 ail Gdl ¥4I €41 241 L4l
Aoway
ejeq

ajepijeAu]

Aoway
uoljonJjsuj

ayoen
uoloNnJIsuj
3

ayoen

ejeq uononJsuj

o160 |l1eIS
Buljes

)

21607
Buiposaq

uonoipasdsi

od

94
19)s169y

|

N}/

dlOLIN dulydep pauljadid

gM 2N LN

X3

ayoen
ejeqg

ajepijeAu|

al

Gdl

P4l €41 241 LdI

Aoway
uoloNJIsu|

ayoe)
uolonJjsuj
3

uoljonijsuj

21607
Buljels

le1s

uonoipasdsi

)

21607
Buiposaq

od

94
19)s169y

N

|

MAIO0 LN dulyde pauijadid

VN lled | 16T /SS'090°C | 865069 MAIOTH
VN lled | e ¥0L'0€L'T | GGE'08S QIOTH
€€.'8s | 1¥9'8 | 6 0C8'9.8 | T98'c€6T TOTH
L18'0 [292'9| GG 099'T6S | S2£'861 OTW
LIv'T | 9gv'e | 1Y €/6'6CY | SYO'vPI 6l
162 99/, | GT Gov'e8c | T60°G6 Sl
GoT OST | GT Z8T'S8GT | GOT'€S LI
81 o] 8 GZl'€8 952'8e ol
|10 | abals | AQI1DN | sesneD SIBA aulIyoe N
(99s) sowi_| UOIILDIIUDA 4ND paulpdid

"W} UOIBDIILIBA Ul 8Sealoul [elusuodxa :s)nsay
‘abal1g pasn am (| S 0] s9Idwod a|1oN
‘dlI1onN Buisn saulyoew ay) pajspow SN

UOIIEDILISA DIY)[OUOIN

"MJOAN 4NN
'alon ¥ 210V buluiquod
‘'sg|dwexalajunon
‘Buiuoseay |euolisodwon
‘'sdej) Juswauljoy
‘Juswauljloy

MBINIBAQ

. suonoelisge Axea|, ploAy
‘leuonisodwo)

[I19A9T-MOT-VIN

(X \ x11D) ssauan| L

pue A)ajes Jo uoljeAlasald

‘s}InsaJ o1sse|o paydwig } ﬁ— QIK _ L|_%|T

Alosy) |elsusb padojers(W &oensav-vin

‘'sdew Juswauley
_>__A|_
‘BulIe)n]s 10} SJUNOJDY ﬂff_T_j TE:
> 44
'S|oAS| uoloeSqe T ToEHSAv-VIN
JusJayIp usamiaq -
-
UOI}98UU0D [BW.IO el T os
L4y
JoeNSqY-VS]

9.N]014 9yl 'lusawauljoy

'X8|dw oo ale yue.s pue ‘4 ‘de)s-yS| ‘dais-yIA 1eyl 810N
'0160] a|qeplosp e ‘ND ul 8|qissaldxa sI waloay |

M3UEL > A2fuBd (Mmyuel > Ayuel VvV AJ=S

y|

>$:

w w AJ=Nn v (m)dais-y\ = A
o | v (s)ds)s-yS|=n v mu=s
M—7—>3

I VIN D MA)
. WBJovBY | 8109, 8Y] WO} SMO||0) Juswaullel g1S

Juswaulley bunewolny

‘Ajjeanewolne pauiep ag ued yjog
's9)9|dwoo Ajjlenjuans
Jey)] uolonJisul ue yojaj 0] sdajs Jo JaquinN
:uolnoun) yuey
‘'Soyoe?d
c@:O._E\-mH_._; JOJ Umg_s_um._ SjuelleAul >Ocmww_wCOO
._um.__s_um._ suolje|nwis O__OQE>w 17d) .>>D_O__>_ JOH
.@C_r_mj_h_ 9uljoap O] pasnh SI Qmu_wu<_\/_
"SUOI]ONJISUl palnNdaXo >__m_tma lle ySiul4
:dew juswauljal buiysni|4

Syuey ¥ sde|y Juswauljoy

(90 31va) buysnyy pesde|jo)
(G0 31vQ) sdew ajeipaswis)u]|
(G0 ®8pooowWsy) 449
(0 31Vva ‘00 AVOWNH) Iuswpwwo)
‘Bulysny) puolag
‘AJlIBA Ajjeanewolne asimiay)o 0] xa|dwod 00}
aJe 1ey] sauiyoew JO uolledljluaA ay) a|geus ue)
'SBWI] UOIIBIIJLIBA Ul SjuswaAolduwl
apnyubew Jo siaplio uieye 0} a|qissod si]|
"SalWI] uoneoljllaA uo joedwi onselp
B aABY UeD pasn sdew juswauljal ay |

lojoe4 dej\ Juswaullay ay |

(zp2)O S! 8wy uoneollIaA Buninsey .«
2/ SI sued juswijiwwod pue buiysny) jo Alixsidwon .
:sdew juswauljel aeIpawIdlul J04 .
‘(,2)O : Auxse|dwoo, suladid sy ul |einusuodxa SI swi) UONBOIILIBA .

S8aydje| G 1se| ysni4
'S8ydle| 7 1Sdl} HWWOD Y|

od

— Jwwo)y T

(Juawjwwo))

| od
Saydje| 6 HWWOoH 64|

<« Usni4 /«

(Buiysnid)
'sayole| 6 Usnid 0|

sdep\ Juswaulley ajeIpawla)u]

od

6d|

pa[le =X~ pale|odel}X] —e= |ENJOY ==

sdew juswauljal a)elpawlia)u|

8dl Zdl 9dl GdI vdl €dl cdl 14l 0dl

X

'SOWI| UOIBOIJLIBA

0001

00001

000001

0000001

uo sdey\ Juswaulay 8)eIpawWIa)u| JO 108)13

S}Nsay ol

(08S) sawl| uoneollIa

'G0 AvOQI ul paseaddy

‘dajs Juawiauljal e 0] paje|os! aq ued Aay)
.Ja|dwis yonw ag 0] pua) sajdwexalajunod)
iAllLIBA 0] SPU0D8S Oz~ Sd)el Mou AAI0LIN
'SSaUBAI| 9 Ajajes aAlasald

‘uoleoljllaA aulyoew pauljadid 1o} Jlomawedl)
leuolisodwod ‘e)a|dwod e padojaAs(]

‘awll) e]e da)s auo ‘way)

pauljap am Aem ay) saulyoew ay) AjlIaA eap|

uoljealjlia A [euonisodwon

‘9SIMa2ald auljep 0] Jalsea ale Syuel pue sdew Juswaul}ay

WJ

\ 3
H\OH
[Od | < -- [Od] [Od | «+——

S— ™
9Ny [eqO|D m_sm_ |EJ07

g
£

<l—=C
0
=—C
-
—
-
~—0

\2

J00Jd |euonisodwo)

‘a|geabeuew deb siyj
soyewW Ylomawe.)
|leuonisodwod InQo

‘'saulyoew

usamiaq deb
oljuewWwas uo spuadap
Jjooud jo Alxsejdwon

J,sjnsal
poob yons Aypn

10841 "SA [euonisodwo)

/o% & w:%;oms_ pauljedid
SO, X\ oz@ > >

10811q pojejodenXg = w—
[euonisodwo)) —f—
108.1Q —e—

- 0L

- 001

- 000°L

- 00001

000001

(09s) awiny uonesJIdA

'09S (7> ‘Saul| Gy ‘sdals uonenwis g :jeuonisodwon
089S 9Z0L ‘saul| 9209 ‘sdajs uone|nwis g9 :30811a
‘sayoeoldde Yjog 10} puoodas g/| :JuelieAu|
'J0118 ayoeo e Jo a|dwex]
‘Buipue)siapun ubisep pue Bulbbngep spiy
‘Apjoinb aiow pajelssuab aq uen
'sdo]S uone|NWIS SS8| BA|0AUI 0] pud |
'9ZIS Ul J9||ewsS yonw aq 0} pua |
‘'sleadde Jous ay) alaym abels jJuswauljal ayj 1e IndoQ
‘sa|dwexalajunod Jajdwis 0] spes| JJomawel} InO
‘uoljoadsul 8pod Jajaud :siy) uo swli Jo 10| e puads sjuspnis
ipJey sI sa|dwexalajunod bulpuelsiapun
‘s|ie) 11 uaym sajdwexalalunod sajelauab qI1oN

so|dwexalajunon

'G00Z AVO2I ®8S
"auiyoew pauiadid
ayj] uo buluunl ap0o2 aulyoew ljnoge uoseal 0} Sh ss|qeu]

"Joya 2loJay JNOY)IM Saoe)l
[9A8]-1I] UY)IM Saulyoew a|qejnoaxe AJIaA ued ap) Jnsey

auljadid ay) 1noge uoseal 0} pasn s A|110N
‘|9A8| 119 8y} 1B uoseal 0] pasn Sl 21OV
‘Aldleledas Yim jjeap ale sdew juswauiael pue s|apoip
'SUJI9OU0D d)eledas ued ap\
"WISJ08Y] Juswauljal ||} 8y 81el1s ued ap\
'ssa20.d Jooud ay) abeuew 0} pasn SI 27OV

‘a|puey ued d1oN Yoiym swaejgo.d [aAs|-wlia) 0} sauiyoew
9|geIN28Xa ‘[9A8J-}Iq JO SS8UJ081I00 8oNpal 0) Z 1DV 8SM (eop]

dl1oN ¥ 210V buluiqwo)

(Z10ovAgqjooud) gsauyaly g <« Y

ssuowsWw jsije yiim A |

ddl payjlng ‘Al

d3dW UOISIBA G| d3I

d\ Pain||od -d3N

a|gejnoaxs ‘J1abajul ‘euladid :qN

salJowaw JojenjeAa Uim ‘g :WIN
a|gelnoaxa ‘|[aAdl-1Iq aulladid g

dl «— Nl «—dd|l «— ddIN «<— dIN «<— NIN < g\
Aows|y Alind auliedid 8lnjjod [9ASllg AJowsiy

auIINQ Jooud

(zZ10ovAqiooid) gseuyaly g <« VY
uoljeluelsu| jeuoljoun4 A”_

saliowsw jsife yiim A 4|

d3I payuNd Al
d3IN UOISIBA VS| :d3|

R L= L, T, I peINiod :dIIN
m_nﬁzow.xm a|puey @ J10BJISqE a|gelnoaxa ‘Jabajul ‘suladid I\
JouUuRd 119N v .<_>_ SalOWRBW JojenjeAa Uim g -ININ

A a|geInoaxa ‘|aAs|-liq auljadid g

dl «— Nl «—=ddl «— ddIN «<— dIN «<— NIN < g\
Aows|y Alind auliedid 8lnjjod [9ASllg AJowsiy

auIINQ Jooud

(Z10ovAgqjooid) gsauyaly g < Vv

uolenuelsu| jeuoljoun4 AH_
4 Nl < NN 7
(a@non Aq jooud) g ssuljel _m < i

sjepow 119N @
ale Nl ‘NN ssuowsaw jsije ypm | -3
_ AL - d31 payund |
UOISIOA :
VI VA n_m__m___\,_ vms__%n_m_nmw_,_
d3l ‘dan .

m_nmwﬂcm_mwmmﬂvcmc @ joensqe °1dEINOSXS ‘1abayul ‘suledid ;3N
JOUUBD 419N vl y SeHowsw Jojenjend uum ‘giN AN

A a|geInoaxa ‘[aAs|-liq auljadid g

dl «<— N| «—=dd|l «<= ddIN «<— JdIN «<— NIN < 9N
Aows|y Alind auledid 8lnjjod [9Asllg Alowsiy

auIINQ Jooud

"1Joyje uolelBbajul 8y) apnjoul Jou op pue uadxs
aI70N '® 210V Ue Joj palinbal 8 pinom ey} Joys ay) sjewlise sawi |

| GZ9 NN < dIN
€ c8l dIN <= NN
c LC d3aN < dIN
| 109 dl < I
| 1 NI < d3I
c o€ d3dl < 43N
c 16 VI <= VIA
€ LGl Nl < NN
(s)y2am-uew) (00S)
1oy Jasn awl] Joold da)g Jooud

SOIISEIS UOIEOYLIOA

'3+] 0] LJOYd Ul 8SealIoUl X}~ 8onpal 0] Sl abus|ieydn
'SUBISap [0A8-T1 Y YlIM S[opOoW |[9AS|-WIS] 81kjal 0] 9|ge aJom SN
‘Buljapow [9A8-WJIB) Ul pasn SuoljoelISge snoJawnu 8yl PalilaA N
'H0Y4d dloJay paploAe am |T1ON ¥ 210V buluiquod Ag
uenodwil si sejdwexalaiunod Bulpuelsiapun
"juenodwi ale pasn s|o0) pue sebenbue| ay |
"H0JJ8 uewny alinbal spoyjaw olewoine, usAg
‘abud||eyo Jolew e sI uonewoiny
"9]0A0 ubisap ay) ojul pajesbajul aq ue)
"syse) ajeledas ojul wajgosd asodwoos(
‘9]0J Jolew e sAe|d uonisodwon
* sdew juswauljal UM paziislaweled
‘Sjopouwl Joedisge 0] 1Y WoJl uoijosuuod |ew.io
"YJomawel) Juswauley

uonedljus /A 11y

'suolj0alip 8sayj Jo awos buliojdxs Ajjualind ale ap\
¢.S7aH uo Apoalip ajelado jeyy sainpadsold uolsiosp Jnoge Jeypn
‘sjosgns a|dwis AiaA 1oddns sj00] JualLIng
'ST1QH uo Apoauip ajetado jeyj s|oo |
;saiuadold g swaisAs xa|dwod 0] 8|edS 0] MOH
‘saladold mojeys /swaisAs ajdwis uo Ju1om 0] swaas Ajjualin)
‘Juswiauljal-uoljoelisqe papinb sjdwexalsajunod
‘sutaned Jo Aleuql e dojpas(
‘souljedid deap ‘sayoed ‘"6 ‘olleuab woass sda)s Auen
"yoJeas juabljjajul s
‘'sdaj)s Juswauljal sjewoiny

MIOAA @JNIN4

A Functional HDL in ReFL&Ct

ToM MELHAM JOHN O’L EARY
Computing Laboratory Strategic CAD Labs
Oxford University Intel Corporation
Wolfson Building Mail Stop JF4-211
Parks Road 2111 NE 25th Avenue
Oxford, OX2 3QD, England Hillsboro, OR 97124-5961, USA

ReFECt[4] is a functional programming language designed and implemented at Intel’s Strategic
CAD Labs under the direction of Jim Grundy. The language is strongly typed and similar to ML,
but provides certaireflectionfeatures intended for applications in industrial hardware design and
verification. Like LISPreFIECthas quotation and antiquotation constructs that may be used to
construct and decompose expressions in the language itself. Unlike LISP, these mechanisms are
typed. The language also provides a primitive mechanism for pattern-matching, and in particular
for defining functions over code by pattern-matching on the structureFtfiCtexpressions. The

design ofreFI€Ctdraws on the experience of applying an earlier reflective language ¢all§H

to large-scale formal verification problems within Intel's Forte framework [8].

One of the intended roles o#FIECLis to be the host language for a functional HDL. As with
other work based on Haskell [2, 7] or LISP [5, 6], a key requirement is the ability to simulate
hardware models by program execution. Circuit descriptions are just functional programs, which
we can simply run to simulate the circuits on test case inputs. But in addition to this simulation
capability, we also wish to execute various operations on the absynaiet<of circuit descriptions
written in the language. We want to be able to write programs that ‘see’ the code of a circuit de-
scription. This allows us, for example, to program circuit design transformations [10] as functions
that traverse code—or simply to generate netlists for other design tools.

This talk at DCC 2006 will illustrate how the reflection featuresefIECt can provide both
simulation and a handle on circuit structure (intensional analysis) within a single, unified language
framework. We will present a small HDL embedded withéfFI€CL In the spirit of the approach
pioneered by Sheeran =P [9], circuit descriptions are built up in this HDL from primitives
using higher-order functions that implement various ways of composing sub-circuits together. The
reflection features afeFIECtwill then be employed to allow a single-source circuit description in
this language both to be executed for simulation and to be executed to generate circuit netlists.

Lava [2] is an HDL based on Haskell that also supports simulation by execution and circuit
netlist generation with a single functional source. Lava achieves this using non-standard interpre-
tation, laziness, and functional data structures with ‘observable sharing’ [3]. Our presentation at
DCC will show how the reflection features EFIECtcan be employed to achieve single-source
simulation and netlist generation in another, perhaps more direct, way. We will also offer some
speculations on capabilities available with our approach that seem beyond what can be achieved in
Lava—for example the syntactic analysis of circuit descriptions before flattening into netlists.

References

[1] Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Se&gfeed-FL: A pragmatic imple-
mentation of combined model checking and theorem proving. In Yves Bertot, Gilles Dowek,
André Hirschowitz, Christine Paulin, and Laurentéj, editors Theorem Proving in Higher
Order Logics: 12th International Conference, TPHOLs 19@8lume 1690 oLNCS pages
323-340. Springer, 1999.

[2] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware design in
Haskell. InFunctional Programming: International Conference, ICFP 199&ges 174—
184. ACM, 1998.

[3] Koen Claessen and David Sands. Observable sharing for functional circuit description. In
Advances in Computing Science: 5th Asian Computing Science Conference, ASIAN 1999
pages 62—73. Springer, 1999.

[4] Jim Grundy, Tom Melham, and John O’Leary. A reflective functional language for hardware
design and theorem provinglournal of Functional Programmingl6(2):157-196, March
2006.

[5] Steven D. JohnsorSynthesis of Digital Designs from Recursion EquatiavisT, 1984.

[6] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editBmsnputer-Aided Rea-
soning: ACL2 Case StudieKluwer, 2000.

[7] John Matthews, Byron Cook, and John Launchbury. Microprocessor specification in Hawk.
In Computer Languages: International Conferenpages 90-101. IEEE Computer Society,
1998.

[8] Carl-Johan H. Seger, Robert B. Jones, John W. O’Leary, Tom Melham, Mark D. Aagaard,
Clark Barrett, and Don Syme. An industrially effective environment for formal hardware ver-
ification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
24(9):1381-1405, September 2005.

[9] Mary SheeranuFP: An Algebraic VLSI Design LanguagehD thesis, University of Oxford,
1983.

[10] Greg Spirakis. Leading-edge and future design challenges: Is the classical EDA ready? In
Design Automation: 40th ACM/IEEE Conference, DAC 2(8)e 416. ACM, 2003.

Towards Automatically Compiling Efficient FPGA Hardware

Jean Baptiste Note, Jean Vuillemin
Ecole Normale Supérieure- Paris

We detail some aspects of our current research on compiling efficient FPGA designs from the
source code of data flow applications. The output from our compiler is a FPGA hardware
design for the Pamette [1] re-configurable co-processor. Three requirements are met by

construction:

1. the source code software specifies the transform applied to the host memory content
at each system cycle;

2. the compiled FPGA design bit-wise computes the very same cycle transform- yet at
much higher speed thanks to [1];

3. the hardware design area is automatically minimized to meet a throughput
requirement, which is specified a-priori within the source code.

Accordingly, the compiler carries its analysis/synthesis in three stages:

1. Unfold to SSA list, perform range analysis, bit-size and translate to RTL design:

The input source code is presented here in a C like syntax. In our
experimental implementation, the Jazz language [2] is used- such source
could be expressed just as well in other synchronous language: Lustre [3],
Esterel [4], ...

Transform the source code to an equivalent SSA list operating on integers.
Analyse the range of each integer variable, and code each by a finite vector
of bits; accordingly represent integer operations by Boolean functions.

The result is a RTL design equivalent to the bit-sized SSA description.

2. Map RTL to SPF form, re-time and FPGA compile:

Map RTL design to Serial/Parallel/Feedback SPF form.

Minimize re-timing registers to achieve optimal latency- based on reliable
delay models for FPGA integer operators, and less reliable routing models.
Produce FPGA design from vendors tools (PamDC [5] and Xilinx [6]) and
system software support [5].

3. FPGA design size/power meets set bandwidth requirement:

For RTL throughput below requirement, trade area for bandwidth
according to [7].
For RTL throughput way above requirement, we first generate the Bit-
Serial Design Realization: BSDR minimizes logic and throughput among
designs.
i. For BSDR throughput below requirement, unfold space as above.
ii. For BSDR throughput much above requirement, we fold space at
the expense of bandwidth through hyper-serial designs [7].
iii. For low required throughput, a pure software implementation on the
host processor is chosen, without using the co-processor.
iv. Between these extremes, valuable hardware/software co-design
tradeoffs are automatically met.

An experimental validation of the proposed techniques has been obtained.
¢ Including over half a dozen real-life designs in current multi-media.
e This specific presentation highlights dithering in present digital printers.
e Excluding so far automatic bandwidth adaptation.

We automatically compile efficient FPGA designs for applications in the above list:

o Efficient means that, the compiled design compared to any hand-crafted for
the specific case is no worse, by a factor of two in size/bandwidth/power.

e To permit efficiency, we let each stage automatically performed by the
compiler be guided by annotations/pragmas- manually put in the source
code.

e A fair measure of our system is thus the number of annotations added to the
source code in order to compile an efficient hardware design, as defined
above. Our experimental evidence, from all test cases, is: very few!

This talk presents and explains part of the theoretical and experimental evidence, in the
context of two half-toning algorithms: random and Floyd Steinberg digital dithering.

The conclusion from this study is quite optimistic: once a small number of specific compiler
directives are added by the learned designer, the source code for many current multi-medias
applications can be automatically compiled into efficient FPGA based hardware co-
processors. We expect the compiler methodology to extend to other hardware/software
technology targets as well- including SIMD machines and multi-core processors.

Interconnect and Geometric Layout in Hydra

(Abstract)

John T. O’Donnell*

Hydra is a functional computer hardware description language that allows
circuit designs to be specified either with or without information about the
geometric layout. Portions of a design may be specified at different levels of
abstraction, and some may have geometric layouts while others do not. This
presentation describes how geometric information is incorporated in Hydra
circuit specifications, and discusses its interaction with equational reasoning
about the behaviour and structure of circuits.

Hydra models every circuit as a function from inputs to outputs. A
circuit may be defined directly as a function from signals to signals, or in-
directly through the use of functions that generate parameterized circuits
or combinators that define families of related circuits. There are also sev-
eral domain-specific sublanguages, such as a language for designing control
algorithms, from which control circuits can be synthesized.

A number of alternative circuit semantics are provided. Some of them
are concerned only with behaviour, so that the application of a circuit to
suitable inputs will perform a simulation. Others are concerned with struc-
ture, so that execution of the same circuit function will generate a netlist.
The netlist semantics is based on an algebraic data type for representing
the abstract structure of the circuit. The data type contains explicit de-
scriptions of all the components in the circuit, the wires that connect them,
and the hierarchical organisation of the circuit specification. It may also
contain additional information about the geometric locations of components
and wires in a layout, although the geometric information is optional and
may be omitted.

A non-geometric circuit specification can use an arbitrary organisation
of the input and output ports; they are simply function parameters. A
geometric specification, however, treats a circuit as a rectilinear box with a
sequence of ports on each of the four edges. Each port is identified as either
input or output (there is also an experimental bidirectional port type). The

*Computing Science Department, University of Glasgow. jtod@dcs.gla.ac.uk

circuit function uses only input ports as parameters, and produces results
only for the output ports.

Hydra is a functional CHDL, not a relational one, so adjacent circuits
must in general be connected, not simply composed. This is performed by a
combinator that takes two circuits with geometric layout, and defines a new
circuit with the connections completed on their common edge.

Two mechanisms are provided to help the designer specify geometric lay-
outs. Regular layouts can be generated using a set of geometric combinators.
Alternatively, the positions of components and wires may be provided explic-
itly, either by giving their coordinates or by drawing them with a graphical
user interface.

The algebraic data type that records the structure of the circuit is im-
plemented via a program transformation. In earlier versions of Hydra the
program transformation was performed manually. A new experimental pro-
totype implementation uses Template Haskell to perform the program trans-
formations automatically, making both the geometric combinators and the
generation of netlists far more usable.

Hydra is similar in many ways to Lava + Wired. There are also some
significant differences. Wired is relational, while Hydra is functional, and
the mechanisms used for making connections along the edges are somewhat
different. However, the motivations behind Hydra and Lava+Wired appear
to be identical.

The design of a floating point unit
using the Integrated Design and
Verification (IDV) system.

Dr. Carl Seger, Strategic CAD Labs, Intel Corp.

For many VLSI designs, validation has started to dominates the
total design effort. In addition, historical trends are indicating
that this problem will continue to grow. For example, data from
Intel’s lead microprocessor design efforts shows that the number
of pre-silicon bugs has increased by a factor of four for every
lead project for the last 25 years. If this trend is not broken,
Intel’s next lead design is likely to have to go through the “find
the bug, evaluate it, root cause it, fix it, and validate the fix”
process tens of thousands of times; potentially overwhelming
the validation and design team. Thus one of the most critical
goals for improving the design process is to break this bug trend.

In this presentation, we will introduce the Integrated Design and
Verification (IDV) system that has been developed at Intel for
the last 5 years. IDV combines the design and validation efforts
so that the task of design validation (i.e., “Did we capture what
we actually wanted?”) is significantly simplified by means of a
much smaller and much more stable high-level model.
Furthermore, when the design is completed, so also is the
implementation validation (i.e., “Did we implement what we
intended?”). The latter is accomplished by linking the design
process very tightly with the validation process. Although this
idea is not new, the combination of correct-by-construction and
correct-by-verification and the tight integration of a database of
verified results is new and has led to a design environment that
allows rapid design in which the validation problem has been
significantly reduced.

