
Two-level Languages and Circuit Design and Synthesis

Walid Taha∗
Rice University, Houston, TX, USA.

taha@rice.edu

The next two decades are anticipated to move digital circuit de-
sign from the million transistor level to the billion and trillion tran-
sistor levels. In addition to challenges that this goal poses at the
physical level, fundamental computational complexity barriers sug-
gest that common design and verification tasks can also become a
bottleneck. Examples include placement and routing, as well as a
host of design rule checking (DRC) techniques. Increase in circuit
size will increase both on the time needed for DRC (from days to
weeks or months) as well as the overall effort needed to produce a
design likely to pass a DRC check. At the same time, increasing
variability in implementation technologies and their characteristics
will fuel the need for better methods to manage families of related
circuits.

New programming language techniques recently developed to
improve software design can provide a powerful tool for manag-
ing and checking families of related circuits. Program generation
techniques in general, and two-level languages in particular, have
been proposed and found to be useful for managing families of re-
lated software products. Static type checking in general, and depen-
dent type systems in particular, have been proposed and found to be
useful for early checking of a wide range of properties that would
otherwise be expensive to check in generated programs. Our goal
is to show that adapting these techniques to the specific needs of
circuit design can lead to fundamental changes to the design pro-
cess. In particular, it would allow the capture of significant design
experience in the form of executableand statically checkablespec-
ifications for families of related circuits. Such specifications would
be highly parameterized with respect to the specifics of the manu-
facturing technology, as well as the specifics of the problem being
solved and the rest of the design. Comprehensive, manifest inter-
faces would allow fast, compositional checking of compatibility
with the rest of the design.

Over the last two years we have made concrete advances toward
this ambitious, long-term goal. Our first study showed that a stan-
dard type system for two-level languages can be systematically in-
tegrated with a type system for a resource-bounded language [5].
The result of such an integration, called a resource-aware program-
ming (RAP) language [4], provides an expressive (non-resource
bounded) language for writing generators of resource bounded com-
putations. At the same type, a static type system is provided that
checks that a generator can only generate well-formed, resource-
bounded computations. Depending on the specific resources con-
sidered, such resource-bounded programs can be embedded soft-
ware systems or hardware circuits.

A case study focusing on FFT showed that annotated versions
of the basic Cooley-Tuckey recurrence can be executed as gener-
ators to produce high-quality circuits [2, 3]. In addition to con-
firming that this family of circuits specified by a generator closely
resembling the textbook form of the standard recurrence, the exper-
iment lead directly to two intriguing insight about FFT: First, unlike

∗Joint work with Stephan Ellner, Oleg Kiselyov, and Gregory
Malecha. Funded by the National Science Foundation, the Texas
Advanced Technology Program, National Instruments, and a grant
from Rice University.

what the work on FFTW suggests, only a small number of domain-
specific optimizations is needed to generate FFT circuits with the
same arithmetic operation count as Split-radix or FFTW. Second,
producing circuits that have counts identical to either Split-radix or
FFTW requiresonly changing the definition of complex multipli-
cation.

The RAP approach uses a purely functional language to describe
hardware circuits, and so should be viewed as a direct descendant
of Sheeran’s family of hardware description languages. Focusing
on two-level languages amounts to pursuing the insight that circuits
are a strict subset of the generation language. Focusing on statically
typed two-level languages reflects emphasis performing the check-
ing at the level of afamily of circuits rather than on an individual
circuits. It is useful to note that this approach is complementary
to model checking, which can perform more extensive, albeit more
computationally intensive, checking on individual circuits.

Our emphasis on static checking discourages the transformation
of circuits after they are generated. This contrasts with the trans-
formational approach promoted by reFLect. Instead of first gen-
erating and then transforming, our approach focus on incorporat-
ing domain-specific optimizations directly in the generator. This
approach can have a number of benefits. First, the designer can
follow the methodology of abstract interpretation, widely used for
program analysis, as a method for building optimizing generators
that are correct by construction. The approach allows us to preserve
the extensional nature of generated objects, and preserves strong
reasoning principles. Second, avoiding the generation of numer-
ous intermediate circuits can greatly improve the efficiency of the
generation process.

Our recent and ongoing work focuses on the formal treatment
of the connection between circuits and programs to allow the in-
corporation of various non-textual concepts into standard formal
accounts of two-level languages [1]. Over the last year, we worked
on building a prototype implementation to facilitate further work in
this particular research direction. The prototype, called PreVIEW,
implements the translations between the graphical and textual rep-
resentations used in our formal studies, in addition to implementing
basic circuit layout algorithms.

1. REFERENCES
[1] Stephan Ellner. PreVIEW: An untyped graphical calculus for

resource-aware programming. Masters thesis, Rice University,
2004.

[2] Oleg Kiselyov, Kedar Swadi, and Walid Taha. A methodology
for generating verified combinatorial circuits.EMSOFT ’04,
Pisa, Italy, 2004.

[3] Oleg Kiselyov and Walid Taha. Relating FFTW and split
radix. ICESS ’04, Hangzhou, China, 2004.

[4] Walid Taha. Resource-aware programming.ICESS ’04,
Hangzhou, China, 2004. Invited Paper.

[5] Walid Taha, Stephan Ellner, and Hongwei Xi. Generating
Imperative, Heap-Bounded Programs in a Functional Setting.
EMSOFT’03, Philadelphia, PA, October 2003.


