
Automating the Verification of RTL-Level Pipelined
Machines
Panagiotis Manolios
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30318

Email: manolios@cc.gatech.edu

I. I NTRODUCTION

There are two major approaches to pipelined machine veri-
fication. The first is based on the use of theorem provers such
as ACL2 [2]. This approach is quite general and can be used
to reason about machines defined at the RTL level, but the cost
in terms of expert human guidance is quite high. The second
approach is based on decision procedures such as UCLID [1].
This approach is very automatic,e.g., in a carefully constructed
experiment, problems that took ACL2 days took seconds with
UCLID [4]. Unfortunately, this approach has several problems.
For example, pipelined machines that exceed the complexity
threshold of the tools used, which happens rather easily, cannot
be analyzed. Another serious limitation is that the pipelined
machine models used are term-level models: they abstract
away the datapath, implement a small subset of the instruction
set, require the use of numerous abstractions, and are far from
executable. To be industrially useful, we need both automation
and a firm connection to the RTL level. In this paper, we
outline possible solutions and challenges.

II. REFINEMENT

We view pipelined machine verification as an instance of
the refinement problem: given an abstract specification, the
instruction set architecture (ISA), and a concrete specifica-
tion, the pipelined machine, show that the pipelined machine
refines (implements) the instruction set. The exact theory of
refinement we use is based on WEB-refinement, a theory
of refinement that is compositional and preserves safety and
liveness properties [3]. A refinement proof is relative to a
refinement map, a function from pipeline states to ISA states
that shows one how to view a pipeline state as an ISA state.
Refinement plays a key enabling role in reasoning about
RTL-level designs, because it allows us to confidently and
easily reason about multiple levels of abstraction, something
which we consider to be required for any successful approach
to RTL-level verification. We have exploited this aspect of
refinement already, as we show in the next few sections.

III. C OMPOSITIONAL REASONING

We have developed a compositional reasoning framework
based on refinement that consists of a set of convenient,

This research was funded in part by NSF grants CCF-0429924, IIS-
0417413, and CCF-0438871.

easily-applicable, and complete compositional proof rules [5].
Our framework greatly extends the applicability of decision
procedures,e.g., we were able to verify, in seconds, a complex,
deeply pipelined machine that state-of-the-art tools cannot
currently handle. Our framework can be added to the design
cycle, which is also compositional. In addition, one of the
most important benefits of our approach over current methods
is that the counterexamples generated tend to be much simpler,
in terms of size and number of simulation steps involved and
can be generated much more quickly.

IV. COMBINING ACL2 AND UCLID

As an initial step towards verifying RTL-level designs, we
have combined ACL2 and UCLID in order to verify pipelined
machine models with bit-level interfaces [6]. We use ACL2 to
reduce the proof that an executable, bit-level machine refines
its instruction set architecture to a proof that a term level
abstraction of the bit-level machine refines the instruction set
architecture, which is then handled automatically by UCLID.
The amount of effort required is about 3-4 times the effort
required to prove the term-level model correct using only
UCLID. This allows us to exploit the strengths of ACL2 and
UCLID to prove theorems that are not possible to even state
using UCLID and that would require prohibitively more effort
using just ACL2.

V. I NCREASEDAUTOMATION

We view our work on compositional reasoning and on
combining ACL2 and UCLID as promising first steps. Clearly,
compositional reasoning will be needed to allow us to handle
the verification problems one component at a time. With regard
to RTL-level reasoning, our work has shown that we can
automate the problem to within a small constant factor of what
can be done for term-level models, but it will be important
to change the factor to1 + ε. Several ideas for doing this
include: developing a pattern database that with some intel-
ligent search that can automatically decompose verification
problems, automating some of the simpler refinement steps we
currently perform, using counter-example guided abstraction-
refinement to automatically abstract RTL designs to term-level
designs, automating the handling of memories and register
files, improved decision procedures, and creating analysesthat
work directly on hardware description languages.



REFERENCES

[1] R. E. Bryant, S. K. Lahiri, and S. Seshia. Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions
and uninterpreted functions. In E. Brinksma and K. Larsen, editors,
Computer-Aided Verification–CAV 2002, volume 2404 ofLNCS, pages
78–92. Springer-Verlag, 2002.

[2] M. Kaufmann, P. Manolios, and J. S. Moore.Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, July 2000.

[3] P. Manolios. Mechanical Verification of Reactive Systems. PhD thesis,
University of Texas at Austin, August 2001. See URLhttp://-
www.cc.gatech.edu/∼manolios/publications.html.

[4] P. Manolios and S. Srinivasan. A suite of hard ACL2 theorems arising in
refinement-based processor verification. In M. Kaufmann and J.S. Moore,
editors,Fifth International Workshop on the ACL2 Theorem Prover and
Its Applications (ACL2-2004), November 2004. See URLhttp://-
www.cs.utexas.edu/users/moore/acl2/workshop-2004/.

[5] P. Manolios and S. Srinivasan. A complete compositional reasoning
framework for the efficient verification of pipelined machines. In ICCAD-
2005, International Conference on Computer-Aided Design, 2005.

[6] P. Manolios and S. Srinivasan. Verification of executable pipelined ma-
chines with bit-level interfaces. InICCAD-2005, International Conference
on Computer-Aided Design, 2005.