To make the presentation more realistic, we will use the design,
from a high-level model to layout, of a floating point execution
unit as a driving example. We will discuss the early design

phase in which the high-level model is refined using algorithmic
transformations to a viable micro architecture; continue with the
middle level design in which the actual logic implementation is
derived and conclude with the final placement and layout stage.
Although the design process conceptually is performed
sequentially, we will illustrate the tight loop that IDV enables
between physical design and logical/micro-architectural design.
The latter is a critical component in enabling design
convergence. In fact, in today’s process technology, integration
of physical and logical design is not optional but rather
mandatory.

Time and facilities permitting, some of the design steps in IDV
will be demoed live.

Top-evel RTL Entry

arly"Besign: RTL to netlist

CegicsAnd Physical View

FAQ for Proof Producing Synthesis in HOL

Konrad Slind, Scott Owens, Juliano lyoda, Mike Gordon
[Project web page: http://www.cl.cam.ac.uk/~mjcg/dev/]

What is proof producing synthesis?

Proof producing synthesis compiles a source specification (see 2) to an implementation
and generates a theorem certifying that the implementation is correct. The specification
is expressed in higher order logic.

What is the synthesisable subset of HOL?

The compiler automatically translates functions f : 01 X -+ X 0y, — T1 X -+ - X Ty, Where
the argument (o;) and result (7;) types are words. It can translate any tail recursive
definition of such a function as long as the sub-functions used in the definition are in the
library of primitive or previously defined functions. Formal refinement into this subset is
by proof in the HOL4 system (13, 14, 31, 30, 34 have more discussion and examples).

Why not verify synthesis functions?

Synthesis functions would need to be coded inside higher order logic if they were to
be proved correct. This would be impractical as the compiler uses many HOL4 system
tools to automatically infer circuits — it would not be feasible to represent these tools
(a substantial chunk of the HOL4 theorem proving infrastructure) in higher order logic.

Is proof producing synthesis really theorem-proving?

The compiler that synthesises circuits is a derived proof rule in the HOL4 system which
is implemented by rewriting and a variety of custom proof strategies. It is a special
purpose automatic theorem prover for proving correctness certifying theorems (see 12).

Is proof producing synthesis the same as formal synthesis?

Proof producing synthesis is a kind of formal synthesis [14] in which the synthesised
circuit is not only formally inferred from the specification, but, in addition, a certifying
theorem is produced (see 38 also).

Are there benefits of formal synthesis besides assurance?

Formal synthesis by theorem proving ensures that circuits are correct by construction.
Users can safely tinker with the proof scripts used by the compiler, confident that they
cannot produce incorrect implementations. Users familiar with the underlying HOL4
theorem proving infrastructure can easily experiment with application-specific extensions
or optimisations. An example of an optimisation is combinational inlining (see 26). An
example of an extension is 1et-expressions (see 30). Safe extensibility is thus a benefit.

10

11

Why use proof producing synthesis for crypto hardware?

Implementations of cryptographic algorithms are evaluated to a high standard of assur-
ance such as Common Criteria Evaluation Assurance Level 7 (EAL7) [4, 5.9]. Formal
methods are an established technique in this area. Proof producing synthesis provides a
new way of certifying that cryptographic hardware implements high level specifications.

Formal synthesis is an old idea, so why is it still interesting?

In the past it has been hard to justify the high cost of formal synthesis — the additional
confidence of correctness it produces has not been considered worth the expense. How-
ever, we think there are niche applications (see 7) where the approach could be cost
effective, because it may make it easier to achieve required levels of assurance. Also,
we think that safe extensibility (see 6) is a feature that is worth exploring more.

Is proof producing synthesis automatic?

The synthesis of clocked synchronous circuits from tail recursive definitions of functions
mapping words to words is fully automatic. Currently users must manually refine spec-
ifications that use general recursion schemes to tail recursive form (there is a tool in
development to automatically compile linear recursion to tail recursion). Data refine-
ment from functions operating on types other than words must also be done manually.

What is the hardware realisation of a HOL function?

A function f defined in higher order logic is realised by a device DEV f that computes
f via a four-phase handshake circuit on signals load, inp, done and out.

t t+1 t'
| | |
load L ‘
load —| — done inp ‘ —

DEV f !

inp _| L out done ""‘T‘744444444444444Ff“““7
f(v))

At the start of a transaction (say at time t) the device must be outputting T on done
(to indicate it is ready) and the environment must be asserting F on load, i.e. in a
state such that a positive edge on load can be generated. A transaction is initiated by
asserting (at time ¢t+1) the value T on load, i.e. load has a positive edge at time ¢+1.
This causes the device to read the value, v say, input on inp (at time t+1) and to set
done to F. The device then becomes insensitive to inputs until T is next asserted on
done, when the computed value f(v) will be output on out. See 33 for an example.

What is the formal specification of a handshake device?

The specification of the four-phase handshake protocol is represented by the definition
of the predicate DEV, which uses auxiliary predicates Posedge and HoldF. A positive

12

13

edge of a signal is defined as the transition of its value from low to high, i.e. from F
to T. The formula HoldF (t;,t2) s says that a signal s holds a low value F during a
half-open interval starting at ¢; to just before ;. The formal definitions are:

F Posedge s t = if =0 then F else (—s(t—1) A st)
F HoldF (tl,tg) s =Vt.t1 <t <ty = ﬁ(s t)

The behaviour of the handshaking device computing a function f is described by the
term DEV f (load, inp, done, out) where:

F DEV f (load, inp, done, out) =
(Vt. done t A Posedge load (t+1)
=
I'. ¢ >t+1 A HoldF (¢+1,t') done A
done t' N (out t' = f(inp (t+1)))) A
(Vt. done t N —(Posedge load (t+1)) = done (t+1)) A
(Vt. =(done t) = Ft'.t' >t Adonet’)

The first conjunct in the right-hand side specifies that if the device is available and
a positive edge occurs on load, there exists a time ¢’ in future when done signals its
termination and the output is produced. The value of the output at time ¢’ is the result
of applying f to the value of the input at time ¢+1. The signal done holds the value
F during the computation. The second conjunct specifies the situation where no call is
made on load and the device simply remains idle. Finally, the last conjunct states that
if the device is busy, it will eventually finish its computation and become idle.

What is the form of a correctness certifying theorem?

Synthesising a circuit implementing f : 01 X -+ X 0y, = 71 X -+ X T, (see 2) proves:

|- InfRise clk
==> CIR;
==> DEV f (load at clk, inputs at clk, done at clk, outputs at clk)

CIR; is a formula representing a circuit containing variables c1k, load, inp1, ..., inpm
representing inputs and variables done, outl, ..., outn representing outputs. The
type of inpi matches o; and the type of outj matches 7;. InfRise clk asserts that
clock c1k has infinitely many rising edges. See 31 and 34 for examples. The term inputs
stands for inp1<>- - -<>inpm which is the concatenation of the variables inp1, ..., inpm
using the word concatenation operator <> and outputs is out1<>- - .<>outn representing
the concatenation of the output variables. A term s at clk is the temporal projection
of signal s at rising edges of clk (see 15, 21).

Are specifications using high level datatypes synthesisable?

During synthesis the compiler generates circuits that use polymorphic registers and com-
binational components (i.e. components having inputs and outputs of arbitrary types).
However, the lower level phases instantiate all types to words (currently represented
as lists of bits). Thus we can generate circuits with wires carrying abstract values
(e.g. numbers), but these cannot be refined to a form that can be input to FPGA tools.
Our intention is that users will derive Boolean level specifications inside higher order
logic using data-refinement methods. Automating this is a possible future direction.

14 Are there tools to translate into the synthesisable subset?

There is an experimental proof producing tool called 1inRec that translates linear re-
cursions to tail recursions. For example it translates:
FACT n = if n = O then 1 else Mult(n, FACT(n-1))
to:
FactIter(n,acc) = if n = 0 then (n,acc) else FactIter(n-1,Mult(n,acc)))
Fact n = SND(FactIter (n,1))

15 What hardware components are used in circuits?

The compiler generates circuits built from a user-specifiable library of combinational
components, e.g. AND, OR, NOT, MUX, ADD (the default library is chosen for use with the
Quartus Il FPGA software). Synthesised circuits may also contain constants (CONSTANT),
edge-triggered D-type registers with unspecified initial state (Dtype) and Dtypes that
power up into an initial state storing the value T (DtypeT). Constants and the registers
are specified in higher order logic by:

CONSTANT v out = Vt. out(t) = v
Dtype (clk,d,q) = Vt. q(t+1) = if Rise clk ¢t thend t else ¢t
DtypeT(clk,d,q) = (¢0=T) A Dtype(clk,d,q)
where Rise s t means signal s has a rising edge starting at time ¢:
Rise s t = —s(t) A s(t+1)
Both Dtype and DtypeT are implemented in Verilog by instantiating a single generic
register module dtype that is parametised on its size and initial stored value (see 32).

16 How much do you rely on untrustworthy FPGA tools?

The ‘sign-off’ from logic to EDA tools occurs at the clocked synchronous RTL level
(see 15). A circuit CIR (see 12) is translated to Verilog using a pretty-printer written in
ML, and this Verilog is then fed to FPGA tools (e.g. Quartus Il). FPGA implementations
thus rely on the Verilog pretty-printer and the subsequent industrial tools. Higher
assurance could be gained by taking the proof producing synthesis to a lower level
(e.g. to an FPGA netlist language).

17 Can users control how specifications are synthesised?

The architecture of synthesised circuits reflects the input specification, so can be tuned
by adjusting the higher order logic source. For example, using let-expressions (see 30)
prevents logic blocks from being duplicated. There are also user-settable parameters:
for example, modules can be inserted directly as combinational logic (i.e. without an
enclosing handshake interface) if they are declared “combinational” (see 26, 28).

18 How efficient is proof producing synthesis?

Because synthesisers invokes a theorem prover it is relatively slow. Simple one-line
examples take a few seconds on a standard workstation, bigger examples take several
minutes.

19

20

21

22

How fast are synthesised circuits?

Some simple experiments comparing synthesised and hand coded circuits suggest that
performance is not too bad, but we do not have solid evidence. However, the user has
some control over the amount of computation per clock cycle via a facility to declare
functions to be inlined as combinational logic, rather that via a handshake (see 28). We
think the approach will support the creation of optimised implementations (necessary
for crypto applications), but so far the emphasis has been on proof of concept.

How large are synthesised circuits?

Some of the bigger examples we have synthesised did not at first fit onto the FPGAs
we are using. Whole program compaction (see 28) and use of let (see 30) solved the
problem for these examples, but we still worry that the circuits are too big.

How does the hardware compiler work?

The operation of the compiler can be decomposed into four phases.

1. Translate Vay ... xz,. f(z1,...,2,) = e to an equivalent equation f = &, where
the expression, £ is built from combinators Seq (compute in sequence), Par (com-
pute in parallel), Ite (if-then-else) and Rec (recursion).

2. Replace the combinators Seq, Par, lte and Rec with corresponding circuit con-
structors SEQ, PAR, ITE and REC to create a circuit term and a theorem that
this implements DEV f.

3. Replace circuit constructors with cycle-level implementations and prove a theorem
that the resulting design implements DEV f.

4. Introduce a clock and perform temporal projection [10] from cycle level to a clocked
RTL circuit and prove a theorem that the resulting RTL circuit implements DEV f.

What are the combinators Seq, Par, Ite and Rec?

Seq, Par, Ite and Rec are used to build the combinatory expression £ that is generated
when translating Va1 ... 2. f(z1,...,2,) = eto f = &. They are defined by:

Seq f1 f2 =Az. f2(f1 @)
Par fl fQ = /\I (.fl Z, fQ I)
Ite f1 fo fs = Ax. if f1 = then fo z else f3 x

Rec f1 fo fs = Ax. if f1 = then fo x else Rec f1 fo f3 (f3 .%')

For example:
F Factlter(n,acc) =
if n =0 then (n,acc) else Factlter(n — 1,nxacc)
is translated to:

F Factlter =
Rec (Seq (Par (A(n,acc). n) (A(n,acc). 0)) (=))
(Par (A(n,acc). n) (A(n,acc). acc))
(Par (Seq (Par (A(n,acc). n) (A(n,acc). 1)) (<))
(Seq (Par (A(n,acc). n) (A(n,acc). acc)) (x)))

23 What components do circuit constructors use?

The circuit constructors are built using the following components, which are represented
at an unclocked cycle level of abstraction.

AND (iny, ing, out) =Vt. out t = (in1 t A ing t)

OR (iny,ing, out) =Vt. out t = (in1 t V ing t)

NOT (inp, out) = Vt. out t = =(inp t)

MUX(sw, ing, ing, out) = Vt. out t = if sw t then iny t else ing t

COMB f (inp, out) =Vt. out t = f(inp t)

DEL (inp, out) = Vt. out(t+1) =inp t

DELT (inp, out) = (out 0=T) A Vi. out(t+1) =inp t

DFF(d, sel,q) = Vt. q(t+1) = if Posedge sel (t+1) then d(t+1) else ¢ t
POSEDGE((inp, out) = Jcp ¢1. DELT (inp, co) ANOT(cq, c1) A AND(eq, inp, out)

T T T T T T T T T

24 What are the circuit constructors SEQ, PAR, ITE and REC?

SEQ, PAR, ITE and REC are circuit constructors that implement Seq, Par, Ite and
Rec, respectively (see 22). They construct circuits that combine delay elements with
combinational logic. The delay elements are refined to clocked synchronous registers.

The circuit constructors are defined in higher order logic below. The components they
use are defined in 15 and schematic diagrams of the implementations are in 29.

Sequential composition of handshaking devices.

F SEQ f g (load, inp, done, out) =
decg ¢1 ¢o c3 data.
NOT(c2,¢3) A OR(es, load,co) N f(co,inp, c1, data) A
g(c1, data, co, out) A AND(cy, ca, done)

Parallel composition of handshaking devices.

F PAR f g (load, inp, done, out) =
deg ¢1 start doneq dones datai datas outy outs.
POSEDGE(load,cy) A DEL(done,c1) A AND(co,cq, start) A
f(start, inp, doneq, datar) N g(start,inp, dones, datas) A
DFF(datay, doney, out1) A DFF(datas, dones, outs) A
AND(doney, dones, done) A (out = At. (outy t, outs t))

Conditional composition of handshaking devices.

F ITE e f g (load, inp, done, out) =
deg c1 o start start’ done_e data_e q not_e data_f data_g sel

done_f done_g start_f start_g.
POSEDGE(load,cy) A DEL(done,c1) A AND(co, c1, start) A
e(start, inp, done_e, data_e) N POSEDGE(done_e, start’) A
DFF(data_e, done_e, sel) N DFF(inp, start,q) A
AND(start’, data_e, start_f) A NOT(data_e, not_e) A
AND(start’, not_e, start_g) A f(start_f,q, done_f, data_f) A
g(start_g, q, done_g, data_g) N MUX(sel, data_f, data-g, out) A
AND(done_e, done_f,ca) A AND(ca, done_g, done)

25

26

Tail recursion constructor.

F REC e f g (load, inp, done, out) =
ddone_g data_g start_e q done_e data_e start_f start_g inp_e done_f

co c1 Co c3 cq start sel start’ not_e.
POSEDGE(load, cy) A DEL(done,c1) A AND(co, c1, start) A
OR(start, sel, start_e¢) N POSEDGE(done_g, sel) A
MUX(sel, data_g, inp, inp_e) N DFF(inp_e, start_e,q) A
e(start_e, inp_e, done_e, data_e) N POSEDGE(done_e, start’) A
AND(start’, data_e, start_f) A NOT(data_e, not_e) A
AND(not_e, start’, start_g) A f(start_f,q, done_f, out) A
g(start_g, q, done_g, data_g) N DEL(done_g, c3) A
AND(done_g, c3, ca) A AND(done_f, done_e, c2) A AND(cg, ca, done)

How are combinational circuits represented?

A function f can be packaged as a handshaking device with constructor ATM:
F ATM f (load, inp, done, out) =
Jeg ¢1. POSEDGE(load, ¢o) ANOT (co, done)A
COMB f (inp,c1) A DEL(cq, out)
This creates a simple handshake interface that computes f and satisfies the refinement
theorem: - Vf. ATM f = DEV f.

Formulas of the form COMB g (inp,out) are compiled into circuits built only using
components in user-supplied library of predefined circuits. The default library currently
includes Boolean functions (e.g. A, V and —), multiplexers and simple operations on
n-bit words (e.g. versions of 4+, — and <, various shifts etc.). A special purpose proof
rule uses a recursive algorithm to synthesise combinational circuits. For example:
F COMB (A(m,n). (m <n, m+1)) (inp1<>inpz, out;<>outy) =
Jug. COMB (<) (inp1<>inps,out;) A CONSTANT 1 vy A
COMB (+) (inp1<>vg,outs)

where <> is bus concatenation, CONSTANT 1 vg drives vg high continuously, and
COMB < and COMB + are assumed given components (if they were not given, then
they could be implemented explicitly, but one has to stop somewhere).

How is an explosion of internal handshakes avoided?

When processing Seq f1 fa (see 27), the compiler checks to see whether f1 or fo are
compositions of combinational functions and if so introduces PRECEDE or FOLLOW
instead of SEQ), using the theorems:

(P = DEV f;) = (PRECEDE f; P = DEV (Seq f1 f2))

F (P = DEV f;) = (FOLLOW P f;, = DEV (Seq f1 f2))
where PRECEDE f d processes inputs with f before sending them to d and FOLLOW d f
processes outputs of d with f. The definitions are:

PRECEDE f d (load,inp, done,out) = Jv. COMB f (inp,v) A d(load,v,done, out)
FOLLOW d f (load,inp,done,out) = Fv. d(load,inp,done,v) A COMB f (v,out)

SEQ d; ds introduces a handshake between the executions of d; and ds, but PRECEDE f d
and FOLLOW d f just ‘wire’ f before or after d without introducing a handshake.

27 How are the circuit constructors introduced?

28

The following theorems enable the compiler to compositionally deduce theorems of
the form = Imp = DEV f, where Imp is a formula constructed using the circuit
constructors. The long arrow symbol = denotes implication lifted to functions:

f =>g = Vload inp done out. f(load, inp, done, out) = g(load, inp, done, out).

- (P = DEV fi) A (P, = DEV fy)
= (SEQ P, P, = DEV (Seq f1 f2))
F (P, = DEV f1) A (P, => DEV f2)
= (PAR P, P, = DEV (Par fi f2))

) A

[(Pl — DEVfl) A (PQ = DEV f5
= (lTE P PP = DEV (Ite fl f2 fg))

F TOtal(f17f27f3)
= (Pl = DEV fl) AN (Pg = DEV fg) A (P3 = DEV f3)
= (REC P, P, P = DEV (Rec fl fg fg))

(Pg — DEV fg)

The predicate Total is defined so that Total(f1, f2, f3) ensures termination.

If £ is an expression built using Seq, Par, Ite and Rec, then by instantiating the predicate
variables P;, P, and Pj, these theorems enable a logic formula F to be built from circuit
constructors SEQ, PAR, ITE and REC such that H F = DEV £. We have + f =&
(see 21, phase 1), hence H F = DEV f. This is the basic idea, but see also 26, 28.

What optimisation does the compiler perform?

There are currently two main optimisations used in synthesis: reducing handshakes
between implementations of functions (see 26) and whole program compaction.

The normal synthesis of Seq f1 f2 (see 22) is to SEQ dy da (see 24), where the circuit
combinator SEQ puts a handshake between the device d; implementing f; and the
device do implementing fs. Users may declare f; to be ‘combinational’ and then a
combinational logic block ¢; implementing f; is synthesised and put in series before d.
Similarly f5 can be declared combinational and then combinational logic ¢ will be put in
series after dy. Only components that can be realised using known combinational logic
blocks can be declared combinational. Using this mechanism, all the computation from
the arguments of a function to its recursive call can be synthesised as combinational
logic, so there is just a single handshake to manage the iteration.

This optimisation is restricted to the scope of a single function. However, before applying
this method, we can inline the function calls to produce a system defined by a single
function (the function 'main’). The whole program compaction eliminates unnecessary
handshake circuits that could have been generated to implement the function calls.

In practise these techniques can generate long logic paths (i.e. slow clocks), so some
pipelining via internal handshakes can be appropriate.

29 What do the circuit constructor implementations look like?

load inp ZOTd
% | POSEDGE || DEL |
s Co C1
Co mp in;
| f] |
laad mp ‘ 7
c1 data
| POSEDGE | Comb f | g | datar|dones
out done done out outs done outs
(a) POSEDGE (b) ATM f (c) SEQ f ¢ (d) PAR f g
load lo‘ad done —
| [POSEDGE |[DEL] [POSEDGE | '
[rosebce] el co & el [T T
!) startl MUX
start mp

np_e
start_e P

done done

(e)IFefyg (fyRECe f g

30 How do let-expressions work?

A let-expression has the form let v = e; in e; where v is a “varstruct” (variable
structure) which is either a single variable or, recursively, a non-empty tuple of varstructs
(e.g. (x,(m,n),y)).

If e; is combinational, then a let-expression is synthesised into a circuit consisting of
ey driving wires corresponding to v that are inputs to the circuit corresponding to es.

If e1 is not combinational, the let-expression is compiled using:

F Vfi fa. Az. letv = f1zin fo (z,v)) = Seq (Par (Az. z) f1) f2

For example, suppose H and J are defined by:

Hx = x+lw
J x let y=Hxiny+y+y

where 1w is the 32-bit word denoting 1 and + is 32-bit addition.
If His not declared combinational, then J compiles to:
|- InfRise clk ==>

(3v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 vil vi12 vi13 v14 v15 v16 v17 vi18 vi19 v20 v21
v22 v23 v24 v25 v26 v27.

DtypeT (clk,load,v10) A NOT (v10,v9) A AND (v9,load,v8) A Dtype (clk,done,v7) A

AND (v8,v7,v6) A DtypeT (clk,v6,vi3) A NOT (vi3,v1i2) A AND (vi2,v6,vil) A
NOT (vi1,v5) A Dtype (clk,inp,v3) A DtypeT (clk,v6,v1i7) A NOT (vi7,vi6) A
AND (v16,v6,v15) A NOT (vi5,v4) A CONSTANT 1w v18 A ADD32 (inp,vi8,vi4) A
Dtype (clk,v14,v2) A DtypeT (clk,v5,v21) A NOT (v21,v20) A AND (v20,v5,v19) A

MUX (v19,v3,v22,v1) A Dtype (clk,v1,v22) A DtypeT (clk,v4,v25) A NOT (v25,v24) A
AND (v24,v4,v23) A MUX (v23,v2,v26,v0) A Dtype (clk,v0,v26) A AND (v5,v4,done) A

ADD32 (v0,v0,v27) A ADD32 (v27,v0,out)) ==>
DEV J (load at clk,inp at clk,done at clk,out at clk)

but if H is declared to be combinational, then J compiles to:
|- InfRise clk ==>
(3v0 v1 v2 v3 v4 v5 v6.
DtypeT (clk,load,v3) A NOT (v3,v2) A AND (v2,load,vi) A NOT (vl,done) A
CONSTANT 1w v5 A ADD32 (inp,v5,v4) A ADD32 (v4,v4,v6) A ADD32 (v6,v4,v0) A
Dtype (clk,vO,out)) ==>
DEV J (load at clk,inp at clk,done at clk,out at clk)

31 What is a simple example?

A simple example is iterative accumulator-style multiplication on 32-bit words:

Mult32Iter(m,n,acc) =
if m = Ow then (Ow, n, acc) else Mult32Iter(m-1w, n, n+acc)

where Ow, 1w are 32-bit numbers and +, — are 32-bit operations.

This specification compiles to:

|- InfRise clk ==>

(3v0 v1 v2 v3 v4 vb v6 v7 v8 v9 v10 vil vi2 v13 vi4 v15 v16 v17 vi8 v19 v20 v21 v22 v23
v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39 v40 v41l v42 v43 vi4d
v45 v46 v47 v48 v49 vb0 vb1 vb2 vb3 vb4 vb5 vb6 vb7.
DtypeT (clk,load,v21) A NOT (v21,v20) A AND (v20,load,vi9) A Dtype (clk,done,v1i8) A
AND (v19,v18,v17) A OR (v17,v16,v11) A DtypeT (clk,v15,v23) A NOT (v23,v22) A
AND (v22,v15,v16) A MUX (v16,v14,inpl,v3) A MUX (v16,v13,inp2,v2) A
MUX (v16,v12,inp3,v1) A DtypeT (clk,v11,v26) A NOT (v26,v25) A AND (v25,vi1,v24) A
MUX (v24,v3,v27,v10) A Dtype (clk,v10,v27) A DtypeT (clk,vii,v30) A NOT (v30,v29) A
AND (v29,v11,v28) A MUX (v28,v2,v31,v9) A Dtype (clk,v9,v31) A DtypeT (clk,vil,v34) A
NOT (v34,v33) A AND (v33,vi1,v32) A MUX (v32,v1,v35,v8) A Dtype (clk,v8,v35) A
DtypeT (clk,v11,v39) A NOT (v39,v38) A AND (v38,vi1,v37) A NOT (v37,v7) A
CONSTANT Ow v40 A EQ32 (v3,v40,v36) A Dtype (clk,v36,v6) A DtypeT (clk,v7,v44) A
NOT (v44,v43) A AND (v43,v7,v42) A AND (v42,v6,v5) A NOT (v6,v41) A AND (v41,v42,v4) A
DtypeT (clk,v5,v48) A NOT (v48,v47) A AND (v47,v5,v46) A NOT (v46,v0) A
CONSTANT Ow v45 A Dtype (clk,v45,outl) A Dtype (clk,v9,out2) A Dtype (clk,v8,out3) A
DtypeT (clk,v4,v63) A NOT (v63,v62) A AND (v52,v4,v61) A NOT (v51,vi5) A
CONSTANT 1w v64 A SUB32 (v10,v54,v50) A ADD32 (v9,v8,v49) A Dtype (clk,v50,v1i4) A
Dtype (clk,v9,v13) A Dtype (clk,v49,v12) A Dtype (clk,vi5,v56) A AND (v15,v66,v55) A
AND (vO,v7,v57) A AND (v57,v55,done)) ==>

DEV Mult32Iter (load at clk, (inpl<>inp2<>inp3) at clk, done at clk, (outl<>out2<>out3) at clk)

See 12 and 15 for explanations and 32 for the Verilog that is extracted from this circuit.

10

32 What is the generated Verilog like?

The iterative accumulator-style multiplication device (see 31) generates the following Verilog.

module dtype (clk,d,q);
parameter size = 31; parameter value = 1;
input clk; input [size:0] d; output [size:0] q; reg [size:0] q = value;

always Q@(posedge clk) q <= d;
endmodule

module Mult32Iter (clk,load,inpl,inp2,inp3,done,outl,out2,out3);
input clk,load; input [31:0] inpl; input [31:0] inp2; input [31:0] inp3;
output done; output [31:0] outl; output [31:0] out2; output [31:0] out3;
wire clk,done; wire [0:0] vO; wire [31:0] vi1; wire [31:0] v2; wire [31:0] v3; wire [0:0] v4;
wire [0:0] v5; wire [0:0] v6; wire [0:0] v7; wire [31:0] v8; wire [31:0] v9; wire [31:0] v10;
wire [0:0] vi11l; wire [31:0] v12; wire [31:0] v13; wire [31:0] vi14; wire [0:0] v15;
wire [0:0] v16; wire [0:0] v17; wire [0:0] v18; wire [0:0] v19; wire [0:0] v20; wire [0:0] v21;
wire [0:0] v22; wire [0:0] v23; wire [0:0] v24; wire [0:0] v25; wire [0:0] v26; wire [31:0] v27;
wire [0:0] v28; wire [0:0] v29; wire [0:0] v30; wire [31:0] v31; wire [0:0] v32; wire [0:0] v33;
wire [0:0] v34; wire [31:0] v35; wire [0:0] v36; wire [0:0] v37; wire [0:0] v38; wire [0:0] v39;
wire [31:0] v40; wire [0:0] v41l; wire [0:0] v42; wire [0:0] v43; wire [0:0] v44; wire [31:0] v45;
wire [0:0] v46; wire [0:0] v47; wire [0:0] v48; wire [31:0] v49; wire [31:0] v50; wire [0:0] v51;
wire [0:0] v52; wire [0:0] v53; wire [31:0] v54; wire [0:0] v55; wire [0:0] v56; wire [0:0] v57;

dtype dtype_O (clk,load,v21); defparam dtype_0.size = 0;
assign v20 = 7 v21;

assign v19 = v20 && load;

dtype dtype_1 (clk,done,v18); defparam dtype_1.size = 0;
assign v17 = v19 && vi8;

assign vil = v17 || v16;

dtype dtype_2 (clk,v15,v23); defparam dtype_2.size = 0;
assign v22 = 7 v23;

assign v16 = v22 && vi5;

assign v3 = v16 ? vi4 : inpl;

assign v2 = v16 ? v13 : inp2;

assign vl = v16 ? v12 : inp3;

dtype dtype_3 (clk,v11,v26); defparam dtype_3.size = 0;
assign v25 ~ v26;

assign v24 v25 && vii;

assign v10 = v24 ? v3 : v27;

dtype dtype_4 (clk,v10,v27); defparam dtype_4.size
dtype dtype_5 (clk,v11,v30); defparam dtype_5.size
assign v29 = ~ v30;

assign v28 = v29 && viil;

assign v9 = v28 7 v2 : v31;

dtype dtype_6 (clk,v9,v31); defparam dtype_6.size
dtype dtype_7 (clk,v11,v34); defparam dtype_7.size
assign v33 = 7 v34;

assign v32 = v33 && viil;

assign v8 = v32 7 vl : v35;

dtype dtype_8 (clk,v8,v35); defparam dtype_8.size
dtype dtype_9 (clk,v11,v39); defparam dtype_9.size
assign v38 = ~ v39;

assign v37 = v38 && vil;

assign v7 = 7 v37;

assign v40 = 0;

assign v36 = v3 == v40;

dtype dtype_10 (clk,v36,v6); defparam dtype_10.size
dtype dtype_11 (clk,v7,v44); defparam dtype_11.size
assign v43 = ~ v44;

assign v42 = v43 && Vv7;

assign vb = v42 && v6;

assign v4l = ~ v6;

assign v4 = v4l && v42;

dtype dtype_12 (clk,v5,v48); defparam dtype_12.size = 0;
assign v47 = ~ v48;

assign v46 = v47 && v5;

assign v0 = ~ v46;

assign v45 = 0;

dtype dtype_13 (clk,v45,outl); defparam dtype_13.size
dtype dtype_14 (clk,v9,out2); defparam dtype_14.size
dtype dtype_15 (clk,v8,out3); defparam dtype_15.size
dtype dtype_16 (clk,v4,v563); defparam dtype_16.size
assign vb2 = ~ vb3;

assign vbl = vb2 && v4;

assign v15 = ~ vb1;

assign vb4 H
assign v50 = v10 - vb4;

assign v49 = v9 + v8;

dtype dtype_17 (clk,v50,v14); defparam dtype_17.size
dtype dtype_18 (clk,v9,v13); defparam dtype_18.size
dtype dtype_19 (clk,v49,v12); defparam dtype_19.size
dtype dtype_20 (clk,v15,v56); defparam dtype_20.size
assign vb5 = v15 && v56;

assign vb7 = v0 && v7;

assign done = vb57 && vb5;

[}
o O

31;
31;
31;
0;

31;
31;
31;
03

endmodule

11

33

34

To conserve space, all comments and many line breaks have been removed from the
preceding Verilog. Each Verilog statement is printed with a comment showing the
HOL source to aid visual checking (e.g. for Common Criteria EAL7 certification eval-
uators [4, 5.9]). We are still tinkering with the Verilog: for example, experiments
show that Quartus Il configures Altera FPGAs to initialise faster with registers as in-
stances of a separate module (dtype above) than with inlined behavioral statements
always Q@(posedge clk) q <= d, where q is initialised with declaration reg q = 1.

What simulation tools have you used?

We currently use Icarus Verilog (http://www.icarus.com) for simulation and then
view waveforms with GTKWave (http://home.nc.rr.com/gtkwave). These tools
are both public domain. If we simulate the Mult32Iter example (see 31) with inputs
(5,7,0), then the resulting waveform is:

YRS FYNSS £ S) S

Main.done [
Main.inp1[31:0] |0 [s
Main.inp2[31:0] [0 [7
Main.inp3[31:0] [0 [o

Main.load ‘

Main.out1[31:0] [0

Main.out2([31:0] [0 [7

Main.out3[31:01 [0 [7 [14 [21 [28 [35

load is asserted at time 15 and done is T then, but done immediately drops to F in
response to load being asserted. At the same time as load is asserted the values 5, 7
and 0 are put on lines inpl, inp2 and inp3, respectively. At time 135 done rises to
T again, and by then the values on out1, out2 and out3 are 0, 7 and 35, respectively,
thus Mult32Iter(5,7,0) = (0,7,35), which is correct.

What is a bigger example?

An example drawn from cryptography is the TEA block cipher [17]. The encryption
algorithm is described by the following HOL definitions (all variables are 32-bit words):
TEAEncrypt (keys,txt) = FST(Rounds (32, (txt,keys,0)))
Rounds (n,s) = if n=0 then s else Rounds(n-1, Round s)
Round ((y,z), (k0,k1,k2,k3),s) =
let s’ = s + DELTA in
let t = y + ShiftXor(z,s’,k0,k1)
in
((t, z + ShiftXor(t,s’,k2,k3)), (k0,k1,k2,k3), s’)
ShiftXor (x,s,k0,k1) = ((x << 4) + k0) # (x + s8) # ((x >> 5) + k1)

DELTA = 0x9e3779b9%w

There is a corresponding TEADecrypt function (omitted). In HOL-4 we can prove
functional correctness:

|- Vplaintext keys. TEADecrypt(keys,TEAEncrypt(keys,plaintext)) = plaintext

12

The compiler generates the following netlist for TEAEncrypt and also one for TEADecrypt:

|- InfRise clk ==>

(3v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 vil vi2 vi3 v14 v15 v16 v17 vi8

v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35

v36 v37 v38 v39 v40 v4l v42 v43 v44 v45 v46 v47 v48 v49 vb0 vb1l vb2

v563 vb4 vb5 v56 v57 v58 vb9 v60 v61 v62 v63 v64 v65 v66 v67 v68 v69

v70 v71 v72 v73 v74 v75 v76 v77 v78 v79 v80 v81 v82 v83 v84 v85 v86

v87 v88 v89 v90 v91 v92 v93 v94 v95 v96 v97 v98 v99 v100 vi01 v102

v103 v104 v105 v106 v107 v108 v109 v110 vi11l v112 v113 v114 v115 v116

v117 v118 v119 v120 vi121 v122 v123 v124 v125 v126 v127 v128 v129 v130

v131 v132 v133 v134 v135 v136 v137 v138 v139 v140 v141 v142 v143 vi44

v145 v146 v147 v148 v149 v150 v151 v152 v153 v154 v155 v156 v157 v158

v159 v160 v161 v162 v163 v164 v165 v166 v167 v168 v169 v1i70 v1i71 v172

v173 v174 v175 v176 v177 v178 v179 v180 v181 v182 v183 v184 v185 v186

v187 v188 v189 v190 v191 v192 v193 v194 v195 v196 v197 v198 v199 v200

v201 v202 v203 v204 v205 v206 v207 v208 v209 v210 v211 v212 v213 v214

v215 v216 v217 v218 v219 v220 v221 v222 v223 v224 v225 v226 v227 v228

v229 v230 v231 v232 v233 v234 v235 v236 v237 v238 v239 v240 v241 v242

v243 v244 v245 v246 v247 v248 v249 v250 v251 v252 v253 v254 v255 v256

v257 v258 v259 v260 v261 v262 v263 v264 v265 v266 v267 v268 v269 v270

v271 v272 v273 v274 v275 v276 v277 v278 v279 v280 v281 v282 v283 v284

v285 v286 v287 v288 v289 v290 v291 v292 v293 v294 v295 v296 v297 v298

v299 v300 v301 v302 v303 v304 v305 v306 v307 v308 v309 v310 v311 v312

v313 v314 v315 v316 v317 v318 v319 v320 v321 v322 v323 v324 v325 v326

v327 v328 v329 v330 v331 v332 v333 v334 v335 v336 v337 v338 v339 v340

v341 v342 v343 v344 v345 v346 v347 v348 v349 v350 v351 v352 v353 v354.
CONSTANT 32w v6 A CONSTANT Ow v5 A DtypeT (clk,load,v43) A
NOT (v43,v42) A AND (v42,load,v41) A Dtype (clk,done,v40) A
AND (v41,v40,v39) A OR (v39,v38,v28) A DtypeT (clk,v37,v45) A
NOT (v45,v44) A AND (v44,v37,v38) A MUX (v38,v36,v6,vi5) A
MUX (v38,v35,inp2,vi4) A MUX (v38,v34,inp3,vi3) A MUX (v38,v33,inpll,vi2) A
MUX (v38,v32,inp12,v11) A MUX (v38,v31,inp13,v10) A MUX (v38,v30,inpl4,v9) A
MUX (v38,v29,v5,v8) A DtypeT (clk,v28,v48) A NOT (v48,v47) A
AND (v47,v28,v46) A MUX (v46,v15,v49,v27) A Dtype (clk,v27,v49) A
DtypeT (clk,v28,v52) A NOT (v62,v51) A AND (v61,v28,v50) A
MUX (v60,v14,v53,v26) A Dtype (clk,v26,v53) A DtypeT (clk,v28,v56) A
NOT (v56,v55) A AND (v55,v28,v54) A MUX (v54,v13,v57,v25) A
Dtype (clk,v25,v57) A DtypeT (clk,v28,v60) A NOT (v60,v69) A
AND (v59,v28,v58) A MUX (v58,v12,v61,v24) A Dtype (clk,v24,v61) A
DtypeT (clk,v28,v64) A NOT (v64,v63) A AND (v63,v28,v62) A
MUX (v62,v11,v65,v23) A Dtype (clk,v23,v65) A DtypeT (clk,v28,v68) A
NOT (v68,v67) A AND (v67,v28,v66) A MUX (v66,v10,v69,v22) A
Dtype (clk,v22,v69) A DtypeT (clk,v28,v72) A NOT (v72,v71) A
AND (v71,v28,v70) A MUX (v70,v9,v73,v21) A Dtype (clk,v21,v73) A
DtypeT (clk,v28,v76) A NOT (v76,v75) A AND (v75,v28,v74) A
MUX (v74,v8,v77,v20) A Dtype (clk,v20,v77) A DtypeT (clk,v28,v81) A
NOT (v81,v80) A AND (v80,v28,v79) A NOT (v79,vi9) A CONSTANT Ow v82 A
EQ32 (v15,v82,v78) A Dtype (clk,v78,v18) A DtypeT (clk,v19,v86) A
NOT (v86,v85) A AND (v85,v19,v84) A AND (v84,v18,v17) A NOT (v18,v83) A
AND (v83,v84,v16) A DtypeT (clk,v17,v89) A NOT (v89,v88) A AND (v88,v17,v87) A
NOT (v87,v7) A Dtype (clk,v26,outl) A Dtype (clk,v25,out2) A Dtype (clk,v24,v4) A
Dtype (clk,v23,v3) A Dtype (clk,v22,v2) A Dtype (clk,v21,vi) A
Dtype (clk,v20,v0) A DtypeT (clk,v16,vi04) A NOT (v104,v103) A
AND (v103,v16,v102) A Dtype (clk,v37,v101) A AND (v102,v101,v100) A
DtypeT (clk,v100,v108) A NOT (v108,v107) A AND (v107,v100,v106) A
NOT (v106,v99) A CONSTANT 1w v109 A SUB32 (v27,v109,v105) A
Dtype (clk,v105,v97) A DtypeT (clk,v100,vi23) A NOT (v123,v122) A
AND (v122,v100,v121) A Dtype (clk,v98,v120) A AND (v121,v120,v119) A
DtypeT (clk,v119,v132) A NOT (v132,v131) A AND (v131,v119,v130) A
Dtype (clk,v118,v129) A AND (v130,v129,v128) A DtypeT (clk,v128,v143) A
NOT (v143,v142) A AND (v142,v128,v141) A Dtype (clk,v127,v140) A
AND (v141,v140,v139) A DtypeT (clk,v139,v146) A NOT (v146,v1i45) A
AND (v145,v139,v144) A NOT (v144,v138) A Dtype (clk,v26,v136) A
CONSTANT 2654435769w v148 A ADD32 (v20,v148,v147) A DtypeT (clk,v139,vi52) A
NOT (v152,v151) A AND (v151,v139,v150) A NOT (v150,v137) A
CONSTANT 4 v158 A LSL32 (v25,v158,v157) A ADD32 (v157,v24,v156) A
ADD32 (v25,v147,v155) A XOR32 (v156,v155,vi54) A CONSTANT 5 v160 A
ASR32 (v25,v160,v159) A ADD32 (v159,v23,v153) A XOR32 (v154,v153,v149) A
Dtype (clk,v149,v135) A DtypeT (clk,v138,v163) A NOT (v163,v162) A
AND (v162,v138,v161) A MUX (v161,v136,v164,v134) A Dtype (clk,v134,vi64) A
DtypeT (clk,v137,v167) A NOT (v167,vi66) A AND (v166,v137,v165) A
MUX (v165,v135,v168,v133) A Dtype (clk,v133,v168) A AND (v138,v137,v127) A
ADD32 (v134,v133,v125) A DtypeT (clk,v128,v179) A NOT (v179,vi78) A
AND (v178,v128,v177) A Dtype (clk,v126,v176) A AND (v177,v176,v175) A
DtypeT (clk,v175,v182) A NOT (v182,vi81) A AND (v181,v175,v180) A
NOT (v180,v174) A Dtype (clk,v25,vi72) A NOT (v187,v190) A
OR (v190,v175,v189) A DtypeT (clk,v189,v201) A NOT (v201,v200) A

13

AND (v200,v189,v199) A Dtype (clk,v188,v198) A AND (v199,v198,v197) A
DtypeT (clk,v197,v212) A NOT (v212,v211) A AND (v211,v197,v210) A
Dtype (clk,v196,v209) A AND (v210,v209,v208) A DtypeT (clk,v208,v215) A
NOT (v215,v214) A AND (v214,v208,v213) A NOT (v213,v207) A
Dtype (clk,v26,v205) A CONSTANT 2654435769w v217 A ADD32 (v20,v217,v216) A
DtypeT (clk,v208,v221) A NOT (v221,v220) A AND (v220,v208,v219) A
NOT (v219,v206) A CONSTANT 4 v227 A LSL32 (v25,v227,v226) A
ADD32 (v226,v24,v225) A ADD32 (v25,v216,v224) A XOR32 (v225,v224,v223) A
CONSTANT 5 v229 A ASR32 (v25,v229,v228) A ADD32 (v228,v23,v222) A
XO0R32 (v223,v222,v218) A Dtype (clk,v218,v204) A DtypeT (clk,v207,v232) A
NOT (v232,v231) A AND (v231,v207,v230) A MUX (v230,v205,v233,v203) A
Dtype (clk,v203,v233) A DtypeT (clk,v206,v236) A NOT (v236,v235) A
AND (v235,v206,v234) A MUX (v234,v204,v237,v202) A Dtype (clk,v202,v237) A
AND (v207,v206,v196) A ADD32 (v203,v202,v194) A DtypeT (clk,v197,v241) A
NOT (v241,v240) A AND (v240,v197,v239) A NOT (v239,v195) A
CONSTANT 2654435769w v242 A ADD32 (v20,v242,v238) A Dtype (clk,v238,v193) A
Dtype (clk,v22,v192) A Dtype (clk,v21,vi91) A DtypeT (clk,v196,v245) A
NOT (v245,v244) A AND (v244,v196,v243) A MUX (v243,v194,v246,v186) A
Dtype (clk,v186,v246) A DtypeT (clk,v195,v249) A NOT (v249,v248) A
AND (v248,v195,v247) A MUX (v247,v193,v250,v185) A Dtype (clk,v185,v250) A
DtypeT (clk,v195,v253) A NOT (v253,v252) A AND (v252,v195,v251) A
MUX (v251,v192,v254,v184) A Dtype (clk,v184,v254) A DtypeT (clk,v195,v257) A
NOT (v257,v256) A AND (v256,v195,v255) A MUX (v255,v191,v258,v183) A
Dtype (clk,v183,v258) A AND (v196,v195,v188) A DtypeT (clk,v188,v262) A
NOT (v262,v261) A AND (v261,v188,v260) A NOT (v260,v187) A
CONSTANT 4 v268 A LSL32 (v186,v268,v267) A ADD32 (v267,v184,v266) A
ADD32 (v186,v185,v265) A XOR32 (v266,v265,v264) A CONSTANT 5 v270 A
ASR32 (v186,v270,v269) A ADD32 (v269,v183,v263) A XOR32 (v264,v263,v259) A
Dtype (clk,v259,v171) A AND (v188,v187,v173) A DtypeT (clk,v174,v273) A
NOT (v273,v272) A AND (v272,v174,v271) A MUX (v271,v172,v274,v170) A
Dtype (clk,v170,v274) A DtypeT (clk,v173,v277) A NOT (v277,v276) A
AND (v276,v173,v275) A MUX (v275,v171,v278,v169) A Dtype (clk,v169,v278) A
AND (v174,v173,v126) A ADD32 (v170,v169,v124) A DtypeT (clk,v127,v281) A
NOT (v281,v280) A AND (v280,v127,v279) A MUX (v279,v125,v282,v116) A
Dtype (clk,v116,v282) A DtypeT (clk,v126,v285) A NOT (v285,v284) A
AND (v284,v126,v283) A MUX (v283,v124,v286,v115) A Dtype (clk,v115,v286) A
AND (v127,v126,v118) A DtypeT (clk,v119,v290) A NOT (v290,v289) A
AND (v289,v119,v288) A NOT (v288,v117) A CONSTANT 2654435769w v291 A
ADD32 (v20,v291,v287) A Dtype (clk,v24,v114) A Dtype (clk,v23,v113) A
Dtype (clk,v22,vi12) A Dtype (clk,v21,vi11) A Dtype (clk,v287,v110) A
DtypeT (clk,v118,v294) A NOT (v294,v293) A AND (v293,v118,v292) A
MUX (v292,v116,v295,v96) A Dtype (clk,v96,v295) A DtypeT (clk,v118,v298) A
NOT (v298,v297) A AND (v297,v118,v296) A MUX (v296,v115,v299,v95) A
Dtype (clk,v95,v299) A DtypeT (clk,v117,v302) A NOT (v302,v301) A
AND (v301,v117,v300) A MUX (v300,v114,v303,v94) A Dtype (clk,v94,v303) A
DtypeT (clk,v117,v306) A NOT (v306,v305) A AND (v305,v117,v304) A
MUX (v304,v113,v307,v93) A Dtype (clk,v93,v307) A DtypeT (clk,v117,v310) A
NOT (v310,v309) A AND (v309,v117,v308) A MUX (v308,v112,v311,v92) A
Dtype (clk,v92,v311) A DtypeT (clk,v117,v314) A NOT (v314,v313) A
AND (v313,v117,v312) A MUX (v312,v111,v315,v91) A Dtype (clk,v91,v315) A
DtypeT (clk,v117,v318) A NOT (v318,v317) A AND (v317,v117,v316) A
MUX (v316,v110,v319,v90) A Dtype (clk,v90,v319) A AND (v118,v117,v98) A
DtypeT (clk,v99,v322) A NOT (v322,v321) A AND (v321,v99,v320) A
MUX (v320,v97,v323,v36) A Dtype (clk,v36,v323) A DtypeT (clk,v98,v326) A
NOT (v326,v325) A AND (v325,v98,v324) A MUX (v324,v96,v327,v35) A
Dtype (clk,v35,v327) A DtypeT (clk,v98,v330) A NOT (v330,v329) A
AND (v329,v98,v328) A MUX (v328,v95,v331,v34) A Dtype (clk,v34,v331) A
DtypeT (clk,v98,v334) A NOT (v334,v333) A AND (v333,v98,v332) A
MUX (v332,v94,v335,v33) A Dtype (clk,v33,v335) A DtypeT (clk,v98,v338) A
NOT (v338,v337) A AND (v337,v98,v336) A MUX (v336,v93,v339,v32) A
Dtype (clk,v32,v339) A DtypeT (clk,v98,v342) A NOT (v342,v341) A
AND (v341,v98,v340) A MUX (v340,v92,v343,v31) A Dtype (clk,v31,v343) A
DtypeT (clk,v98,v346) A NOT (v346,v345) A AND (v345,v98,v344) A
MUX (v344,v91,v347,v30) A Dtype (clk,v30,v347) A DtypeT (clk,v98,v350) A
NOT (v350,v349) A AND (v349,v98,v348) A MUX (v348,v90,v351,v29) A
Dtype (clk,v29,v351) A AND (v99,v98,v37) A Dtype (clk,v37,v353) A
AND (v37,v353,v352) A AND (v7,v19,v354) A AND (v354,v352,done))

==>

DEV TEAEncrypt
(load at clk,
((inp11 <> inp12 <> inpl3 <> inpi4) <> inp2 <> inp3) at clk,
done at clk, (outl <> out2) at clk) : thm

14

35

36

37

How are HOL designs downloaded to an FPGA?

There are four steps to download our circuits to an FPGA.

PC pC
ho
F InfRise clk => (Cir => Dev f) Quartus 11| [VART.v] | HOL
(g) Proof producing synthesis. (h) Verilog compilation.
FPGA PC FPGA PC
Quartus 1l Cir | " [UART \ D UART HOL
Parallel Serial
Cable Cable
(i) Download the object file. (J) Run the circuit.

Proof Producing Synthesis. The initial step is concerned with the production of the
theorem: F InfRise clk = (Cir = Dev f).

Verilog compilation. A pretty-printer translates the circuit Cir into the Verilog file
Cir.v. No formal verification is applied to this translation as Verilog has no formal
semantics. The primitive components — operators like AND, OR, MUX — are
mapped to Verilog modules. The file UART.v contains a Verilog implementation
of an interface that connects a serial cable to the circuit (this interface has not
being formally verified). Both files are sent to Quartus Il for compilation.

Download the object file. Quartus Il translates the Verilog files into the object file
device.sof, which is downloaded to the FPGA via the parallel cable.

Run the circuit. HOL is connected to the serial cable by a UART program previously
coded in C. The circuit is triggered interactively via an automatically generated
function defined in HOL which communicates with the UART program.

All the four steps can be carried out from the HOL system provided that the pretty-
printer is able to map every primitive combinational operator to Verilog.

What are the plans for the future?

We hope to use the compiler to generate various kinds of cryptographic hardware. We
expect more aggressive compaction may be needed to fit bigger examples (e.g. AES)
onto the FPGAs we are using.

Eventually, it is hoped to provide wrapper circuitry to enable synthesised HOL functions
to be invoked from ARM code as hardware co-processors. The FPGA board we are
using (Altera Excalibur) has an ARM processor on it.

Is the compiler freely available?

The compiler is distributed with the HOL-4 system (http://hol.sourceforge.net/)
in the directory examples/dev.

15

38

What related work is there?

There is considerable previous work on using functional programming to specify and
design hardware. Examples include ©FP (Sheeran [15]), Ruby (Jones & Sheeran [9, 8]),
Hydra (O'Donnell [12]), Lava (Bjesse et al [1]), DDD (Johnson & Bose [7]), LAMBDA
(Finn et al [5]), Gropius (Blumenrdhr [2]), DUAL-EVAL (Brock & Hunt [3]) and SAFL
(Mycroft & Sharp [11]).

Our work was initially inspired by SAFL, a hardware compiler for a language based on
a first-order subset of ML, though we use a subset of higher order logic rather than
a separate special-purpose design specification language. The general way we employ
serial/parallel combinators for compositional translation has similarities to compilers
for Handel (Page [13]) and SAFL. However, many details differ in our approach: in
particular, our compiler is proof-producing.

The paper “Formal Synthesis in Circuit Design — A Classification and Survey” [14]
provides an excellent overview. In terms of the classification in that paper, our approach
is formal synthesis by transformational derivation in a general purpose calculus.

The way we realise HOL functions by handshaking devices is reminiscent of some self-
timed design methods [6, 16], though we produce clocked synchronous circuits.

Acknowledgements

David Greaves gave us advice on the hardware implementation of handshake protocols and also
helped us understand the results of simulating circuits produced by our compiler. Simon Moore and
Robert Mullins lent us an Excalibur FPGA board on which we are running compiled hardware at
Cambridge, and they helped us with the Quartus Il design software that we are using to drive the
board. Ken Larsen used his dynlib library to write an ML version of our original C interface to the
serial port (this is used to communicate with the Excalibur board, see 35).

References

[1]

2]

[3]

[4]

[5]

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware design in
Haskell. ACM SIGPLAN Notices, 34(1):174-184, January 1999.

Christian Blumenrdhr. A formal approach to specify and synthesize at the system level. In G/
Workshop Modellierung und Verifikation von Systemen, pages 11-20, Braunschweig, Germany,
1999. Shaker-Verlag.

Bishop Brock and Warren A. Hunt Jr. The DUAL-EVAL hardware description language and its
use in the formal specification and verification of the fm9001 microprocessor. Formal Methods
in System Design, 11(1):71-104, 1997.

Common Criteria for Information Security Evaluation, 2004. Part 3: Security Assurance Re-
quirements, http://niap.nist.gov/cc-scheme/cc docs/cc_v22_part3.pdf.

Simon Finn, Michael P. Fourman, Michael Francis, and Robert Harris. Formal system design—
interactive synthesis based on computer-assisted formal reasoning. In Luc Claesen, editor,
IMEC-IFIP International Workshop on Applied Formal Methods for Correct VLSI Design, Vol-
ume 1, pages 97-110, Houthalen, Belgium, November 1989. Elsevier Science Publishers, B.V.
North-Holland, Amsterdam.

16

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Scott Hauck. Asynchronous design methodologies: An overview. Proceedings of the IEEE,
83(1):69-93, 1995.

Steven D. Johnson and Bhaskar Bose. DDD — A System for Mechanized Digital Design Deriva-
tion. Technical Report TR323, Indiana University, [IU Computer Science Department, 1990.

G. Jones and M. Sheeran. Circuit design in Ruby. In J. Staunstrup, editor, Formal Methods
for VLSI Design, pages 13-70. Elsevier Science Publications, North-Holland, 1990.

G. Jones and M. Sheeran. Relations and refinement in circuit design. In C. Morgan, editor,
BCS FACS Workshop on Refinement. Springer-Verlag, 1991.

Thomas F. Melham. Higher Order Logic and Hardware Verification. Cambridge University
Press, Cambridge, England, 1993. Cambridge Tracts in Theoretical Computer Science 31.

Alan Mycroft and Richard Sharp. Hardware synthesis using SAFL and application to processor
design. In Proceedings of the 11th Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods (CHARME'01), Livingston, Scotland, September 2001.
Springer Verlag. Invited Talk. LNCS Vol. 2144.

John O'Donnell. Overview of Hydra: A concurrent language for synchronous digital circuit
design. In Proceedings of the 16th International Parallel and Distributed Processing Symposium.
IEEE Computer Society Press, 2002.

I. Page. Constructing hardware-software systems from a single description. Journal of VLSI Sig-
nal Processing, 12(1):87-107, 1996. citeseer.ist.psu.edu/page96constructing.html.

R. Kumar, C. Blumenroehr, D. Eisenbiegler, and D. Schmid. Formal synthesis in circuit design-A
classification and survey. In M. Srivas and A. Camilleri, editors, First international conference
on formal methods in computer-aided design, volume 1166, pages 294-299, Palo Alto, CA,
USA, 1996. Springer Verlag.

Mary Sheeran. pFP, A Language for VLSI Design. In Proceedings of the ACM Symposium on
LISP and Functional Programming, pages 104-112. ACM Press, Austin, Texas, 1984.

Kees van Berkel. Handshake circuits: an asynchronous architecture for VLS| programming.
Cambridge University Press, New York, NY, USA, 1993.

David Wheeler and Roger Needham. TEA, a tiny encryption algorithm. In Fast Software
Encryption: Second International Workshop, volume 1008 of LNCS, pages 363-366. Springer
Verlag, 1999.

17

Towards the Correct Design of Multiple Clock Domain Circuits

Ed Czeck, Ravi Nanavati and Joe Stoy
Bluespec Inc.
Waltham MA 02451, USA

Abstract

We present a set of guiding principles for the management of
multiple clocks domains in the design of a high-level hard-
ware description language. Our motivation of the require-
ments is based on typical design problems; the solutions are
based on common engineering practices and appropriate
language abstractions. We include examples, and conclude
with some comments based on a design experience.

1. Introduction

Hardware designs these days typically make use of sev-
eral clocks. This is partly to save power (by gating the
clock to a part of the circuit temporarily not in use, and
by ensuring that parts of the design are not run unneces-
sarily fast, both of which reduce the design’s “dynamic”
power consumption), and also to allow the design to com-
municate with parts of the external environment running
asynchronously. Moreover, designs are increasingly “sys-

tems on a chip” (“SoC”s): these bring together blocks (IPs) -

which come from various sources, and of which each is
likely to have its own clocking requirements. These differ-
ent requirements may arise simply because each block was
designed independently; but it might be because different
blocks are constrained by different standards (for example
for external buses, or audio or video I/0), each with its own
clocking regime.

Where signals cross clock domain boundaries, the nor-
mal design conventions of digital logic break down. Spe-
cial precautions must be taken to ensure that the signals

1. The aim should be to make the simplest situations triv-

ial, other simple situations easy, and all situations ex-
pressible in a sensible way.

. Thus in a design, or part of a design, with just one

clock domain, clock handling should be completely
implicit. Each instantiated module needs to be con-
nected to “the” clock, and having to say so explicitly
adds unnecessary clutter.

. Clock should be a datatype of the language (values of

which will include the oscillator, as well as an optional
gating signal); the type system should ensure that clock
oscillators are never confused with level-sampled sig-
nals.

. The system should keep track of which signals are

clocked by which clocks, and ensure that no signal
crosses a clock-domain boundary without the use of
appropriate synchronizing logic.

For efficiency’s sake, the system should be able to rec-
ognize when two clocks are driven by the same oscil-
lator (that is, they differ only in gating); this should be
exploited to simplify domain-crossing logic between
them.

6. Many groups of designers have their own preferred de-

signs for domain-crossing logic; the system should al-
low the automatic deployment of such designs when
appropriate (though also providing default designs for
use when these are not available).

get across correctly; and care must be taken that there are In the remainder of this paper we address, by way of
no accidental crossings which neglect such precautions. Aexample, how these principles are addressed in Bluespec
good hardware description language, particularly one which SystemVerilog.

claims to operate at a high level of abstraction, should have

features which make it natural for the designer to construct3. A Brief Introduction to BSV

circuits which correctly observe these constraints.

Bluespec SystemVerilog is a strongly typed, high-level be-
havioral hardware description language. As with Verilog,
designs are structured into modules. The internal behavior
of a module is specified hyles(instead of always-blocks),

A hardware description language, notation or system which have a guard and an action part. Modules communi-
which supports multiple-clock-domain designs should ide- cate with their environment by thmethodsof their inter-

ally have the following characteristics. faces, which may be invoked by rules in other modules. All

2 Principles

methods have “ready” conditions, which become “implicit” signers are encouraged to write or request others, to deal
conditions” of rules which invoke them—only if all the con- with special situations and requirements.
ditions, explicit and implicit, of a rule are satisfied may the ~ Thus, for example, i€1 andc2are clocks, the definition
rule be executed. Taken together, the rules of a design have cjoek ¢ = (0 2 c1 : ¢2)
the semantics of a state-transition system (or term-rewriting
system), and execute atomically. The Bluespec compiler is valid, butonly ifbis a value known at “compile-time”.
generates logic which schedules as many rules as possibld he dynamic selection between two clocks must be done by
in each clock cycle; but the overall effect of each cycle is @ special multiplexing primitive such askClockMux
exactly the same as if the rules executed one at a time in A BSV clock value contains two signals: an oscillator
some order—this greatly simplifies the analysis of the de- and a gating signal. If the gating signal is high, the clock
sign’s correctness. (It avoids many race conditions, replac-is assumed to be ungated, and clearly the oscillator should
ing them with compile time warnings that two rules could be running. The tool remains agnostic about whether the re-
not be scheduled simultaneously because of a resource conerse is true. Stopping the oscillator when the clock is gated
flict; it also means that proofs of correctness can analysesaves the power being dissipated by charging and discharg-
each rule separately, without worrying about their interac- ing the capacitance in the clock-tree itself, but it may re-
tion.) quire complicated interaction with the clock-handling tools
A S||ght|y fuller description is provided inthe AppendD(, downstream in the SyntheSiS flow. The tool W|”, hOWeVer,

the reader is also referred to the Language Reference Guid€nsure that when the gating signal is low, all state transitions
[BLU06] for a Comp|ete account. in that C|OC|('S domain are |nh|b|ted

New clock values arise in several ways. They are often
. passed in as arguments to the design, having been gener-
4. Clocks—The SlmpleSt Case ated by external electronics. They may also be generated in

The simplest case is one where a design uses just one clockl.P cores (for which the BSV designer will provide a wrap-

In line with the principles outlined above, in this case the per) to hanpile external interfaces (such asa SPI4) which
clock is not mentioned in the BSV text at all. Each module provide their own clocks. Bluespec provides facilities, de-

in the RTL generated by the Bluespec compiler will have scribed n more detail b?.lc.)w’ for adding a gating condition
RO to an existing clock. Facilities are also available for generat-
a clock port, calledCLK; this is connected to any module

instantiated within that module. At the lowest level of the ing clocks with periods specified numerically; but these are

generated module hierarchy, this clock is connected to thenot suitable for synthesis, and are provided for simulation
flip-flops, registers and other primitive state elements. purposes only.

The advantage of an implicit clock is that designer is
spared the tedium of mentioning the clock and its explicit 6. Gated Clocks
use in the generation of the flops, registers, and other prim-a simple way to save power is to switch off the clock for
itives. The use of standard primitives based on commonparts of the design when they are temporarily not in use.
engineering practice (in this case positive-edge-triggeredpjifferently gated versions of the same clock allow a simpli-
flops) further reinforces that abstraction for the common fieq treatment, since when both are running they are exactly
case, while the complete Bluespec SystemVerilog languagen phase. BSV provides special facilities to handle this case

allows for a full range of flexibility. efficiently.
If a clock B is a gated version of clocld, we say that
5. The Type “Clock” A is anancestorof B. We therefore know that if a clock is

running, then so are all of its ancestors. Clocks which are
In designs with more complicated clocking arrangements, driven by the same oscillator, and differ merely in gating,
clocks are mentioned explicitly. A clock is a value of type are said to be in theame family Both these relationships
Clock It enjoys most of the general “first-class citizenship” may be tested by functions available to the design: thus a
properties of other BSV values: it may be passed as an ardibrary package can automatically arrange to exploit the ex-
gument, or returned as the result, of a function; it may be tra simplicity of this situation without the user’s having to
a field of an interface. A clock is not allowed, however, to be aware of it.
pass through combinational logic generated by the Bluespec Each method of a primitive module is explicitly associ-
tool, because there are likely to be special requirements forated with a particular clock, often (but not necessarily) the
the handling of clocks (affecting such things as phase anddefault clock of the primitive module’s instantiation. These
skew). All dynamic manipulation of clocks must be done methods are invoked by other methods (of other modules,
using primitives written in Verilog: the Bluespec library written in BSV) or by rules: the tool rigorously insists that
provides a repertoire of general-purpose primitives, and de-all methods invoked by any one method or rule are in the

same family, thereby avoiding the risk of paths accidentally 7.1. The Hardware Approach

crossing between different clock domains. The invoking gynchronizers are provided to handle the following cases
_metho_d or rule vv_|II b_e clocked py a clocl_< in that same farp- of moving data from a source clock domain to a destination
ily, which is running if and only if all the invoked methods’ ¢ock domain. Like the single clock primitives, the provided

clocks are running—if necessary, a new clock in the samegynchronizers are based on common engineering practice,
family will be produced which satisfies this condition. The \yhile the full language allows other designs which users
guard of any method which effects a state transition (that is, may desire.

in general, any method which has BNABLEsignal) will
include the gating condition of the method’s clock—so such (1) bits: a bit change to the source will cause a bit change
a method will not beREADY unless its clock is running, in the destination;
and neither will any rule which invokes that method. (A
method which merely returns a value, without executing a
state transition, remairREADYwhen its clock is switched
off, returning the value set by the latest transition, provided |f the crossing is from a fast clock domain to a slower one,
that it was alreadfREADYwhen the switch-off occurred.) there is a danger in these two cases that information may be
All this mechanism obviates the need for any spe- lost: a bit change might not be noticed if it persists only for
cial clock-domain-crossing logic between same-family do- a short time, and a sequence of fast pulses might result in
mains: everything is handled by the normal implicit- fewer pulses on the destination side. The next case guards

(2) pulses: a pulse on the source will cause a pulse in the
destination.

condition mechanism of BSV methods. against this:

(3) the same as (2), but a second source pulse is not ac-
7 Clock-domain Crossing Between cepted until a pulse has been delivered at the destina-

' - tion.
Families .

(4) words: a word delivered to the source eventually ap-
When the clocks concerned are from different families pears at the destination; a subsequent send cannot oc-
(which in general implies that they have different oscilla- cur until the first has been delivered.

tors), domain crossing is more complicated and requires
special logic. It is always handled by primitives written in
Verilog. The tool will ensure that no domain crossing oc-
curs without the use of such a primitive and that the logic

used connects the domains appropriately. As with any de- In these last two cases, even though an event is guaran-

sign language, the tools can only ensure that a given mOOIUIe[eed to have happened on the destination side, there is no

Is used p_roperly, and cannot verlfy.that th? module was Cor'guarantee that it has been noticed. The final case avoids this
rectly written or correctly selected in the first place. problem

Bluespec provides general-purpose primitives in its li-
brary, but users are encouraged to provide (or to request)(5) A FIFO: data items enqueued on the source side will
others to cover special cases. For example, each clocking arrive at the destination side, and remain there until
edge of the slower clock might coincide with a clocking they are dequeued.
edge of the faster one; or the clocks might have the same | f th hroni il be sh in th i
frequency but a different phase; or very nearly the same xarlnp eshp h fe”se synchronizers will be shown in the ex
frequencies; or very different frequencies. The general- amples which Toflow.
purpose primitives will handle all these cases, but perhaps . _
not as efficiently as special-purpose ones. 7.2. The Linguistic Approach

The facilities provided by Bluespec fall into two groups, Many BSV designs make extensive usé&gftandPutinter-
following two different approaches. The “hardware ap- faces, provided in the library. An interface of typet#(a)
proach” provides modules with source and destination IS the simplest interface into which one can put values of
ports, which the designer instantiates and connects up exfyPea; similarly, an interface of typ&et#(a) is the simplest
plicitly; the low-level primitives are provided only in this interface from which values of type can be retrieved just
form. The “linguistic approach” provides modules which ©once (that is, they are not merely read but also removed).
transform an interface into one of the same type, but dif- A Getinterface and a correspondiiiyt interface may be
ferently clocked: this allows a smoother treatment in the connected by the modufekConnectiorfthe name is over-
BSV notation. These two approaches are described and jljoaded, and may be used to connect other compatible inter-
lustrated below. faces too).

Note that this word synchronizer is not simply a parallel
composition of a number of bit synchronizers: precautions
must be taken to ensure that all the bits of a word appear at
the destination at the same time.

These are just two of the kinds of interface which may be ¢ synthesize *)

converted in this second approachifdfis such an interface,
clocked by any clock, the instantiation

mkConverter#(n) the_conv(ifc, new_ifc);

will produce an interface of the same type, but clocked by
the clock of the current environment. There is no need to
specify the clock of the originafc, as themkConverter
module can determine that for itself. The paramatspec-
ifies the depth of the conversion FIFO to be used between
the two domains.

Since the types of the original and the new interfaces are
the same, and many of the details are implicit, this approach
lends itself to generalisation: tiiekConvertename is also
overloaded, and can be used to implement clock-domain
conversion on a whole class of interfaces.

8. Examples

Figure 1 shows the use ofikSlowClockand also the use

of gated clocks, using the “hardware approach”. The mod-
ule mkGenPairproduces a pair oGet interfaces (perhaps
sources of pseudo-random numbers, produced by splitting
the output from a random-number generator). The other
two sub-modules are user modules, and they also each have
a pair of interfaces. One of these i$at interface, and is
connected to one of tH@etinterfaces; the other is exported

as part of the main module’s interface.

The required domain crossing is achieved by the prim-
itive mkSyncFIFQwhich is supplied with the two clocks
concerned (and the source-side reset signal). The designer
provides two rulesenqueudf anddequeudf, which sup-
ply and retrieve data items: note that these two rules are in
different clock domains, which of course the tool automati-
cally verifies.

Figure 2 shows the last few lines of the same mod-
ule, but using the “linguistic approach” instead. The in-
terfaceuserlifcis of the same type as the original interface
userl.fst but it is clocked by the default clock of the sur-
rounding module which, since it is in the same familycas
is suitable for direct connection gens.snd

Our final example is in Figure 3, which showskCon-
verter for a Put interface. This demonstrates how the lin-
guistic approach is implemented using the hardware ap-
proach primitives. It is suitable for any typeof data, with
the proviso that it can be represented in bits (this is neces-
sary because values of this type are to be stored in a FIFO).

The internal domain-crossing primitive imkSyncFI-
FOFromCGC a variant ofmkSyncFIFOwhich assumes that

module mkRandTop(UInt#(4) ratio,

Bool g1, Bool g2, Extlfc ifc);
/I Declare the gated clocks and their
/I associated resets:
/I c1 will be a slower clock:
Clock cl <- mkSlowClock(ratio, g1);
Reset r1l <- mkSyncResetFromCC(3, cl);
/I c2 is a gated version of currentClock:
Clock c2 <- mkGatedClock(g2);
Reset r2 <- mkSyncResetFromCC(3, c2);
/I c0 is similar, on when either of the
/I consumers is on:
Clock c0 <- mkGatedClock gateO(gl || g2);
Reset r0 <- mkSyncResetFromCC(3, c0);

/I Instantiate the sub-modules,
/I appropriately clocked:
GenPair gens <-

mkGenPair(clocked_by c0, reset_by r0);
Userlfc userl <-

mkUserl(clocked_by c1, reset_by rl);
Userlfc user2 <-

mkUser2(clocked_by c2, reset_by r2);

/I Since c2 and cO are in the same
/I family, there is no need for explicit
/I conversion:

mkConnection(gens.fst, user2.fst);

/I ¢l is unrelated to cO, however, so
/I explicit conversion is necessary.
/I This version uses the "hardware approach”.

SyncFIFOIfc#(Bit#(6)) ff <-
mkSyncFIFO(4, c0,r0, cl);

/I We provide two rules to enqueue values
/I from the generator onto ff, and to
/I dequeue them to send to userl:
rule enqueue_ff;

let x <- gens.snd.get;

ff.enq(x);
endrule
rule dequeue_ff;

userl.fst.put(ff.first);

ff.deq;
endrule

/I The external interfaces:
interface ifcA = userl.snd;
interface ifcB = user2.snd;

/I Also export the clock for ifcA:
interface cA = cl;

endmodule

Figure 1: Use of various clocks

/I This one uses the "linguistic approach".

/I There’s no need to specify an explicit

/I clock for the converter, since the current
/I clock is in the same family as cl.

let userlifc <- mkConverter(4, userl.fst);

mkConnection(gens.snd, userlifc);

interface ifcA =
interface ifcB = user2.snd;
/I Export the clock for ifcA:
interface cA = cl;

userl.snd;

the source side is to be clocked by the current clock of endmodule

the surrounding modulemkConverteimplements theut
method of the interface it is providing, which enqueues
items on the synchronizing FIFO; the interd@queueaule

Figure 2: The linguistic approach (last few lines)

module mkConverter#(Integer d)
(Put#(a) used_put, Put#(a) provided_put) 10 ACknOWledgmentS
provisos (Bits#(a,sa));

SyncFIFOIfc#(a) ff <- The authors thank their colleagues at Bluespec Inc., and

mkSyncFIFOFromCC(d, clockOf(used_put)); members of the Computation Structures Group at MIT’s
le dequeue: Compqter ScienC(_a and Art_ificiall InteI_Iigence Laboratory,
used_put.put(ff.first); for advice and assistance with this project.
ff.deq;
endrule
method Action put(x); References
ff.enq(x);
endmethod
endmodule [ATRO5] Atrenta, Inc.1team:Verify 2005.

)) [BLUO6] Bluespec, Inc. Bluespec Language Ref-
Figure 3: Implementation ahkConverter erence Guide 2006. Please consult
http://www.bluespec.com.

)) [CADO4] Cadence Design Systems, Indncisive HDL
dequeues items and supplies them toghemethod of the Analysis (HAL) 2004.

“used” interface argument.
[ESTO6] Esterel Technologies, InEsterel Studio Version
5.3 2006.

[SYNO6] Synopsys, Inc. Leda Programmable RTL

) Checker2006.
9 Conclusion '

[SYSO05] IEEE Standard for SystemVerilog—Unified
Hardware Design, Specification , and Verifica-

The handling of multiple clocks domains in a design can tion Language, November 2005. IEEE Std 1800-
be a rich source of error. The original way of preventing 2005, http://standards.ieee.org.
such errors was visual inspection of the source code, cou-
pled with testing; it was not very reliable, particularly since [UTMO1] Intel Corporation.USB 2.0 Transceiver Macro-
many of the runtime errors would only manifest themselves cell Interface (UTMI) Specificatiqr2001.
rarely, as they depended on particular phase-relationships o]
of the participating clocks. Various companies have pro- [VER04] Verisity Design, IncUSB eVC2004.
vided “lint-like” tools [ATR05, CADO4, SYNO6], which
pro-actively analyse the source code for likely errors and .
other infelicities. A better solution is for the source code A. Bluespec SystemVerllog
language to include a set of features which allows design-
ers “to get it right first time”. As far as we know, apart
from ourselves only the recently-announced version of Es-
terel [ESTO6] attempts to do this.

Previous attempts at behavioral synthesis have tried to op-
timize along three axes simultaneously: choice of micro-
architecture, allocation of resources, and scheduling of con-
current operations. Doing all this together, however, is com-
The features described here have been used in a substarputationally “hard”. Besides, designers are good at evalu-
tial design (a UTMI block [UTMO01] for USB2.0). This ating micro-architectures, and like to be in control of re-
handled USB transmission both at 480MHz and 12MHz; source allocation; handling concurrency, however, often be-
most of the logic was clocked at 1220MHz (dealing with 4- comes excessively complex. The Bluespec tool takes over
bit nibbles in parallel). Thus many clocks were involved, this task, while leaving the designer in control of the other
and some careful design was required, some of it iterative,two. The result is a flexible tool, with which it is easy to do
to perform the required domain crossing within the latency architectural experiments, while producing RTL of compa-
constraints of the specification (as tested by the Verisity rable quality to hand-crafted Verilog.
Specman test suite [VERO4]). It was found that the sup- The HDL for the Bluespec tool is BluespecSystem\Ver-
port provided by the language avoided all accidental mis- ilog (BSV). This is a variant of SystemVerilog [SYS05]
takes, allowing iterative improvements to be implemented in which behavior is specified, not by the usual “always-
and tested quickly. It is estimated that the design was com-blocks”, but by “design assertions” also known as “rules”.
pleted (and passed the test suite) in a time at least twice a#\ rule consists of a condition and an action part. Only if the
fast as if it had been written in standard Verilog. condition is satisfied may the state transition specified by

the action part be executed. Each action executes in a sin-
gle clock cycle. The tool generates scheduling logic which
executes as many rules as possible in each cycle, but with
the restriction that the overall effect must be the same as if
they had each executed one at a time in some order. This re-
striction avoids many race conditions, replacing them with
a compile-time warning that two rules could not be simulta-
neously scheduled because of a resource conflict, which is
much easier to deal with.
As in standard SystemVerilog, a BSV design is parti- Package Factorial;
tioned into modules. The designer can control which mod- typedef Uint#(32) Nat;
ules are synthesized by the Bluespec tool into separate RTL .. -
modules (output in low-level Verilog2001) and which are method Action start(Nat x);
inlined. The action part of a rule effects a state transition by _ method Nat result(;
invoking amethodof some other module’s interface. Even o
individual registers are actually instantiations of primitive SOZ{jTéhenszfact)(Nuan o
modules (written in standard Verilog)—references to them Reg#(Nat) n <- mkReg(0);
are “desugared” into invocations of theiead and _write Reg#(Nay a <- mkRegU;
methods. rule calc (n!=0);
The interfaces of these other modules might be available a<car .
in the module’s environment; or the modules might be in- endrule
stantiated within the module being defined; or they mightbe . ., . start(x) if (n==0);
supplied as arguments to that module. These appear in the a <=1
list corresponding to the port list of a standard Verilog mod- " =
ule; the input/output distinction is inappropriate for these
arguments (as each interface, and indeed each of its meth- Method result it (1==0);
ods, contain both input and output signals), so instead we endmethod -
distinguish between the interfaces “used” by a module, and®"medule
the interface (by convention the last one in the list) it “pro- (* synthesize *
vides” by defining each of its methods. mOd“I:}m?:TfeaittFi?t(ETIg;g;;
For modules which are separately synthesized, the meth- Reg#(Uint#(2)) state <- mkReg(0);
ods of a module’s interface become collections of ports in "¢ Starttest (state==0)
the RTL version. As well as the data ports (input or out- fact.start(7);
put), each method in general has an ouREADY signal, endrule
asserting that the method may validly be invoked; methods rule show_result (state==1);
which effect state transitions also have an inEMABLE ;ﬁ;,;y:(oid factresultQ):
signal, asserting that the transition is to be executed. The endrule
tool enforces the protocol that tBEENABLEsignal may not rle end_test (state==2):
be asserted unless the correspondREADY signal is also $finish(0);
asserted. At the language level, the method’s validity con- endrﬁl’;‘éﬁf
ditions are implicitly added to the conditions of any rule
(or other method) which invokes it; similarly, its action be-
comes part of the rule’s (or other method’s) one-cycle ac-

tion. Figure 4: A simple BSV package

endpackage

A.1. Example—Factorial

Figure 4 shows a simple complete BSV design, containing
a modulemkFactfor computing the factorial function, and
a testbench modulmkTestFacfor exercising it.

The interface provided bynkFactis of type NumFn it
consists of a methodtart to initiate a calculation, and a
methodresultto retrieve the result. The actual computation
is performed by the rulealc, which can run only when #

module mkFact(CLK,
RST_N,
start_x,
EN_start,
RDY_start,
result,
RDY_result);

input CLK;

input RST_N;

/I action method start
input [31 : 0] start_x;
input EN_start;
output RDY_start;

/I value method result
output [31 : O] result;
output RDY_result;

Figure 5: Part of the RTL for the simple example

0. The two methods, on the other hand, are valid only if
n = 0: the result cannot be read while a computation is still
in progress, nor can a new computation be started.

The first few lines of the RTL synthesized framkFact
are shown in Figure 5. As well as the methods’ signals,
already described, clock and reset ports will be noticed.

In the testbenchinkTestFagtthe mkFactmodule is in-
stantiated, giving an interface calléakct Its start method
is invoked by thestart testrule of mkTestFact Thus the
complete condition obtarttestis state==0 & n==
the first test comes from the rule’s condition and the second
from the method’s. Similarly, the action part is

state <= 1;
a <= 1,
n <= x;

amalgamating the actions of the rule and the method; all the
assignments are executed simultaneously.

Notice that in this very simple design, all the rules are
mutually exclusive—at most one is enabled at any one time.
There is therefore no possibility of conflict, and the schedul-
ing is trivial: each rule may fire whenever it is enabled. In
general, however, many non-conflicting rules may fire dur-
ing any one cycle.

Two-level Languages and Circuit Design and Synthesis

Walid Taha*

Rice University, Houston, TX, USA
taha@cs.rice.edu

The next two decades are anticipated to move digital circuit design from the million
transistor level to the billion and trillion transistor levels. In addition to challenges that
this goal poses at the physical level, fundamental computational complexity barriers
suggest that common design and verification tasks can also become a bottleneck. Ex-
amples include placement and routing, as well as a host of design rule checking (DRC)
techniques. Increase in circuit size will increase both the time needed for DRC (from
days to weeks or months) as well as the overall effort needed to produce a design likely
to pass DRC. At the same time, increasing variability in implementation technologies
and their characteristics will fuel the need for better methods to manage families of
related circuits.

New programming language techniques recently developed to improve software de-
sign can provide a powerful tool for managing and checking families of related circuits.
Program generation techniques in general, and two-level languages in particular, have
been proposed and found to be useful for managing families of related software prod-
ucts. Static type checking in general, and dependent type systems in particular, have
been proposed and found to be useful for early checking of a wide range of properties
that would otherwise be expensive to check in generated programs. Our goal is to show
that adapting these techniques to the specific needs of circuit design can lead to funda-
mental changes in the design process. In particular, it would allow the capture of signifi-
cant design experience in the form of executable and statically checkable specifications
for families of related circuits. Such specifications would be highly parameterized with
respect to the specifics of the manufacturing technology, as well as the specifics of the
problem being solved and the rest of the design. Comprehensive, manifest interfaces
would allow fast, compositional checking of compatibility with the rest of the design.

Over the last two years we have made concrete advances toward this ambitious,
long-term goal. Our first study showed that a standard type system for two-level lan-
guages can be systematically integrated with a type system for a resource-bounded
language [5]. The result of such an integration, called a resource-aware programming
(RAP) language [4], provides an expressive (non-resource bounded) language for writ-
ing generators of resource bounded computations. At the same time, a static type sys-
tem is provided that checks that a generator can only generate well-formed, resource-
bounded computations. Depending on the specific resources considered, such resource-
bounded programs can be embedded software systems or hardware circuits.

A case study focusing on FFT showed that annotated versions of the basic Cooley-
Tuckey recurrence can be executed as generators that produce high-quality circuits [2,

* Joint work with Stephan Ellner, Jennifer Gillenwater, Oleg Kiselyov, and Gregory Malecha.
Funded by the National Science Foundation, the Texas Advanced Technology Program, Na-
tional Instruments, and a grant from Rice University.

3]. In addition to confirming that this family of circuits can be specified by a generator
closely resembling the textbook form of a standard recurrence, the experiment lead
directly to two intriguing insights about FFT: First, unlike what the work on FFTW
suggests, only a small number of domain-specific optimizations is needed to generate
FFT circuits with the same arithmetic operation count as Split-radix or FFTW. Second,
producing circuits that have counts identical to either Split-radix or FFTW requires only
changing the definition of complex multiplication.

The RAP approach uses a purely functional language to describe hardware circuits,
and so should be viewed as a direct descendant of Sheeran’s family of hardware de-
scription languages. Focusing on two-level languages amounts to pursuing the insight
that circuits are a strict subset of the generation language. Focusing on statically typed
two-level languages reflects emphasis on performing the checking at the level of a fam-
ily of circuits rather than on individual circuits. It is useful to note that this approach
is complementary to model checking, which can perform more extensive, albeit more
computationally intensive, checking on individual circuits.

Our emphasis on static checking discourages the transformation of circuits after
they are generated. This contrasts with the transformational approach promoted by
other systems (such as reFLect). Instead of first generating and then transforming, our
approach focuses on incorporating domain-specific optimizations directly in the gen-
erator. This can have a two benefits. First, the designer can follow the methodology
of abstract interpretation, widely used for program analysis, as a method for building
optimizing generators that are correct by construction. The approach preserves the ex-
tensional nature of generated objects, and the soundness of equational reasoning prin-
ciples. Second, avoiding the generation of numerous intermediate circuits can greatly
improve the efficiency of the generation process.

Our recent and ongoing work focuses on the formal treatment of the connection be-
tween circuits and programs to allow the incorporation of various non-textual concepts
into standard formal accounts of two-level languages [1]. Over the last year, we worked
on building a prototype implementation to facilitate further work in this particular re-
search direction. The prototype, called Uccello (previously PreVIEW), implements the
translations between the graphical and textual representations used in our formal stud-
ies, in addition to implementing basic circuit layout algorithms.

References

1. Stephan Ellner. PreVIEW: An untyped graphical calculus for resource-aware programming.
Masters thesis, Rice University, 2004.

2. Oleg Kiselyov, Kedar Swadi, and Walid Taha. A methodology for generating verified combi-
natorial circuits. EMSOFT 04, Pisa, Italy, 2004.

3. Oleg Kiselyov and Walid Taha. Relating FFTW and split radix. ICESS "04, Hangzhou, China,
2004.

4. Walid Taha. Resource-aware programming. ICESS ’04, Hangzhou, China, 2004. Invited
Paper.

5. Walid Taha, Stephan Ellner, and Hongwei Xi. Generating Imperative, Heap-Bounded Pro-
grams in a Functional Setting. EMSOFT’03, Philadelphia, PA, October 2003.

The Semantics of Graphical Languages™*

Stephan Ellner and Walid Taha

Rice University, Houston, TX, USA
{besan, tahaj@cs.rice.edu

Abstract. Graphical notations are pervasive in circuit design, control systems,
and increasingly in mainstream programming environments. Yet many of the
foundational advances in programming language theory are taking place in the
context of textual notations. In order to map such advances to the graphical world,
and to take the concerns of the graphical world into account when working with
textual formalisms, there is a need for rigorous connections between textual and
graphical expressions of computation.

To this end, this paper presents a graphical calculus called Uccello. Our key
insight is that Ariola and Blom’s work on sharing in the cyclic lambda calculi
provides an excellent foundation for formalizing the semantics of graphical lan-
guages. As an example of what can be done with this foundation, we use it to
extend a graphical language with staging constructs.

1 Introduction

Visual programming languages are finding increasing popularity in a variety of do-
mains, and are often the preferred programming medium for experts in these domains.
Examples of such domains include circuit design and control system design, and exam-
ples of mainstream tools include a wide range of hardware CAD design environments,
data-flow languages like LabVIEW [10, 14], Simulink [20],
and Ptolemy [12], spreadsheet-based languages such as Microsoft Excel, or data mod-
eling languages such as UML. Compared to modern text-based languages, many visual
languages are limited in expressivity. For example, while they are often purely func-
tional, they generally do not support first-class functions. More broadly, the wealth of
abstraction mechanisms, reasoning principles, and type systems developed over the last
thirty years is currently available mainly for textual languages. Yet there is real need
for migrating many ideas and results developed in the textual setting to the graphical
setting.

Recognizing this need, we sought existing accounts of the semantics of graph-based
representations of programs, or of formal connections between graph-based represen-
tations and visual-representations. The visual programming research literature focuses
largely on languages that are accessible to novice programmers and domain-experts,
rather than general-purpose calculi. Examples include form-based [4] and

* Supported by NSF ITR-0113569 “Putting Multi-Stage Annotations to Work”, Texas ATP
003604-0032-2003 “Advanced Languages Techniques for Device Drivers”, and NSF SOD-
0439017 “Synthesizing Device Drivers”.

spreadsheet-based [2,9, 11] languages. Citrin et al. give a purely graphical descrip-
tion of an object-oriented language called VIPR [5] and a functional language called
VEX [6], but the mapping to and from textual representations is only treated infor-
mally. Erwig [8] presents a denotational semantics for VEX using inductive definitions
of graph representations to support pattern matching on graphs, but this style of se-
mantics does not preserve information about the syntax of graphs, as it maps syntax to
“meaning”.

Our key observation is that Ariola and Blom’s work on sharing the cyclic lambda
calculus [3] provide an excellent starting point. They establish a formal connection be-
tween textual and graph-based representation of programs. The two representations are
not one-to-one because of a subtle mismatch between textual and graphical representa-
tions in how they express sharing of values. Ariola and Blom overcome this problem by
defining a notion of equivalence for terms that represent the same graph, and establish
an isomorphism between graphs and equivalence classes of textual terms. In the graph
representation, sharing is modeled by having an edge from the output of one compo-
nent to the inputs of multiple different components. Especially if we are using visual
languages to describe circuits, this model of sharing is natural. For example, without
sharing, the butterfly circuit for computing the FFT would be exponentially larger [7,
Figure 32.5].

We do not know of a notion in textual syntax that corresponds exactly to the notion
of sharing provided by graphs. Local variable declarations almost work, but not quite:
they only correspond to local declarations that are used more than once. For example,
the following two C code fragments

int x = 4;
int y = 5; int y = 5;
print_int (X+y+y); print_int (4+y+y);

both correspond to the following LabVIEW graph:

!

While the first code fragment assigns a local variable name to the constant 4, the second
snippet uses the constant 4 directly. But there is no corresponding distinction in a graph.
Disallowing variable declarations that are used only once, or requiring all subterms to
be explicitly named are not options, because they would be unnatural restrictions for the
programmer. They are also problematic from the technical point of view. For example,
they are not preserved by standard reasoning principles such as substitution.

We postulate that Ariola and Blom’s treatment of the issue of sharing in both rep-
resentations is a necessary complication in any connection between a textual repre-
sentation of a programming language with the richness of the lambda calculus and a
graphical representation of the same language.

1.1 Contributions

To illustrate how the Ariola/Blom connection can be used to map new concepts in pro-
gramming languages to a graph-based setting, we extend their original calculus with
staging constructs typical in textual multi-stage languages [19]. The resulting calculus
is based on a one-to-one correspondence between visual programs and a variation of
the text-based lambda-calculus. We then use this formal connection to lift the seman-
tics of multi-stage languages to the graphical setting. We show that graph reductions
have corresponding reductions at the term level, and similarly, term reductions have
corresponding reductions at the graph level.

(a) LabVIEW [14] (b) Uccello (this paper) (c) Ariola and Blom [3]

Fig. 1. The syntax of Uccello as middle-ground between that of LabVIEW and lambda-graphs

1.2 Organization of this Paper

The rest of the paper is organized as follows. Section 2 explains how the syntax for
visual languages such as LabVIEW and Simulink can be modeled using a variation of
Ariola and Blom’s cyclic lambda-graphs. Section 3 introduces the syntax for a graphical
calculus called Uccello. Section 4 defines textual representations for Uccello and shows
that graphs and terms in a specific normal form are one-to-one. Section 5 describes a
reduction semantics for both terms and graphs, and Section 6 concludes. Proofs for the
results presented in this paper are available online [1]

2 LabVIEW and Lambda-Graphs

The practical motivation for the calculus studied in the rest of this paper is to extend
popular languages such as LabVIEW or Simulink with higher-order functional and stag-
ing features. The main abstraction mechanism in LabVIEW is to declare functions;

Figure 1 (a) displays the syntax for defining a function with two formal parameters in
LabVIEW. Uccello abstracts away from many of the details of LabVIEW and similar
languages. We reduce the complexity of the calculus by supporting only functions with
one argument and by making functions first-class values. We can then use nested lambda
abstractions to model functions with multiple parameters, as illustrated in Figure 1 (b).

Graph (c) illustrates Ariola and Blom’s lambda-graph syntax [3] for the same com-
putation. In this representation, lambda abstractions are drawn as boxes describing the
scope of the parameter bound by the abstraction. Edges represent subterm relationships
in the syntax tree, and parameter references are drawn as back-edges to a lambda ab-
straction. While the lambda-graph (c) may appear less closely related to (a) than the
Uccello graph (b), note that the graphs (b) and (c) are in fact dual graphs. That is, by
flipping the direction of edges in the lambda-graph (c) to represent data-flow instead of
subterm relationships, and by making connection points in the graph explicit in the form
of ports, we get the Uccello program (b). Based on this observation, we take Ariola and
Blom’s lambda-graphs as the starting point for our formal development.

3 Syntax of Uccello

The core language features of Uccello are function abstraction and function application
as known from the A-calculus, and the staging constructs Bracket “()”, Escape “~”, and
Run “!”. Brackets are a quotation mechanism delaying the evaluation of an expression,
while the Escape construct escapes the delaying effect of a Bracket (and so must occur
inside a Bracket). Run executes such a delayed computation. The semantics and type
theory for these constructs has been studied extensively in recent years [19]. Before
defining the syntax of Uccello formally, we give an informal description of its visual
syntax. Note that this paper focuses on abstract syntax for both terms and graphs, while
issues such as an intuitive concrete syntax and parsing are part of future work (see
Section 6).

3.1 Visual Syntax
A Uccello program is a graph built from the following components:

1. Nodes represent function abstraction, function application, the staging constructs
Brackets, Escape, and Run, and “black holes”. Black holes are a concept borrowed
from Ariola and Blom [3] and represent unresolvable cyclic dependencies that
can arise in textual languages with recursion. ! As shown in Figure 2, nodes are
drawn as boxes labeled 4,@ (),~, !, and e respectively. Each lambda node contains
a subgraph inside its box which represents the body of the function, and the node’s
box visually defines the scope of the parameter bound by the lambda abstraction.
Bracket and Escape boxes, drawn using dotted lines, also contain subgraphs. The

!'In functional languages, recursion is typically expressed using a letrec-construct. The textual
program letrec x=x in x introduces a cyclic dependency that cannot be simplified any further.
Ariola and Blom visualize such terms as black holes.

() .
> o
»bind returnl arg out return | returnl i @out @out

out
out out

Fig. 2. Uccello nodes

subgraph of a Bracket node represents code being generated for a future-stage com-
putation, while the subgraph of an Escape node represents a computation resulting
in a piece of code that will be integrated into a larger program at runtime.

. Free variables, displayed as variable names, represent name references that are not
bound inside a given Uccello graph.

. Ports mark the points in the graph which edges can connect. We distinguish be-
tween source ports (drawn as triangles) and target ports (drawn as rectangles). As
shown in Figure 2, a lambda node provides two source ports: out carries the value of
the lambda itself, since functions are first-class values in Uccello. When the func-
tion is applied to an argument, then bind carries the function’s parameter, and the
return port receives the result of evaluating the function body, represented by the
lambda node’s subgraph. Intuitively, the fun and arg ports of an application node
receive the function to be applied and its argument respectively, while out carries
the value resulting from the application. The out port of a Bracket node carries the
delayed computation represented by the node’s subgraph, and return receives the
value of that computation when it is executed in a later stage. Conversely, the out
port of an Escape node carries a computation that escapes the surrounding Brackets
delaying effect, and return receives the value of that computation.

. Edges connect nodes and are drawn as arrows:

p——1 x—d e x—

The source of any edge is either the source port of a node or a free variable x. The
target of any edge is the target port of some node. The only exception to this is
the root of the graph. Similar to the root of an abstract syntax tree, it marks the
entry-point for evaluating the graph. It is drawn as a dangling edge without a target
port, instead marked with a dot.

For convenience, the examples in this paper assume that Uccello is extended with

integers, booleans, binary integer operators, and conditionals.

Example 1 (Functional Constructs). Consider the following recursive definition of the
power function in OCaml. The function computes the number x" for two inputs x and

let rec power = fun x -> fun n ->
if iszero? n then 1
else x * (power x (n-1))

in power

In Uccello, this program is expressed as follows:

Closely following the textual definition, we visualize the power function as two nested
lambda nodes. Consequently, two cascaded application nodes are necessary for the
function call power x (n-1). Note that the recursive nature of the definition is rep-
resented visually by an edge from the out-port of the outer lambda node back into the
lambda box.

A iszero?

Fig. 3. Generating power functions in Uccello

Example 2 (Multi-stage Constructs). The power function can be staged by annotating
it as follows in MetaOCaml [13]:2

let rec power’ = fun x -> fun n ->
if iszero? n then .<1>.
else .<."x * ."(power’ x (n-1))>.

in power’

2 MetaOCaml adds staging constructs to OCaml. Dots are used to disambiguate the concrete
syntax: Brackets around an expression e are written as .<e>., an Escaped expression e is
written as .~ e, and ! e is written as . !e.

The same program is represented in Uccello as shown to the left of Figure 3. As in the
text-based program, in Uccello we only need to add a few staging “annotations” (in the
form of Bracket and Escape boxes) to the unstaged version of the power function.

Example 3 (Generating Graphs). In MetaOCaml, the staged power function can be
used to generate efficient specialized power functions by applying the staged version
only to its second input (the exponent). For instance, evaluating the term M:

.o.<fun x -> .7 (power’ .<x>. 3)>.

yields the non-recursive function fun x -> x*x*x*1. Similarly, evaluating the Uc-
cello graph in the middle of Figure 3 yields the specialized graph on the right side;
the graph in the middle triggers the specialization by providing the staged power func-
tion with its second input parameter. Note the simplicity of the generated graph. When
applying this paradigm to circuit generation, controlling the complexity of resulting
circuits can be essential, and staging constructs were specifically designed to give the
programmer more control over the structure of generated programs.

3.2 Formal Syntax

The following syntactic sets are used for defining Uccello graphs:

Nodes u,v,w € ¥
Free variables x,y €X
Source port types o € O ::=bind | out
Target port types i € 1 :=return|fun|arg|in
Source ports r,s €3S i=v.o|x
Targetports t €T :=v.i
Edges e €BE :=(s,1)

As a convention, we use regular capital letters to denote concrete sets. For example,
E C E stands for a concrete set of edges e. We write £ (V) to denote the power set of V.
A Uccello graph is then defined as a tuple g = (V, L, E, S, r) where V is a finite set
of nodes, L : V — {1, @,(),~,! , e} is a labeling function that associates each node
with a label, E is a finite set of edges, S : {v € V | L(v) € {4, (), ~}} = P(V) is a scoping
function that associates each lambda, Bracket, and Escape node with a subgraph, and r
is the root of the graph. When it is clear from the context, we refer to the components
V,L,E, S, and r of a graph g without making the binding g = (V, L, E, S, r) explicit.

3.3 Auxiliary Definitions

For any Uccello graph g = (V, L, E, S, r) we define the following auxiliary notions. The
set of incoming edges of a node v € V is defined as pred(v) = {(s, v.i) € E} for any edge
targets i. Given a set U C V, the set of top-level nodes in U that are not in the scope of
any other node in U is defined as foplevel(U) ={u e U |VYve U :u € S(v) = v = u}.
If v € V has a scope, then the contents of v are defined as contents(v) = S(v)\{v}.
For a given node v € V, if there exists a node u € V with v € toplevel(contents(u)),

then u is a surrounding scope of v. Well-formedness conditions described in the next
section will ensure that such a surrounding scope is unique when it exists. A path
v ~ win g is an acyclic path from v € V to w € V that only consists of edges in
{(s,t) € E| Yu : s # u.bind}. The negative condition excludes edges starting at a bind
port.

3.4 Well-Formed Graphs

Whereas context-free grammars are generally sufficient to describe well-formed terms
in textual programming languages, characterizing well-formed graphs (in particular
with respect to scoping) is more subtle. The well-formedness conditions for the func-
tional features of Uccello are taken directly from Ariola and Blom. Since Bracket and
Escape nodes also have scopes, these conditions extend naturally to the multi-stage fea-
tures of Uccello. Note however that the restrictions associated with Bracket and Escape
are simpler since unlike lambdas these are not binding constructs.

The set G of well-formed graphs is the set of graphs that satisfy the following
conditions:

1. Connectivity - Edges may connect ports belonging only to nodes in V with the
correct port types. Valid inports and outports for each node type are defined as
follows:

|L(v)| inports(v) | 0utports(v)|
A | {return} | {bind,out}
@ | {fun,arg} {out}

), ~| {return} {out}
! {in} {out}

° 1] {out}

We require that an edge (v.o, w.i) connecting nodes v and w is in E only if v,w € V
and o € outports(v) and i € inports(w). Similarly, an edge (x, w.i) originating from
a free variable x is in E only if w € V and i € inports(w).

We also restrict the in-degree of nodes: each target port (drawn as a rectangle) in
the graph must be the target of exactly one edge, while a source port (drawn as a
triangle) can be unused, used by one or shared by multiple edges. Thus we require
for any node v in the graph that pred(v) = {(s, v.i) | i € inports(v)}.

2. Scoping - Intuitively, source ports in Uccello correspond to bound names in textual
languages, and scopes are drawn as boxes. Let w, w;,w, € Vand v, v, v, € dom(S)
be distinct nodes. By convention, all nodes that have a scope must be in their own
scope (v € S(v)). The following three graph fragments illustrate three kinds of
scoping errors that can arise:

A A A

A name used outside the scope where it is bound corresponds to an edge from
a bind or an out port that leaves a scope. We prohibit the first case by requiring
that (v.bind,) € pred(w) only if w € S(v). For the second case, we require that
if w ¢ S(v) and w, € S(v) and (w.0ut,f) € pred(w;) then w, = v. Partially
overlapping scopes correspond to overlapping lambda, Bracket, or Escape boxes.
We disallow this by requiring that S(vi) N S(v2) = @ or S(vi) € S(») \ {v2} or
S(v2) €S\ {vil

3. Root Condition - The root r cannot be the port of a node nested in the scope of
another node. Therefore, the root must either be a free variable (r € X) or the
out port of a node w that is visible at the “top-level” of the graph (r = w.out and
w € toplevel(V)).

4 Graph-Term Connection

To develop the connection between Uccello graphs and their textual representations,
this section begins by defining a term language and a translation from graphs to terms.
Not all terms can be generated using this translation, but rather only terms in a specific
normal form. A backward-translation from terms to graphs is then defined, and it is
shown that a term in normal form represents all terms that map to the same graph.
Finally, sets of graphs and normal forms are shown to be in one-to-one correspondence.

4.1 From Graphs to Terms

Building on Ariola and Blom’s notion of cyclic lambda terms, we use staged cyclic
lambda terms to represent Uccello programs textually, and define them as follows:

Terms M e M ::= x| Ax.M | M M | letrec d* in M
|~MI[{M)|'M
Declarations deD :=x=M

Conventions: By assumption, all recursion variables x in letrec declarations are dis-
tinct, and the sets of bound and free variables are disjoint. We write d* for a (possibly
empty) sequence of letrec declarations d. Different permutations of the same sequence
of declarations d* are identified. Therefore, we often use the set notation D instead of
d*. Given two sequences of declarations D; and D,, we write D, D, for the concate-
nation of the two sequences. We write M;[x := M,] for the result of substituting M,
for all free occurrences of the variable x in M, without capturing any free variables in
M,. We use =, to denote syntactic equality up to a-renaming of both lambda-bound
variables and recursion variables.

To translate a graph into a term, we define the term construction 7 : G — M.
Intuitively, this translation associates all nodes in the graph with a unique variable name
in the term language. These variables are used to explicitly name each subterm of the
resulting term. Lambda nodes are associated with an additional variable name, which is
used to name the formal parameter of the represented lambda abstraction.

Definition 1 (Term construction). Let g = (V,L, E, S, r) be a well-formed graph in G.

1. For every node v € V, we define a unique name x,, and a second distinct name
vy if L(v) = A. We then associate a name with each edge source s in the graph as
follows:

x, if s = v.out
name(s) =< y, if s = v.bind
x ifs=x

2. To avoid the construction of empty letrec terms (letrec _ in M) in the translation,
we use the following function:

M if D =0

mkrec(D, M) = {Ietrec Din M otherwise

3. We construct a term corresponding to each node v € V:

L(v)=e prediv)=10
term(v) = x,

L(v) = A pred(v) = {(s,v.return)}
term(v) = Ay,.mkrec(decl(contents(v)), name(s))
L(v) = @ pred(v) = {(s1,v.fun), (5., v.arg)}
term(v) = name(s;) name(s,)

L(v) =() pred(v) = {(s,v.return)}
term(v) = (mkrec(decl(contents(v)), name(s)))

L(v) =~ pred(v) = {(s, v.return)}

term(v) = ~ mkrec(decl(contents(v)), name(s))
L(v)="! pred(v) = {(s,v.in)}

term(v) = ! name(s)

4. We construct letrec declarations for any set of nodes W C V:
decl(W) = {x, = term(v) | v € toplevel(W)}
5. The term construction T is then defined as:
7(g) = mkrec(decl(V), name(r))

The translation 7 starts by computing the set of top-level nodes in V (see Section
3.3), and creates a letrec declaration for each of these nodes. For a node v with no sub-
graph, the letrec declaration binds the variable x, to a term that combines the variables
associated with the incoming edges to v. If v contains a subgraph, then 7 is applied re-
cursively to the subgraph, and x, is bound to the term that represents the subgraph. The
constraint v € foplevel(W) in the definition of dec/ ensures that exactly one equation is
generated for each node: if v ¢ toplevel(W), then v is in the scope of a different node
w € W, and an equation for w is instead included in term(w).

Example 4 (Term Construction). The function 7 translates the graph

as follows: Let v; be the lambda node, v, the Bracket node, v3 and v4 the top and bottom
Escape nodes, and vs the application node in the graph g. We associate a variable name
x; with each node v;. In addition, the name y; is associated with the parameter of the
lambda node v;. The result is:

letrec x; = /lyl.(letrec x, = (letrec x3 = ~ Vi1, X4 =~ Y1,X5 = X3X4
in xs)

in X2)
in X1
All nodes are in the scope of v; so it is the only “top-level” node in g. We create a
letrec declaration for vy, binding x; to a term Ay;.N where N is the result of recursively
translating the subgraph inside v;. When translating the subgraph of the Bracket node
vy, note that this subgraph contains three top-level nodes (v3, vq4, vs). Therefore, the term
for v, contains three variable declarations (x3, x4, Xs).

4.2 Terms in Normal Form

The term construction function 7 only constructs terms in a very specific form. For
example, while the graph in the previous example represents the computation Ay;.(~
y1 ~ Y1), the example shows that 7 constructs a different term. Compared to Ady;.(~
y1 ~ Y1), every subterm in the constructed term is explicitly named using letrec. This
explicit naming of subterms expresses the notion of value sharing in Uccello graphs,
where the output port of any node can be the source of multiple edges. Such normal
forms are essentially the same as A-normal form [17], and can be defined as follows:

Terms N € M,y ::= x| letrec g* in x
Declarations q € Dyypy i=x=x|x=y2z|x=Ay.N
|x=(N)|x=~N|x=1!y

where ¢ is a non-empty sequence of declarations ¢. In normal forms, nested terms are
only allowed in function bodies and inside Brackets or Escapes, i.e. only for language
constructs that correspond to nodes with subgraphs. All other expressions are explicitly
named using letrec declarations, and pure “indirection” declarations of the form x =y
with x # y are not allowed.

Lemma 1 (Normal forms are terms). M,,,,,, € M.

Lemma 2 (7 maps graphs to normal forms). If g € G then 1(g) € M,,pm-

As we will show, 7 is an injection, i.e. not every term corresponds to a distinct graph.
However, we will show that every term has a normal form associated with it, and that
these normal forms are one-to-one with graphs. To this end, we define the normaliza-
tion function v : M — M,,,,,,, in two steps: general terms are first mapped to interme-
diate forms, which are then converted into normal forms in a second pass. We define
the set M, of intermediate forms as follows:

Terms N’ € M, ::= x | letrec ¢ in x
Declarations q' € Dy, i=x=y|x=yz|x=Ay.N’
| x=(N)|x=~N|x=!y

Note that this set consists of normal forms with fewer restrictions: empty letrec terms
and indirections of the form x = y are allowed.

[M] e =N x fresh
[x]pre = letrec _inx [Ax.M],,. = (letrec x; = Ax.N" in x;)

[Mi]pre = letrec Qy inx; [My],r = letrec Q, inx, x3 fresh
[[MIMZ]]pre = (letrec Oy, 02, x3 = X1, iN x3)

[M] e =letrec Qiny [M;],. = letrec Q;iny;

— —
lletrec x; = M; in M],,,. = (letrec Q,Q;,x; =y, iny)
M]yre =N x; fresh M]pre =N x; fresh
[(M)] pre = (letrec x; = (N") in x1) [~ M],. = (letrec x; = ~ N” in x;)

[M] e = letrec Qiny x; fresh
[! M],r = (letrec Q,x; =!yin x;)

[N]norm = N [letrec _in x]uorm = x

N’ & M,om [[N,]]norm =N [[Ietrec y = A4z.N;, Qin x]]norm =N,
lletrec y = Az.N", @ in x]uorm = N>

N ¢ Mnorm [[N,]]norm =N, [[IetreC y= <Nl>’ Q in x]]norm =N,
[[letreC y= <N,>, Q in x]]norm = N2

N’ & M,o/m [[N/]]norm =N [[letrec y=- N1, Q in x]]"m’m =N,
[[Ietrec y=~N, 0 in x]]norm =N

[letrec Qin X)[y := 2]porm =N y#Zz
[letrecy =z, Q in x]uorm = N

Fig. 4. The translation functions [_] .. : M — M, and [_],om : Mpre = Mg

Definition 2 (Term Normalization). Given the definitions of the translations [[_]| . :
M — M, and [Juorm : Mpe — Myuomy in Figure 4, we define the normalization
function v : M — Mo, by composition: v =[] orm © [pre-

The translation [_] ... maps any term M to a letrec term, assigning a fresh letrec vari-
able to each subterm of M. We preserve the nesting of lambda abstractions, Bracket
and Escapes by applying [_] . to subterms recursively. 3 Once every subterm has a
letrec variable associated with it, and all lambda, Bracket, and Escape subterms are
normalized recursively, the function [_],,,» eliminates empty letrec terms and letrec in-
directions of the form x = y (where x # y) using substitution. The clause N" ¢ M,,,,,, in
the definition of [[_],,,m ensures that normalization terminates: without this restriction
we could apply [_],rm to a fully normalized term without making any progress.

Example 5 (Term Normalization). Given the following terms:

M| = Ax{~x ~Xx)
M, =letrecy = Ax(~x ~x)iny
M; = Axletrecy=(~x ~x)iny

Then v(M,), v(M;), and v(M3) all yield a term alpha-equivalent to:

letrec y; = Ax.(letrec y, = (letrec y3 = ~ x,y4 =~ X,y5 = y3 y4
in ys)
in y,)
nyi
Note that the basic structure of the original terms (lambda term with Bracket body and
application of two escaped parameter references inside) is preserved by normalization,
but every subterm is now named explicitly.

Lemma 3 (v maps terms to normal forms). If M € M then v(M) € M,

4.3 From Terms to Graphs

To simplify the definition of a translation from terms to graphs, we introduce a no-
tion analogous to Ariola and Blom’s scoped pre-graphs. The set G, of intermedi-
ate graphs consists of all graphs for which a well-formedness condition is relaxed:
nodes with label @ may have 0 or 1 incoming edge. Formally, whenever L(v) = e then
pred(v) = 0 or pred(v) = {(s,v.in)}. If such a node has 1 predecessor, we call it an
indirection node. Since free variables are not represented as nodes in Uccello, the
idea is to associate an indirection node with each variable occurrence in the translated
lambda-term. This simplifies connecting subgraphs constructed during the translation,
as it provides “hooks” for connecting bound variable occurrences in the graph to their
binders. We will also use indirection nodes to model intermediate states in the graph
reductions presented in Section 5.2.

3 This is similar to the translation 7 from graphs to terms presented above, where lambda,
Bracket and Escape nodes are translated to terms recursively.

We translate terms to Uccello graphs in two steps: A function y,, maps terms to
intermediate graphs, and a simplification function o- maps intermediate graphs to proper
Uccello graphs. Before defining these translations formally, we give visual descriptions
of v, and o

}/pre('x) = Ypre()“x‘M) =)/pre(M] M2) =

. A)C)/pre(M 1) *l
|:: g/ﬂre(M) —A YPre (M2) .
X

!

A free variable x is mapped by . to an indirection node with x connected to its in port.
A lambda term Ax.M maps to a lambda node v, where the pre-graph for M becomes the
subgraph of v and all free variables x in the subgraph are replaced by edges originating
at the lambda node’s bind port. An application M| M, translates to an application node
v where the roots of the pre-graphs for M, and M, are connected to the fun and arg
ports of v.

Vore(letrec x,=M;..x,=M, in M) = ypm(@/])) = Ypre(!M) =

Xy

L T

e g ! Vpre(M) 4’@‘.

x'l Ypre(M) -1
‘):C[................................

M) — | !
IR

'X:.l‘[
Given a letrec term (letrec x; = My,..,x, = M, in M), y,, translate the terms M,

through M, and M individually. The root of the resulting pre-graph is the root of
Ypre(M). Any edge that starts with one of the free variable x; is replaced by an edge
from the root of the corresponding graph y,..(M;). The cases for (M) and ~ M are
treated similarly to the case for Ax.M, and the case for !M is treated similarly to the
case for application.

Simplification eliminates indirection nodes from the pre-graph using the following
local graph transformations:

ofiyef ~ofo refe

Any indirection node with a self-loop (i.e. there is an edge from its out port to its in
port) is replaced by a black hole. If there is an edge from a free variable x or from a
different node’s port s to an indirection node v, then the indirection node is “skipped”
by replacing all edges originating at v to edges originating at x or s. Note that the second
and third cases are different since free variables cannot be shared in Uccello.

To define these translations formally, we use the following notation: E[s; := s]
denotes the result of substituting any edge in E that originates from s; with an edge that
starts at s5:

Elsy:=s2]={(s,)) € E| s # s1} U{(s2,0) | (51,7) € E}

S \u stands for the result of removing node u from any scope in the graph: (S\u)(v) =
S (v)\{u}. The substitution r[s; := s;] results in s, if » = s1 and in r otherwise.

v fresh
Ypre(x) = ({v}, {v > o}, {(x, v.in)}, 0, v.out)

7pre(M) = (‘/’ L, ES, V) v fresh
Ypre(Ax.M) = (VW {v}, LW {v = A}, E[x := v.bind] W {(r, v.return)}, S W {v = V @ {v}}, v.out)

YpreM1) = (Vi, Ly, E,S1,11) Ypre(M) = (Va, Lo, E2, S2,12) v fresh
ypre(MlMZ) = (Vl ¥ V2 @ {V}, Ll ¥ L2) {V — @}’ El) E2 © {(rl’ Vfun)’ (7'2, V-arg)}’Sl) SZ’ VOUt)

')’pre(Mj) = (V]7Lj’ Eja Sj9 r/) ’}/pre(M) = (‘/, L, E, S, I‘) vfreSh

yore(letrec x; = M, in M) = (V&V), LEL,, (EQE)[X, =1, S©S),)

Ypre(M) = (V,L,E,S,r) v fresh
Yore(MY) = (VW (v}, LY {v > O} E W {(r,v.return)},S & {v > V ® {v}}, v.out)

yPre(M) = (Va L E, S, r) v fresh
Ypre(~ M) = (VW {v}, LW {v >~} EW {(r,v.return)}, S ¥ {v > V W {v}},v.out)

Ypre(M) = (V,L,E,S,r) v fresh
Yore(! M) = (VW (v}, LW {v !}, E W {(r, v.in)}, S, v.out)

YveV:L(yv)=e= pred(v) =0
o(V,L,E,S,r)=(V.L,E,S,r)

cVu{y,Lu{vi> e},E S, r)=¢
oV, Ly {vi> e}, EW{(v.out,v.in)},S,r) =g

—_—
s#vout (vout,t)gE o(V,L,EW{(s,t)},S\v,r[v.out :=s]) =g

—
c(Vy L, Ly{vi e, EW{(s,v.in)} W {(v.out,1))},S,r) =g

Fig. 5. The translation functions y,,. : M — G, and o : G,,, —» G

Definition 3 (Graph construction). Given the definitions of the translations 7y, :
M — G, and o : G, — G in Figure 5, we define the graph construction’y : M — G
by composition: y = 0 0 Ypye.

Lemma 4 (y maps terms to well-formed graphs). For any M € M, y(M) is defined
and is a unique, well-formed graph.

Using the mappings v, v, and 7, we can now give a precise definition of the connec-
tions between terms, graphs, and normal forms. Two terms map to the same graph if
and only if they have the same normal form. Thus, normal forms represent equivalence
classes of terms that map to the same graph by y. The function v gives an algorithm for
computing such representative terms. Given two well-formed graphs g, h € G, we write
g = hif g and h are isomorphic graphs with identical node labels.

Lemma 5 (Soundness of Normalization). If M € M. then y(M) = y(v(M)).
Lemma 6 (Recovery of normal forms). If N € M, then N =, 1(y(N)).

Lemma 7 (Completeness of Normalization). Let M, M, € M. If y(M,) = y(M>)
then v(My) =Zupha V(IM>).

Example 6. In Example 5 we showed that the three terms M;, M;, and M3 have the
same normal form. By Lemma 5, they translate to the same graph. This graph is shown
in Example 4. By Lemma 7, the terms M, M,, and M3 must have the same normal
form since they map to the same graph by y.

Theorem 1 (Correctness of Graphical Syntax). Well-formed graphs and normal forms
are one-to-one:

1. If M € M then v(M) =gipna T(y(M)).
2. If g € G then g = y(1(g)).

5 Semantics For Uccello

This section presents a reduction semantics for staged cyclic lambda terms and graphs,
and establishes the connection between the two.

5.1 Staged Terms

Ariola and Blom study a call-by-need reduction semantics for the lambda-calculus ex-
tended with a letrec construct. In order to extend this semantics to support staging con-
structs, we use the notion of expression families proposed for the reduction semantics of
call-by-name A-U [18]. In the context of 1-U, expression families restrict beta-redeces
to terms that are valid at level 0. Intuitively, given a staged term M, the level of a sub-
term of M is the number of Brackets minus the number of Escapes surrounding the
subterm. A term M 1is valid at level » if all Escapes inside M occur at a level greater
than n.

Example 7. Consider the lambda term M = (Ax. ~ (f(x))). The variable f occurs at
level 0, while the use of x occurs at level 1. Since the Escape occurs at level 1, M is
valid at level 0.

The calculus A-U does not provide a letrec construct to directly express sharing in
lambda terms. Therefore, we extend the notion of expression families to include the
letrec construct as follows:

MY e M® = x| AxMO | MOMP | letrec D° in M°
(M| ! M°

M"™ e M = x| Ax.M™ | M M™ | letrec D" in M™*
|<Mn++> | ~ Mn | y Mn+

_—
D" e D" = xj:M;?

In order to combine Ariola and Blom’s reduction semantics for cyclic lambda-terms
with the reduction semantics for A-U, we need to account for the difference in beta-
reduction between the two formalisms: While A-U is based on a standard notion of
substitution, Ariola and Blom’s beta-rule uses the letrec construct to express a binding
from the applied function’s parameter to the argument of the application, without im-
mediately substituting the argument for the function’s parameter. Instead, substitution
is performed on demand by a separate reduction rule. Furthermore, substitution in 4-U
is restricted (implicitly by the S-rule) to M°-terms. We make this restriction explicit by
defining which contexts are valid at different levels:

CeC ::=0|AxC|CM|MC|letrecDinC
|letrecx=C,DinM|{C)|~C|!C

C"eC" ={CeC|C[x] e M"}

We write C[M] for the result of replacing the hole O in C with M, potentially capturing
free variables in M in the process. Furthermore, we adopt the notation D L M from [3]
to denote that the set of variables occurring as the left-hand side of a letrec declaration
in D does not intersect with the set of free variables in M.

Using these families of terms and contexts, we extend Ariola and Blom’s reductions
as shown in Figure 6. We write — for the compatible extension of the rules in R, and
we write —* for the reflexive and transitive closure of —. The idea behind the rules sub
is to perform substitution on demand after a function application has been performed.
In this sense, the reduction rules sub and the rule So together mimic the behavior of
beta-reduction in A-U.

5.2 Staged Graphs

To define a reduction semantics for Uccello, we define similar notions as used in the
previous section: the level of a node is the number of surrounding Bracket nodes minus
the surrounding Escape nodes, and a set of nodes U is valid at level » if all Escape
nodes in U occur at a level greater than n.

letrec x = M°, D" in C°[x] —,, letrec x = M°, D" in C°[M°]
letrec x = C'ly],y = M°, D" in M" —,,, letrec x = C°'[M°],y = M°, D" in M"

Ax. MY MY —4 letrec x = MO in MY
1 2 B 2 1
~ <M0> —esc MO
LMY = M°

letrec D/ in (letrec D)} in M") —erq. letrec DY, D) in M"
letrec x = (letrec DY in M), D in M} — .., letrec x = M}, D}, D} in M}

(letrec D" in M) M} —y, letrec D" in (M} M%)
My (letrec D" in M3) —4 letrec D" in (M} M)
letrec D" in (M") —s (letrec D" in M")

letrec _in M" —,. M"
letrec D}, D} in M" —,. letrec D} in M"
if D} # O A D} L letrec D} in M"

Fig. 6. Term Reduction Rules

Definition 4 (Node level). Given a graph ¢ = (V,L,E,S,r) € G, a node v € V has
level n if there is a derivation for the judgment level(v) = n defined as follows:

v € toplevel(V) surround(v) =u L(u) =24 level(u) =n
level(v) =0 level(v) = n

surround(v) = u L(u) =) level(u) =n

level(v) =n+1

surround(v) =u L(u) =~ levellu)=n+1

level(v) = n

We write level(vy) < level(v,) as a shorthand for level(v,) = ny Alevel(v,) = nyAny < ny.
A set U C V is valid at level n if there is a derivation for the judgment +" U defined as

follows:
F'v Vv e toplevel(lU) L(v) € {@,e0,!}

F U Y
L(v) =21 " contents(v) L(v)={() ' contents(v)

oy oy

L(v) = ~ " contents(v)

pn+l v
Context families and node levels are closely related. In the term reductions pre-
sented in the previous section, context families restrict the terms in which a variable may
be substituted. In the graph reductions described in this section, determining whether
two nodes constitute a redex will require comparing the levels of the two nodes. Further-
more, we can show that the notion of a set of nodes valid at a given level corresponds
directly to the restriction imposed on terms by expression families.

Lemma 8 (Properties of graph validity).

1. Whenever M" € M" and g = y(M"), then +"* V.
2. Whenever g € G with+" V, then 1(g) € M".

When evaluating a graph g = (V, L, E, S, r), we require that g be well-formed (see
Section 3.4) and that F° V. This ensures that level(v) is defined for all v € V.

Lemma 9 (Node levels in well-formed graphs). For any graph g € G with +° V and
v € V, we have level(v) = n for some n.

We now define three reduction rules that can be applied to Uccello graphs. Each of these
rules is applied in two steps: 1) If necessary, we copy nodes to expose the redex in the
graph. This step corresponds to using the term reduction rules sub or the rules merge,
lift, and gc (see Figure 6) on the original term. 2) We contract the redex by removing
nodes and by redirecting edges in the graph. This step corresponds to performing the
actual So-, esc-, or run-reduction on a term. In the following, we write j @ V for the set
{j@®v|v e V}where j € {1,2}. Furthermore, we write U@V forthe set (1 U)U2aV).

w lew lew lew
A A A A
> —f > —f >—> —f >—> —
out ’I“>
— — —> —>
-« «— «— «—
2®W v v
A v 2®W
bindp— 5, —>Rreturn 5 51—
in out
out
arg " arg fun in
s> 1@) S 5
v lev lev
8 g g = o(g’)

Fig. 7. Beta-reduction for Uccello graphs

Beta A fo-redex in a Uccello graph consists of an application node v that has a
lambda node w as its first predecessor. The contraction of the redex is performed in two
steps (see Figure 7):

1. Check that the edge (w.out, v.fun) is the only edge originating at w.out, and that the
application node v is outside the scope of w. If any of these conditions do not hold,
copy the lambda node in a way that ensures that the conditions hold for the copy of
w. The copy of w is called 2 @ w, and the original of v is called 1 @ v. Place 2 ® w
and its scope in the same scope as 1 ® v.

2. Convert 1 ® v and 2 & w into indirection nodes, which are then removed by the
graph simplification function o (defined in Section 4.3). Redirect edges so that after

simplification, edges that originated at the applied function’s parameter (2@w.bind)
now start at the root s, of the function’s argument, and edges that originated at the
application node’s output (1 @ v.out) now start at the root s; of the function’s body.

w lew leow low
" O O "
o . v .
e)
« v) lev))
- - 20w
6 | |
s —»f return S s
" out ;
re urr: return 2®W]@V

I outI in— out in— out

8 g’ g =... alg’)

Fig. 8. Escape-reduction for Uccello graphs

Definition 5 (Graph Beta). Given a graph g € G with +° V and v,w € V such that
L(v) = @, L(w) = A, (w.out,v.fun) € E, +° contents(w), F° {u | u € S (surround(v)) A
u ~> v}, and level(w) < level(v) Then the contraction of the Bo-redex v, written g —g. h,
is defined as follows:

1. We define a transitional graph g’ = (V', L', E’,S’, ") using the functions f, and f,
that map edge sources in E to edge sources in E’:

1 ® u.out otherwise

fi(x) =Xx
filuo) =16u.o
f2(x) =Xx

. _J2@ubind ifueSmw)
f2(u.bind) = { 1 ® u.bind otherwise
Fwout) = {2 ®u.out ifu € S(w)\{w}

Let sy be the origin of the unique edge in E with target v.arg. The components of g’
are constructed as follows:

if {(w.out,r) e E} =1
v =l V\SwyeSw) o ¢ S(w)
VesSw) otherwise

={(fils),1@ui)|1ouec V' A(s,u.i) € EAu+v}
U {2 e w.out, 1 & v.fun), (fi(so), 1 ®v.arg)}
U{(f2(s),2@ui)|20ucV A(s,ui)cE}

EI

L'(jou) = Lu for j e {1,2}

S'CQeu)y=20S5u)
S"leu)y =185) ifveSu
S"Aou)=Sw)oSw) ifveS(u)

r' = fi(r)

2. Let sy and s, be the origins of the unique edges in E’ with targets 2 ® w.return and
1 ® v.arg respectively. We modify E’, L', and S’ as follows:

Qe w.out,1 ®v.fun) := (s, 1 ®v.in)
(s1,2 ®w.return) := (52,2 ®w.in)
(52, 1 ®v.arg) := removed
L'(l®v):=e
L'QCow):=e
S’'(2®w) := undefined

Furthermore, any occurrence of port 2@ w.bind in E’ is replaced by 2 ® w.out. The
resulting graph h of the Bo-reduction is then the simplification o(g’).

Escape An esc-redex consists of an Escape node v that has a Bracket node w as its
predecessor. We contract the redex in two steps (see Figure 8):

1. Check that the edge (w.out, v.return) is the only edge originating at w.out, and that
the Escape node v is outside the scope of w. If any of these conditions do not hold,
copy the Bracket node in a way that ensures that the conditions hold for the copy
of w. The copy of w is called 2 @ w, and the original of v is called 1 ®v. Place 2@&w
(and its scope) in the scope of 1 @ v.

2. Convert 1 @ v and 2 & w into indirection nodes, which are then removed by the
function 0. Redirect edges so that after simplification, edges that originated at the
Escape node’s output port (1 @ v.out) now start at the root s; of the Bracket node’s
body.

Definition 6 (Graph Escape). Given a graph g € G with +° V and v,w € V such that
L(v) = ~, L(w) = (), (w.out,v.return) € E, ° contents(w), and level(w) < level(v).
Then the contraction of the esc-redex v, written g — .. h, is defined as follows:

1. We define a transitional graph g = (V',L',E’,S’,r") where V',L’,S’, and r’ are
constructed as in Definition 5. * The set of edges E’ is constructed as follows:

E' ={(fi(s),10ui)|1ouecV A(s,u.i)€ EANu+ v}
U {(2® w.out, 1 @ v.return)}
U{(fa(s),2®ui)|2®uc V' A(s,ui) € E}

2. Let s be the origin of the unique edge in E’ with target 2@®w.return. We modify E’,
L', and S’ as follows:

2@ w.out,1 ®v.return) := (2@ w.out, 1 ® v.in)
(51,2 ®@w.return) := (51,2 ® w.in)
L'(lov):=e
L'QCow):=e
S’'(1 ®v) := undefined
S’'(2 ® w) := undefined

The resulting graph h of the esc-reduction is o(g").

w lew leow low
O O O ¢
—i — — —i
et O
4—4> 4—% 4—4' —
2w M
O v v
s, —Hretum Ning
out
v lev
in n out
8 g g = o(g’)

Fig. 9. Run-reduction for Uccello graphs

Run A run-redex consists of a Run node v that has a Bracket node w as its prede-
cessor. The contraction of the redex is performed in two steps (see Figure 9):

1. Check that the edge (w.out, v.in) is the only edge originating at w.out, and that the
Run node v is outside the scope of w. If any of these conditions do not hold, copy
the Bracket node in a way that ensures that the conditions hold for the copy of w.
The copy of w is called 2 @ w, and the original of v is called 1 ® v. Place 2® w (and
its scope) in the same scope as 1 @ v.

* In Definition 5, v and w refer to the application- and lambda nodes of a Bo-redex. Here, v
stands for the Escape node, and w stands for the Bracket node of the esc-redex.

2. Convert 1 @ v and 2 @ w into indirection nodes, which are then removed by o
Redirect edges so that after simplification, edges that originated at the Run node’s
output port (1 @ v.out) now start at the root s, of the Bracket node’s body.

Definition 7 (Graph Run). Given a graph g € G with +° V and v,w € V such that
L) =, L(w) = {), (w.out,v.in) € E, +° contents(w), and level(w) < level(v). Then the
contraction of the run-redex v, written g —,, h, is defined as follows:

1. We define a transitional graph ¢’ = (V',L',E’,S’,r") where V',L’,S’, and v’ are
constructed as in Definition 5. The set of edges E' is constructed as follows:

E ={(fi(s),10ui)|1ouecV A(s,u.i)€ EANu+ v}

L_J {2 w.out,1 ®v.in)}
UA{(fa(s),2®ui)|2®uc V' A(s,ui) € E}

2. Let sy be the origin of the unique edge in E’ with target 2@ w.return. We modify E’,
L', and S’ as follows:

(51,2 ®w.return) := (51,2 ® w.in)
L'(lev):=e
L'Caow):=e
S’(2 ® w) := undefined

The resulting graph h of the run-reduction is o(g’).

5.3 Results

Any reduction step on a graph g = y(M) corresponds to a sequence of reduction steps
on the term M to expose a redex, followed by a reduction step to contract the exposed
redex. Conversely, the contraction of any redex in a term M corresponds to the contrac-
tion of a redex in the graph y(M).

Theorem 2 (Correctness of Graphical Reductions). Let g € G, § € {Bo, esc, run},
M? eMand g = y(M?).

1. Graph reductions preserve well-formedness:
g —s himpliesh € G
2. Graph reductions are sound:

g —¢ himplies M —* M) —5 M}
for some M2, Mg e MY such that h = y(Mg)

3. Graph reductions are complete:

MY —5 MY implies g —5 h for some h € G
such that h = y(M3)

6 Conclusions and Future Work

With the goal of better understanding how to extend visual languages with program-
ming constructs and techniques available for modern textual languages, this paper stud-
ies and extends a graph-text connection first developed by Ariola and Blom. While
the motivation for Ariola and Blom’s work was the graph-based compilation of func-
tional languages, only minor changes to their representations and visual rendering were
needed to make their results a suitable starting point for our work. We extended this
formalism with staging constructs, thereby developing a formal model for generative
programming in the visual setting.

In this paper we only presented an abstract syntax for Uccello. In the future, it
will be important to develop a more user-friendly concrete syntax with features such as
multi-parameter functions or color shading to better visualize stage distinctions. This
step will raise issues related to parsing visual languages, where we expect to be able to
build on detailed previous work on layered [16] and reserved graph grammars [21].

Another important step in developing the theory will be lifting both type checking
and type inference algorithms defined on textual representations to the graphical set-
ting. Given the interactive manner in which visual programs are developed, it will also
be important to see whether type checking and the presented translations can be incre-
mentalized so that errors can be detected locally and without the need for full-program
analysis.

Acknowledgments: Kedar Swadi, Samah Abu Mahmeed, Roumen Kaiabachev and
Edward Pizzi read and commented on early drafts of this paper, and we would like to
thank them for their insightful suggestions. We also thank Keith Cooper, Moshe Vardi,
Robert “Corky” Cartwright, and Peter Druschel for serving on the first author’s thesis
committee.

References

1. http://www.cs.rice.edu/~besan/proofs.pdf.

2. Robin Abraham and Martin Erwig. Header and unit inference for spreadsheets through
spatial analyses. In IEEE Symposium on Visual Languages and Human-Centric Computing,
pages 165-172, 2004.

3. Z. M. Ariola and S. Blom. Cyclic lambda calculi. Lecture Notes in Computer Science,
1281:77, 1997.

4. M. Burnett, J. Atwood, R. Walpole Djang, H. Gottfried, J. Reichwein, and S. Yang. Forms/3:
A first-order visual language to explore the boundaries of the spreadsheet paradigm. Journal
of Functional Programming, 11:155-206, March 2001.

5. W. Citrin, M. Doherty, and B. Zorn. Formal semantics of control in a completely visual
programming language. In Allen L. Ambler and Takayuki Dan Kimura, editors, Proceedings
of the Symposium on Visual Languages, pages 208-215, Los Alamitos, CA, USA, October
1994. IEEE Computer Society Press.

6. W. Citrin, R. Hall, and B. Zorn. Programming with visual expressions. In Volker Haarslev,
editor, Proc. 11th IEEE Int. Symp. Visual Languages, pages 294-301. IEEE Computer Soci-
ety Press, 5-9 September 1995.

7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press and
McGraw-Hill Book Company, 14th edition, 1994.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

M. Erwig. Abstract syntax and semantics of visual languages. Jounral of Visual Languages
and Computing, 9:461-483, October 1998.

Martin Erwig and Margaret M. Burnett. Adding apples and oranges. In 4th International
Symposium on Practical Aspects of Declarative Languages, pages 173-191, 2002.

National Instruments. LabVIEW Student Edition 6i. Prentice Hall, 2001.

S. Peyton Jones, A. Blackwell, and M. Burnett. A user-centred approach to functions in
Excel. ICFP, pages 165-176, 2003.

Edward A. Lee. What’s ahead for embedded software? [EEE Computer, pages 18-26,
September 2000.

MetaOCaml: A compiled, type-safe multi-stage programming language. Available online
from http://www.metaocaml.org/, 2004.

National Instruments. LabVIEW. Online at http://www.ni.com/labview.

Oregon Graduate Institute Technical Reports. PO. Box 91000,
Portland, OR 97291-1000,USA. Available online from
ftp://cse.ogi.edu/pub/tech-reports/README.html.

Jan Rekers and Andy Schuerr. Defining and parsing visual languages with layered graph
grammars. Journal of Visual Languages and Computing, 8(1):27-55, 1997.

Amr Sabry. The Formal Relationship between Direct and Continuation-Passing Style Op-
timizing Compilers: A Synthesis of Two Paradigms. PhD thesis, Rice University, August
1994.

Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon
Graduate Institute of Science and Technology, 1999. Available from [15].

Walid Taha and Michael Florentin Nielsen. Environment classifiers. In The Symposium on
Principles of Programming Languages (POPL *03), New Orleans, 2003.

The MathWorks. Simulink. Online athttp://www.mathworks.com/products/simulink.
Da-Qian Zhang, Kang Zhang, and Jiannong Cao. A context-sensitive graph grammar for-
malism for the specification of visual languages. The Computer Journal, 44(3):186-200,
2001.

Reconfigurable Manifolds

Sarah Thompson Alan Mycroft
{sarah.thompson,alan,mycroft}@cl.cam.ac.uk

Computer Laboratory, University of Cambridge, William Gates Building, 15 JJ Thomson Ave.,
Cambridge CB3 OFD, UK

1 Introduction

Spacecraft design is, without doubt, one of the most challenging areas of modern engi-
neering. In order to be viable, spacecraft must mass relatively little, whilst being capable
of surviving the considerable G-forces and vibration of launch. In space, they must with-
stand extreme temperatures, hard vacuum and high levels of radiation, for several years
without maintenance.

Conventionally, spacecraft wiring harnesses are built with architectures that are fixed
at the time of manufacture. They must therefore be designed to endure the lifetime of
the mission with a very high probability, though the conventionally necessary redundant
duplication of signals has significant implications for mass. Given that launch costs are
typically in excess of $30,000 per kg, reducing the mass of a spacecraft’s wiring harness,
without compromising reliability, is highly desirable. As a motivating example, the net-
work cabling in the International Space Station (ISS) is known to mass more than 10
metric tonnes.

Recent advances in MEMS-based switching [9] have made it possible to consider the
construction of reconfigurable manifolds — essentially, wiring harnesses that behave like
macroscopic FPGA routing networks. Redundant wiring can be shared between many sig-
nals, thereby significantly reducing the total amount of cable required. Reconfigurability
has a significant further benefit, in that it also allows adaptation to mission requirements
that change over time, whilst also significantly reducing design time.

In a recent initiative, the US Air Force has been moving toward a responsive space
paradigm which aims to reduce the time from design concept to launch (currently several
years) to less than one week [7]. Such a target is unlikely to be achievable with existing
bespoke one-off design techniques; a parts bin driven, plug-and-play approach to satellite
construction will become essential. It must be possible to choose a satellite chassis of a
size appropriate to the task in terms of accommodating sufficient manoevering propellant
as well as the necessary instrumentation payload, then bolt everything together and have
the resulting satellite ‘just work.’

We present an algorithm that allows such a reconfigurable manifold to be automat-
ically self-configured, then dynamically tested in-situ, such that signals are automati-
cally rerouted around non-functioning wires and switches as soon as faults are detected.
Break-before-make switching is used in order to achieve transparency from the point
of view of subsystems that are interconnected by the manifold, whilst also making it
possible to achieve near-100% testability.

1.1 PHYSICAL SATELLITE WIRING ARCHITECTURES 2

Antennas
Rough Sun

Tracker \

Solar Panel \

Gyroscopes

Torquer Bars

Figure 1: A typical near-earth small satellite configuration

1.1 Physical satellite wiring architectures

Conventionally, satellites are constructed with fixed wiring architectures. Reliability must
therefore be engineered-in through multiple redundancy — duplication or triplication
(or more) of signal paths is common, which carries with it an attendant mass penalty.
Typically, one of two kinds of wiring architecture are common. Fig. 2 shows a typical
passive backplane with multiple subsystems, each slotting in to a rack on separate cards'.
Wiring harnesses, in the sense that they exist in cars and aircraft as bundles of physical
cables, tend to be avoided where possible.

Another common approach is shown in Fig. 3, where a single motherboard has a
number of daughter boards attached to it on standoffs. Normally (though not visible in
the diagram) these daughter boards plug directly into connectors on the motherboard,
again avoiding the need for cables.

Typically, card frames have passive backplanes, which do not normally contain active
electronics beyond perhaps some simple power regulation or line termination. Mother-
board approaches more commonly include active electronics on the main board itself,
though this is not a prerequisite.

!Note that the image is representational — actual satellite hardware differs in detail

1.2 LOGICAL SATELLITE WIRING ARCHITECTURES 3

Figure 2: Card frame with backplane

1.2 Logical satellite wiring architectures

At a logical, block diagram level, fixed architecture satellite wiring harnesses typically
follow the structure shown in Fig. 4. All of the main subsystems are attached to a moth-
erboard or backplane that provides most of the necessary interconnection infrastructure,
with external devices plugging directly into the relevant subsystems. All required redun-
dancy must be in place from the outset. Typically, satellites are one-off designs, so any
design changes before launch require physical modifications — of course, such changes
after launch are typically impossible. As a further consequence of this approach, sub-
system re-use is relatively uncommon, requiring considerable effort in terms of design,
validation and verification, of the order of several years from concept to launch.

2 Reconfigurable manifolds

The responsive space paradigm [7] implies the requirement to move away from fixed
architectures and their consequential design and validation costs toward an autonomous,
self-organising approach. In essence, a reconfigurable manifold is a self-organising, self-
testing, self-repairing replacement for a fixed architecture wiring harness. Ideally, at a
system level, a spacecraft adopting this approach should have an architecture similar to
that shown in Fig. 5.

Ideally, all wiring should be routed by the manifold rather than connected directly to
subsystems. From a the point of view of rapid construction, this is ideal — a subsystem

2.1 SIGNAL TYPES 4

Edge View

Figure 3: Motherboard with attached daughter boards

such as a gyroscope, star tracker, sun tracker or antenna could be bolted to the spacecraft
chassis anywhere that is physically convenient, with all of the necessary wiring being
‘discovered’ and automatically routed after power-up.

2.1 Signal types

Spacecraft wiring harnesses (reconfigurable or otherwise) must be able to carry a wide
variety of signals, varying in terms of power, voltage and bandwidth, with similarly vari-
able electrical considerations in terms of impedance, end-to-end resistance, etc. Typical
signal types found in satellites, along with example applications are listed as follows?:

Power Normally a single +28V DC unregulated supply rail powers the entire spacecraft,
with local step-down regulators providing lower voltage high quality supply rails to
each subsystem. Where higher voltages are necessary, e.g. to drive cryocoolers for
low background noise imaging sensors, this is normally achieved with local step-up
switching DC-DC converters.

Heavy current analogue High current feeds to torquer bars, motor drives, solenoid
power, explosive bolts, etc.

Low current, low speed analogue Analogue sensor feeds, thermocouples, rough sun
tracker photocells, etc.

2This list is not exhaustive

2.2 CONSTRUCTING PRACTICAL RECONFIGURABLE MANIFOLDS 5

Motherboard/ : """""]
Backplane ' Other.. |

Solar
Panels

Power
Management
Subsystem

Imaging

Camera
Subsystem

Nuclear
Thermoelectric
Generator

Navigation Comms

Antenna
Subsystem Subsystem

Coarse Sun
Tracker

Torquer Chemical/lon

Bars Thrusters SEFEE.E

Figure 4: Conventional, fixed-architecture motherboard/backplane
Low current, high speed analogue Higher speed sensor wiring, video feeds from cam-
eras and star trackers, etc.
Low speed digital Simple on/off telemetry sensors, e.g. mechanical limit switches.
High speed digital Digital communications between subsystems.

Low power microwave Radio receiver antenna feeds, low power radio transmitter an-
tenna feeds.

High power microwave High power antenna feeds, ion thruster power cabling, etc.

Optical High speed network connectivity, lower speed sensor applications that require a
significant degree of electrical isolation®.

No single switching architecture, at the time of writing, can accommodate more than
a few of the above signal types.

2.2 Constructing practical reconfigurable manifolds

A practical reconfigurable manifold must encompass most, if not all, signal types in order
to be effective. Since no single switch fabric is suitable, it makes sense to split the

3Optical switching is beyond the scope of this work and will not be discussed further

2.2 CONSTRUCTING PRACTICAL RECONFIGURABLE MANIFOLDS 6

Panels
Nuclear i e
Thermoelectric
Generator

| 1
! 1

Solar | Other...]
| :
[}

Imaging
Subsystem

Power
Management
Subsystem

Camera

Reconfigurable
Manifold

Comms
Subsystem

Navigation
Subsystem

Antenna
Torquer
Bars

Star Tracker

Gyros

Chemical/lon Coarse Sun
Thrusters Tracker

Figure 5: Reconfigurable manifold architecture

manifold into separate sub-manifolds, each of handling a different signal type, as shown
in Fig. 6.

Some cross-connectivity between the sub-manifolds makes sense, since, for example,
several MEMS relays could potentially be connected in parallel in order to to switch
heavier current, or DC-biased analogue routing with sufficient bandwidth could, in an
emergency, be used to carry digital data.

Fig. 7 shows a reconfigurable manifold implemented as a replacement for a passive
backplane or passive motherboard. In contrast with Fig. 4, external systems connect
to the manifold rather than direct to the subsystems themselves. Configuring such a
satellite might be as simple as installing cards in a backplane or motherboard in any
convenient order, then plugging external devices into the manifold. Spare slots could,
given sufficient mass budget, be used to provide extra redundancy simply by plugging in
extra duplicate cards; appropriate firmware could potentially handle this automatically.

An alternative architecture is shown in Fig. 8. Rather than a single manifold routing
between devices connected to its periphery, the manifold is itself distributed between
the subsystems. Interconnection between subsystems is passive, with the subsystems
cooperating to establish longer distance, multi-hop routes.

The single manifold approach is perhaps best suited to small satellites, whereas the
(more complex, though more flexible and scalable) distributed approach lends itself to
larger spacecraft such as large satellites, manned spacecraft, space stations or indeed

2.3 SWITCHING TECHNOLOGIES 7

1
1
Solar Other :
Nuclear ranels N J Imaging
Thermoelectric Subsystem
Generator
Power Camera
Management Analogue
Subsystem
Comms
Navigation Subsystem

Subsystem

’@

Star Tracker

Antenna

Torquer
Bars

Chemical/lon Coarse Sun
Thrusters Tracker

Figure 6: Separate routing networks for power, analogue, digital and microwave

also to terrestrial aircraft.

2.3 Switching technologies

Many switching technologies exist that differ considerably in capability:

FPGAs Field-programmable gate arrays can be used to route digital data, and are also
comparatively cheap and readily available.

FPTAs Field-programmable transistor arrays [10] have some similarities to FPGAs, though
they are aimed more closely at analogue applications. As with FPGAs, they are not
intended from the outset as routing devices for use within a the switch fabric of
a reconfigurable manifold, though it would seem feasible to apply them to the
switching of low- to medium-speed analogue signals.

Digital Crossbar Switch ASICs A number of commercial, off-the-shelf (COTS) digital
crossbar switch chips are available, though this application appears to be becoming
dominated by FPGAs as a consequence of the larger FPGA manufacturers getting
more directly involved by releasing support for using their devices in this way [2].

2.3 SWITCHING TECHNOLOGIES 8

Motherboard/ + =~ """ """ !
Backplane

Imaging
Subsystem

Power |'-----
Management
Subsystem

Comms
Subsystem

Navigation
Subsystem

Solar
Panels

Camera

Reconfigurable Manifold

Nuclear Antenna

Thermoelectric
Generator

Torquer Chemical/lon Coarse Sun
Bars €/te5 Thrusters Tracker S T

Figure 7: Reconfigurable manifold as a motherboard or backplane

Analogue Crossbar Switch ASICs Though not so widely supported as digital crossbar
switch devices, analogue crossbar switches are available, mostly aimed at switching
analogue video signals[1].

MEMS switches Micron-scale electromechanical switches have been demonstrated to
be an effective candidate technology [9]. Though physically far larger than CMOS
transistor-based switches, MEMS switches are nevertheless orders of magnitude
smaller and lighter than full-size mechanical relays, and have excellent electri-
cal characteristics that renders them capable of being applied to almost any low-
current switching application, including microwave.

Electromechanical Relays Somewhat old-fashioned, relays are nevertheless capable of
switching very heavy currents. They are sufficiently massive, however, that it is
difficult to imagine them being used in large numbers in a spacecraft application.

Discrete MOSFET/IGBT Switching Large power transistors, both MOS and bipolar, are
commonly used to switch heavy current and moderately high voltage (up to a few
hundred volts and/or hundreds of amps) signals, particularly in motor drive appli-
cations. They exhibit high reliability and relatively good radiation hardness charac-
teristics due to their very large (in comparison with ASICs) geometries, though their
gate drive circuitry can be tricky to engineer. Though physically bulky, they nev-
ertheless remain a useful possibility for constructing heavy current and/or power

2.4 ROUTING ARCHITECTURES 9

Motherboard/
Backplane

Imaging
Subsystem

Power
Management
Subsystem

Solar
Panels

Camera

Nuclear
Thermoelectric
Generator

Antenna

Comms
Subsystem

Navigation
Subsystem

Coarse Sun
Tracker

Torquer Chemical/lon

Bars Thrusters SEED

Figure 8: Reconfigurable manifold distributed across subsystems

switching networks.

Table 1 shows compatibility between switch technologies and signal types. The no-
tation ?,” denoting ‘possibly compatible,” indicates that, under normal circumstances, an
automated routing algorithm would not normally attempt to make a connection of this
type, though under certain circumstances, possibly only when authorised by a human,
such connections might be made in the absence of more appropriate infrastructure. Nor-
mally, signals would be prioritised, so critical signals would almost always be routed, but
less important connections may be degraded or even omitted. For example, a non-critical
redundant temperature sensor might be disconnected in favour of keeping an instrument
package running.

2.4 Routing architectures

The major alternative switching architectures that may be considered when designing a
reconfigurable manifold are as follows:

Crossbar Switch An M x N grid of switches configured to provide a M-input, N-output
routing network.

Permutation Network A permutation network performs an arbitrary permutation on N
inputs, such that any possible reordering of the inputs is supported.

2.4 ROUTING ARCHITECTURES 10

FPGA FPTA Digital X-bar Analogue X-bar MEMS Relays MOSFET/IGBT

Power X X X X ?

Heavy current analogue

Low current, low speed analogue

VLl

Low current, high speed analogue
Low speed digital
High speed digital

X oL <L < X
X oL < < X

Low power microwave

AL N SR
v <
XXX L <L

X X < <. X X X
X X << X X X

High power microwave

x — Not compatible ? — Possibly compatible /- Compatible

Table 1: Compatibility between switch technologies and signal types

Ad-Hoc and Hybrid Approaches Practical considerations make it appropriate to con-
sider the possibility of leveraging existing technologies, possibly in combination, to
create reconfigurable manifolds. Though the result network topology and routing
algorithms may be technically inferior to a purer design, economic considerations
are nevertheless still important for practical designs.

Embedding into Networks of Arbitrary Topology Given a sufficiently large and com-
plex graph, with nodes representing switches and edges representing wires, it is
possible to compute a switch configuration that implements an arbitrary circuit.

Each approach is described in detail below.

2.4.1 Crossbar switches

Crossbar switches have a long history, having originally been introduced as a means of
routing telephone calls through electromechanical telephone exchanges. Conceptually
extremely simple, a crossbar switch is constructed from two sets of orthogonal wires
(bus bars in telecommunications nomenclature), such that each crossing can be bridged
by a switch. Fig. 9 depicts the circuit of a small 8 x 8 crossbar switch.

To route a particular input to a given output, all that is necessary is for the switch
corresponding to that input and output to be closed. Crossbar switches are somewhat
inefficient in terms of hardware requirements, and also in terms of providing more rout-
ing capability than is strictly necessary in many cases — it is possible, for example, to
route a single input to any number of outputs, or to common inputs together. Achieving
reliability is relatively straightforward, however — replacing each non redundant switch
(Fig. 10) with a partially- or fully-redundant alternative (Fig. 11 or Fig. 12 respectively)
allows single point failures to be recovered. A fully redundant switch configuration al-
lows any of its four component switches to fail-open or fail-closed without affecting func-
tionality. The partially redundant version only requires half as many switches, but is only
safe against fail-closed faults — however, given one or more spare bus bars on each axis,
fail-open faults can easily be patched around and are therefore still recoverable. In cost
terms, building a fully-redundant M x N switch requires 4 x M x N switches, whereas
the partially redundant approach requires 2 x (M + 1) x (N + 1) switches, though clearly
the larger circuit is more fault-tolerant.

2.4 ROUTING ARCHITECTURES 11

IS
1S
1S
1S
1S
1S
1S
¢S

Figure 9: Crossbar Switch

? °

Figure 10: Non-redundant switch

¢ ¢

Figure 11: Partially redundant switch configuration

Figure 12: Fully redundant switch configuration

2.4.2 Permutation networks

Permutation networks are an alternative approach to routing that, in many cases, re-
quires substantially fewer switches for a given number of inputs — rather than O(N?),
they tend toward O(N log N), which can be a very significant advantage when the num-

2.4 ROUTING ARCHITECTURES 12

Figure 13: 6-way permutation network

ber of inputs is large. Fig. 13 illustrates the concept with a 6-way permutation network.
Its 15 switches can each be in either of two states: pass the inputs left to right unchanged,
or swap them. For 6 inputs, a crossbar switch is likely to be cheaper, in that it is likely
to require only 36 switches, in comparison with 60 for the permutation network shown
in Fig. 13. However, for 1000 inputs, assuming N log, N, approximately 40, 000 switches
are required, whereas a 1000 x 1000 crossbar switch would require 1 million switches.

Designing a permutation network can be somewhat baroque, though a useful rela-
tionship with sorting networks can be exploited. A sorting network is a sort algorithm
that can be modified (if necessary) to allow its architecture to be predetermined, regard-
less of the data that it is given. Typically, a network is constructed whereby each swap
node has two inputs and two outputs, where the outputs are swapped (if necessary)
in order to respect a given partial order. Though the popular Quicksort is unsuitable,
many other well-known sort algorithms, e.g. merge sort, bubble sort, transposition sort,
bitonic sort or shell sort, can be adapted. Since a sort may also be seen as just a partic-
ular kind of permutation, sort networks — by definition — must be capable of performing
permutations. Furthermore, since the data to be sorted might initially be in any order,
a sort network must be capable of supporting all possible permutations — therefore, if a
sort algorithm can be adapted to create a sort network of arbitrary dimension, it follows
that an equivalently structured permutation network would also be capable of any pos-
sible permutation. Usefully, the underlying sort algorithm can be leveraged to efficiently
generate switch configurations, as follows:

1. Let (W,C) be a totally ordered set such that |I¥/| is the number of wires in the
switch network, and each w € W represents exactly one input and one output.

2. Let the total bijective map P : p(W x W) represent the desired permutation to be
implemented by the switch network.

3. Sort P with the underlying sort network, such that for each (a,b) € P, a represents
the input, and b represents the output. This can be achieved trivially by feeding
tuples into the network ordered on a, then having the network sort these tuples
ordered on b.

4. Note whether each swap node passed its data through unchanged, or whether it
performed a swap. This gives the switch configuration for an isomorphic permuta-
tion network that performs an equivalent permutation.

Since suitable sort algorithms exist that have O(N log V) time complexity, computing a
switch plan is therefore also an O(N log N) operation.

2.4 ROUTING ARCHITECTURES 13

Permutation networks are nevertheless not guaranteed to be a better solution than
crossbar switches, particularly when constructed as ASICS - their complex wiring reduces
the effective advantage of their reduced switch count, particularly when considering that
regular grids (crossbar switches being a particularly ideal example) are cheap and easy to
lay out in comparison with the more spaghetti-like nature of large permutation networks.
Limitations on chip packaging limit the number of wires that a single chip might be able
to switch, and therefore also the number of switches that need sensibly be integrated in
one die, reducing the impact of the O(N?) complexity problem with crossbar switches.
However, when switches are large and/or expensive, as is the case with MEMS relays or
any discrete component approach (e.g. full-size relays, MOSFETs, IGBTs), the reduction
in component count could prove important.

2.4.3 Shuffle networks

Shuffle networks are essentially degenerate, incomplete permutation networks that do
not support all possible permutations. They are perhaps best known in the parallel com-
puting world, where they are commonly used as high speed inter-processor interconnect
architectures. Omega networks, a commonly used shuffle network architecture, typically
require some kind of blocking or queueing hardware at each swap node so that collisions
can be arbitrated. Their incompleteness is probably not tolerable for our application, so
they will not be considered further.

2.4.4 Ad-hoc COTS approaches

In some cases, COTS devices may be used to implement routing fabric. FPGAs, in partic-
ular, are ubiquitous, low cost and can be used (with appropriate considerations) in high
radiation environments. There are a number of potential approaches:

1. Implement a general purpose crosspoint switch or permutation network as a HDL
model, then synthesise it.

2. Generate HDL that routes the FPGA’s inputs and outputs according to the desired
switching plan, then synthesise the design.

The first option clearly limits the size of switch that can be implemented in a partic-
ular FPGA, though is inherently general purpose and can be reconfigured very rapidly.
The second option is probably infeasible for embedded use at the time of writing due to
the requirement for a complete tool chain in order to perform reconfiguration.

2.4.5 Embedding into networks of arbitrary topology

In this approach, a reconfigurable manifold is represented by a graph where its nodes
represent switches and its edges represent wires. Embedding a desired circuit into such
a network is essentially equivalent to computing a switch configuration. For the gen-
eral case, this is a difficult computational problem that seems almost certainly to be
in NP, with complexity rising exponentially with the number of switches in the net-
work. Though this approach ultimately encompasses all others, in that both crossbar

2.5 MAKE-BEFORE-BREAK SWITCHING 14

switches and permutation networks may be seen as special cases, the difficulty of com-
puting switching plans makes it unlikely that this approach could be feasible in practice.

2.5 Make-before-break switching

At the device level, make-before-break switching requires the capability to establish a
new connection, in parallel, before an old connection is disconnected. Where a recon-
figurable manifold is routing signals that should not be temporarily interrupted, make-
before-break switching allows a connection to be moved to an alternative route transpar-
ently to the signal’s endpoints.

Power, heavy current analogue, low-speed digital and low-speed analogue signals are
all well suited to make-before-break switching, in that they are not particularly sensitive
to minor changes in end-to-end resistance or discontinuities in impedance. However,
high-speed digital, high-speed analogue, or (particularly) microwave signals need more
careful consideration — in such cases, it may be necessary for the subsystems concerned
to become involved in the routing process, at least from the point of view of being able
to request that the manifold should not re-route particular signals during critical periods.

Crossbar switches support make-before-break switching by default: it is just neces-
sary to turn on the switch for the new connection, waiting long enough (if necessary)
for the switch to close fully and stop bouncing, then turn off the switch for the old con-
nection. Implementing make-before-break switching in a permutation network is much
more difficult, however, and will almost certainly require the network to be carefully
designed (see Section 5.1).

In a reconfigurable manifold that does not alter its wiring plan after it has been
initially configured, support for make-before-break switching is unnecessary — however,
such a capability is essential in order to support continuous automated testing and fault
recovery (see Section 4).

2.6 Grounding

Grounding of electronic systems within satellites is broadly similar to the grounding
of Earth-based electronics; as-such, the same techniques and best practice applies in
both cases. In satellites, grounding is particularly important because of the charging
effect, whereby charged particles impacting the spacecraft impart a (potentially large)
electric charge — careful grounding all conductive parts typically reduces or eliminates
any consequential problems.

It is normal practice for a spacecraft to implement a ground network with a star
topology — a single central grounding point is connected radially to the grounds on all
subsystems. Cycles in the ground network are avoided, because they can form unwanted
single-turn secondaries that may pick up hum or other unwanted noise from any heavy
current subsystems in the vicinity.

Normally, grounds should not need to be switched by a reconfigurable manifold — a
conventional, fixed, star ground topology should be sufficient for nearly all cases. Signals
that are routed along shielded paths may require switchable ground lifts at one or both
ends in order to avoid ground loops, though careful consideration of possible ground
routing requirements may avoid this.

3. SELF-ORGANISATION 15

3 Self-organisation

In some circumstances, it is undesirable or even impossible to precalculate routing for a
reconfigurable manifold. The responsive space paradigm requires that disparate subsys-
tems should be able to be plugged together in any convenient manner, at which point
they should self-organise and work together without human intervention. Achieving
concept-to-launch times of the order of one week does not leave much time for anything
other than physical assembly of the spacecraft, so the electronic subsystems must, of
absolute necessity, not require a lengthy design process.

Self-organisation, at a fundamental level, requires subsystems to be able to discover
each other, negotiate and configure any necessary wiring, and also to cooperate in main-
taining the long-term reliability of the connectivity. These issues are discussed in detail
in the remainder of this section.

3.1 ‘Space Velcro’

Some technologies absolutely require self-organisation in order to function at all. Fig. 14
is an electron micrograph of Joshi et. al.’s Microcilia concept [8, 11, 3]. MEMS technol-
ogy is used to construct micron scale, articulated ‘cilia’ that are capable of manipulating
small objects and of allowing the docking of small microsatellites. Assuming that electri-
cal connections between the mated surfaces can be achieved, a self-organising, reconfig-
urable manifold based satellite could automatically configure any necessary connections
during docking, then automatically recover the routing resources once the microsatellite
has undocked.

Brei et. al. have investigated a passive interconnect architecture known as Active
Velcro [6, 5, 4]. Fig. 15 illustrates the concept*. Mating, Velcro-like surfaces also con-
tain a (possibly large) number of connectors, a proportion of which happen to make
valid connections. Discovering these connections, then routing them via a reconfigurable
manifold, potentially allows extremely straightforward ad-hoc construction. In manned
spaceflight applications, an astronaut could connect or disconnect a piece of equipment
simply by sticking or unsticking it to a Velcro-like pad®. In satellite applications, assum-
ing that launch G force and vibration constraints are met, the same approach could allow
extremely rapid construction and deployment.

3.2 Local routing

In a very small satellite, or within a single subsystem of a more complex satellite, routing
may be exclusively local, i.e. switched only by a single level of switch networks. All
connections in such a case would occur only to the edge of a single manifold, or cluster
of sub-manifolds configured to act logically as a single manifold, with the consequence
that the routing of all signals is equivalent only to routing across the manifold itself.

“Note that this is the author’s rendering, and is intended to be representational of the connectivity
approach rather than an accurate physical description

>The use of Velcro to avoid small object floating around the cabin of manned spacecraft has long been
standard practice.

3.3 SYSTEM LEVEL ROUTING 16

Photo: John Suh, Uniersity o Washington

Figure 14: Microcilia Cell

Randomly spaced contacts

A significant proportion of

contacts make valid
/ / coimections

Velcroff hook-and-loop surfaces

Figure 15: Active Velcro

Computationally, routing for such an architecture is relatively trivial, with complexity of
the order of O(N?) for a crossbar architecture or O(N log N) for a permutation network.

3.3 System level routing

Purely local routing requires a strict star architecture, with the manifold at the hub. This
physical geometry does not suit all applications — in many cases, particularly in larger
spacecraft, it is likely to be more appropriate to distribute the switching around the

3.4 DYNAMIC DISCOVERY 17

—p}
—p}
Candidate ° N DC-DC Scavenged
power pins o N —n Converter supply out
—p}
- 7777

Figure 16: Power Scavenging Circuit

craft. Though it is theoretically possible to construct a large crossbar switch by ganging
together smaller switches, this would be an expensive approach since the amount of
inter-switch cabling would rise in proportion to the square of the number of switches.
A more sensible and practical approach would be to construct a manifold-of-manifolds
with an architecture resembling that of a circuit-switched telephone network — a number
of manifolds handle primarily local connections internally, whilst handing off longer-
distance connections via multicore trunk connections to other manifolds.

Computationally, the system level routing problem tends towards NP in the worst
case (e.g. a manifold-of-manifolds where each manifold consists of exactly one switch
and connectivity between manifolds is arbitrary is essentially the same problem that is
discussed in Section 2.4.5), though the relatively small number of manifolds and rela-
tively large amount of connectivity within each manifold is likely to minimise the conse-
quences of this.

3.4 Dynamic discovery

The dynamic discovery of connections is something that is becoming increasingly common
in general-purpose computing. The USB standard, for example, allows devices to be dis-
covered and configured automatically without significant human intervention. From the
point of view of reconfigurable manifolds, the dynamic discovery problem is somewhat
trickier, in that it is necessary to first power up any neighbouring subsystems, establish
contact with them (potentially with zero prior knowledge of their wiring configuration),
negotiate any required connections, then route the necessary signals. As a second re-
quirement, it is then necessary to continuously re-test the existing connectivity in order
that faults can be corrected and that subsystems coming on line or going off line can be
connected and disconnected correctly.

In this section, the requirements for achieving reliable dynamic discovery, continuous
testing and fault recovery are discussed.

3.4 DYNAMIC DISCOVERY 18

3.4.1 The chicken-and-egg problem

It is a truism that any automatic discovery algorithm can only possibly run on hardware
that is itself powered up. However, if a subsystem’s power connections have not yet been
discovered and configured, it will not (yet) be powered up — hence there is a chicken-and-
egg problem. Though no longer in common use, a well-known solution already exists.
For many years, the most commonly used PC peripheral interface standards, RS232 and
Centronics, both suffered from a design oversight — no power supply pins — that proved
maddening for any hardware engineer attempting to design small peripherals without
separate mains power supply connections. Designers nevertheless succeeded in working
around the limitation by including circuits that scavenged power from the I/0O pins them-
selves. The technique is illustrated in Fig. 16 — a diode network, effectively a large-scale
generalisation of a full-wave rectifier circuit, synthesises power rails effectively by imple-
menting a minimum/maximum function on the voltages that are present. The clamping,
smoothing and DC-DC converter circuitry takes the potentially rather unpredictable raw
output from the diode network and turns it into clean power that can be safely used to
power up discovery circuitry prior to permanent routes being put in place.

Given suitable power scavenging circuits, a feasible power-up procedure for a large,
manifold-of-manifolds architecture might be follows:

1. Power is applied to the first manifold through any arbitrary power pin.

2. The power scavenger circuit synthesises a suitable voltage rail for the embedded
processor and discovery hardware responsible for the manifold.

3. All switches within the manifold are initialised to open circuit

4. The power connection is detected, then connected via the manifold, thereby dis-
abling the diode network. This step avoids the inherent voltage drop across the
diode network, whilst also reducing power consumption and heat dissipation slightly.

5. The manifold starts to listen for connection requests from other subsystems (see
Section 3.4.3)

6. Power is temporarily routed to arbitrary pins on neighbouring subsystems that cur-
rently do not appear to be active, giving them the chance to power up and begin
their own discovery process. They may request that power is supplied through a
different pin, if necessary, or request that the existing pin should remain connected
indefinitely®.

Eventually, all subsystems will be powered up, with the discovery process continuing
to bring online all other necessary connections.
3.4.2 Watchdogs

It is standard practice for embedded processors in high reliability, mission critical and
safety critical systems to be equipped with watchdog circuits, see Fig. 17.

though it may be subject to change as part of the self-test algorithm

3.4 DYNAMIC DISCOVERY 19

Reset 1/0 Port Reset . Time Out
> Timer
Embedded

— CPU

—_—

—

—_—

EE—— —>

—_— EEE——

EE—— —>

—_— EEE——

EE—— —>

Figure 17: Typical watchdog circuit

A watchdog circuit is essentially a simple timer that is periodically reset by the host
processor in such a way that, if the host processor happens to fail to reset it within a
predetermined interval, the watchdog timer performs a hard reset on the host processor.
Generally, this is integrated into a critical loop within the embedded software, such that
if the program crashes this will cause the timer to fail to be reset, causing an automatic
restart of the processor.

At a simplistic level, there is no reason why such a restart should cause problems
for a manifold-of-manifolds architecture, though careful attention must be given to the
following issues:

1. In the event of a watchdog reset, all external connections must be torn down, just
in case the crash was itself caused by a faulty connection or, for example, by a SEE
affecting the manifold itself.

2. Any negotiation protocol must be able to cope, e.g. by implementing timeouts,
with connections going down without any corresponding explicit notification.

3.4.3 Discovery probe circuits

Connection discovery depends upon an ability to safely probe connections to find out
what neighbouring subsystem they are connected to. The outline circuit shown in Fig. 18
shows how a suitable ‘discovery probe’ might be implemented. The circuit shows a
UART (bidirectional serial interface) connected to a host processor, whose serial I/0
ports (marked TxD and RxD) assume good quality, logic-level signals. On the transmit
side, the signal is first buffered in order to protect the UART, then high pass filtered to
achieve AC coupling and connected to the probe output via a resistor, whose value should
be carefully selected in order to limit worst case current in the event of an accidental con-
nection to a power or high current analogue signal to a level that can not cause damage.
On the receive side, a similar current limiting resistor and high pass network protects the
active components from direct connection to otherwise potentially damaging signals. A
DC-coupled linear amplifier boosts the signal, then a Schmidt trigger (comparator with
hysteresis) squares up the signal and raises it to logic levels suitable for the RxD input of

3.4 DYNAMIC DISCOVERY 20

Buffer
XD N

To routing
UART network

\

AAAAS
YYVYVYY

Embedded RxD

—>]
- CPU Gain

Figure 18: A possible discovery probe circuit

Sync Packet
Waveform Header

Payload Checksum

Figure 19: Typical packet format

the UART. Current limiting resistors should be chosen with values that are not too over-
specified, since lower values are likely to result in better noise performance and higher
achievable data rates.

In essence, the probe circuit is a simplified, extremely robust variation of a shared
bus CSMA/CD network interface, in the style of 10Base2 Ethernet. AC coupling and
a relatively high series resistance minimises the chance of damage due to accidental
connection to higher voltage signals, whilst the ability to send and receive digital data
without needing to switch between transmit and receive modes makes implementing
higher level protocols relatively straightforward.

Sending serial data across AC coupled connections requires careful design of the low-
level line protocol. Sending, for example, a long string of ones will cause the voltage to
decay back to a centre value over a period of time that is determined by the time con-
stant of the high pass filter. Similarly, a data packet that consists predominantly of ones
(or zeros) will tend to shift away from the most common value, causing an unwanted
DC bias and consequential reduction in noise margins. Typically this is addressed by
arranging for the data encoding to implicitly retain an equal number of Os and 1s — a
trivial, though inefficient, approach is to spread an 8 bit byte across 16 bits, where each
input bit corresponds to an inverted and a non-inverted copy in the output word. More
efficient encodings exist that spread 2 bytes across 24 bits.

3.4.4 Line protocol

The main function of a suitable line protocol is to allow the discovery of of connections,
then to allow routing negotiation for signals. Probe circuits will typically alternate be-
tween sending packets that announce the identity of the relevant wire and listening for
incoming packets that identify the other side of the connection. A suitable packet format
is likely to follow the pattern shown in Fig. 19. Initially, a synchronisation waveform
begins the transmission, whose purpose is to overcome any DC bias, whilst allowing the

4. DYNAMIC TESTING AND FAULT RECOVERY 21

receiving UART time to lock on to the data. A packet header follows, identifying the kind
of packet that is being sent, followed by the packet payload and finally a checksum.

3.4.5 Connection establishment

Connections are established as follows (assuming a single manifold):

1. Both endpoints announce their identity, and announce the identifier of the signal
that they wish to connect to.

2. Manifold detects the announcements

3. Manifold replies to both end points to say that the connection is being established,
then ceases to probe either connection

4. Manifold establishes the connection, within a predetermined maximum time inter-
val

5. Both endpoints are now free to use the connection.

More complex manifold-of-manifolds architectures will require more complex nego-
tiation and routing, though the necessary protocols are likely to remain similar.

3.4.6 Stale connection tear-down

In the event that a subsystem crashes, stale connections should be torn down after a
known time-out interval. The discovery probe protocol should also allow a connection to
be torn down more rapidly by announcing that a neighbouring connection is no longer in
use. Assuming that a dynamic testing and fault recovery process will be continuously ap-
plied, there is no requirement for a ‘keep alive’ protocol to ensure that valid connections
stay up (see also Section4).

4 Dynamic testing and fault recovery

The same probe architecture necessary for discovery is also well suited to end-to-end
testing of connections — if a connection is faulty (e.g. open circuit, shorted to ground or
shorted to power), it will not be used, since the discovery process will fail to recognise
it. As a consequence of this, at least for a short time after the discovery process has
completed, all discovered connections may be regarded as functioning correctly. Over
time, there is an increasing probability that, for example, permanent latch-up damage to
a digital crossbar switch, may cause one or more connections to fail. This limitation can
be avoided by constantly re-testing connections, ideally such that no connection may be
established for a period longer than the minimum necessary to achieve the desired level
of reliability.

4.1 FAULT RECOVERY PROTOCOL 22

4.1 Fault recovery protocol

There is actually no specific requirement to implement a fault recovery protocol as-such;
the ability to set up and tear down connections, with make-before-break capabilities, is
sufficient. Each end-point manifold should implement the following procedure (discov-
ery and initial establishment of connections is assumed to have happened already):

1. Choose a signal on a round-robin basis

2. Establish a second route to the same remote end-point through the discovery proto-
col, which has the side-effect of ensuring that end-to-end connectivity is currently
valid.

3. Connect the signal to the newly established route, at both ends, whilst leaving the
original connection in place

4. Tear down the original connection

5. Repeat.

Note that in larger systems, connections between manifolds must always provide
sufficient spare connections to allow the discovery protocol to remain in operation at all
times.

The stale connection timeout (see Section 3.4.6) should be longer than the worst-case
time necessary to cycle through all connections.

When a connection fails, it will be repaired automatically the next time that the fault
recovery procedure cycles through the relevant signal, because the failed route will no
longer be detected, so it will naturally fall out of the pool of available connections.

4.2 Graceful degradation

In a situation where cumulative failures have exceeded the number of available connec-
tions, it is sensible to define a graceful degradation strategy in order to maximise the
spacecraft’s remaining functionality. A simple approach is to rank all signals in order of
importance, with signals toward the end of the list simply being disconnected if insuffi-
cient connectivity is available, though more sophisticated approaches may allow greater
levels of recovery:

Routing signals on a less-ideal sub-manifold Normally, for example, digital data would
be routed through dedicated digital switch networks. In the event that insufficient
digital switching capacity remains, it is potentially feasible to route signals through
spare capacity in other switch networks, e.g. via MEMS switching that would nor-
mally be used for microwave signals or via high speed analogue routes.

Multiplexing Manifolds could potentially be equipped with multiplexing hardware, in
order that multiple low speed signals could be routed through a single connection.
Though this may degrade any signals carried in this way, it may still be preferable
to disconnecting signals entirely.

5. CONCLUSIONS 23

Emergency backup routing As an extension to the multiplexing approach, in an emer-
gency backup routes could be established by non-standard means, such as via low
power local digital radio links.

5 Conclusions

At the time of writing, this project is at a relatively early stage; nevertheless, it is possible
Se determine the following advantages of reconfigurable manifolds over conventional
fixed-architecture spacecraft wiring harnesses:

Cost Reduction Since a reconfigurable manifold doesn’t need to be designed from-scratch
for each satellite, considerable cost reductions in terms of initial design, validation
and verification are likely.

Reduction in Time To Launch (Responsive Space) Reduced design effort has a direct
effect in terms of calendar time, potentially helping reduce a design process that is
conventionally measured in years to just weeks or even days.

Possibility for Re-purposing After Launch If a spacecraft is no longer required for its
initial purpose, given a modular design, it is quite likely that it could be re-purposed
after launch at very low cost. For example, an imaging satellite with excess com-
munications bandwidth could, assuming it has enough fuel, be shifted to another
orbit to act as a communications relay.

Disaster Recovery Now legendary, the recovery of Apollo 13 after an explosion that
deprived the command module of all three of its fuel cells and its entire oxygen
reserve, with all crew alive and unhurt [12], was a direct consequence of heroic
efforts to jury-rig the lunar lander’s oxygen systems in order to keep the crew alive.
A conventional satellite has no astronauts with a kit of spare parts available to
make repairs — typically, failures tend to be terminal. A reconfigurable manifold
offers great potential for jury-rigging the craft, either from Earth or possibly au-
tonomously, so as to allow it to continue with some or all of its mission.

Mass reduction By sharing redundant wiring capacity across all subsystems, the total
amount of copper necessary is reduced considerably in comparison with modular-
redundant conventional wiring. At approximately $30,000 per Kg to low earth
orbit, even small savings can have considerable consequences in terms of cost.

5.1 Future Work

We conjecture that, in general, make-before-break switching is not feasible for permu-
tation network based switch fabrics; further theoretical work is necessary in order to
confirm this assumption. Ideally, it is hoped that a (probably non-optimal) permutation
network architecture might be possible that can cope with interruption-free reconfigura-
tion, though it is not clear at the time of writing how this might be achieved.

REFERENCES 24

Many, if not all of the prerequisites for the practical construction of satellites based
upon reconfigurable manifold technology are well-established, so the problem is primar-
ily one of systems integration rather than difficult original R&D. The next step we intend
to take is to build a software simulation of a reconfigurable manifold in order to test the
feasibility of the approach. Beyond that, given appropriate funding and the necessary
political will, it just remains to design a practical implementation and, hopefully, to trial
it in space.

Acknowledgements

This work was supported by the US Air Force Office of Scientific Research Space Vehicles
Directorate, through an EOARD grant. The first author wishes to thank AFOSR at Kirt-
land AFB, and Jim Lyke in particular, for their help and advice, without which this work
would not have been possible.

References

[1] AD8116 - 200 MHz, 16 x 16 Buffered Video Crosspoint Switch. Analog Devices,
2006. http://www.analog.com/en/prod/0,2877,768

[2] High Performance Crossbar Switch for Virtex-II and Virtex-II Pro FPGAs. Xilinx, 2006.
www.xilinx.com/esp/xbarswitch.htm.

[3] BOHRINGER, K. E. A docking system for microsatellites based on microelectrome-
chanical system actuator arrays. Tech. Rep. AFRL-VS-TR-2000-1099, US Air Force
Research Laboratory, Space Vehicles Directorate, September 2000.

[4] BREI, D., AND CLEMENT, J. Proof-of-concept investigation of active velcro for smart
attachment mechanisms. Tech. Rep. AFRL-VS-TR-2000-1097, US Air Force Research
Laboratory, Space Vehicles Directorate, September 2000.

[5] BREI, D., AND CLEMENT, J. Velcro for smart attachment mechanisms. Tech. Rep.
AFRL-VS-TR-2001-1104, US Air Force Research Laboratory, Space Vehicles Direc-
torate, August 2001.

[6] CLEMENT, J. W., AND BREI, D. E. Proof-of-concept investigation of Active Velcro
for smart attachment mechanisms. In In Proc. 42nd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference and Exhibit (2001). AIAA
Paper 2001-1503 (AIAA Accession number 25238).

[7] FousT, J. Smallsats and standardization. The Space Review (2005).

[8] JosHI, P B. On-orbit asssembly of a universally interlocking modular spacecraft
(7225-020). Tech. Rep. NASA SBIR 2003 Solicitation Proposal 03- II F5.03-8890,
NASA, 2003.

REFERENCES 25

[9] LYkE, J., WILSON, W., AND CONTINO, P MEMS-based reconfigurable manifold. In
Proc. MAPLD (2005).

[10] StoIcA, A., ARSLAN, T., KEYMEULEN, D., DUONG, V., Guo, X., ZEBULUM, R., FER-
GUSON, 1., AND DAUD, T. Evolutionary recovery of electronic circuits from radiation
induced faults. In Proc. IEEE Conference on Evolutionary Computation (2004), CEC.

[11] SuH, J. W., DARLING, R. B., BOHRINGER, K. E., DONALD, B., BALTES, H., AND
Kovacs, G. T. A. SMOS integrated ciliary actuator array as a general-purpose
micromanipulation tool for small objects. 1999.

[12] TURNILL, R. The Moonlandings: an eyewitness account. Cambridge, 2003.

	seger.pdf
	The design of a floating point unit using the Integrated Design and Verification (IDV) system.
	Dr. Carl Seger, Strategic CAD Labs, Intel Corp.

