
DCC 2006 SubmissionASP-DAC 2006

1

Counterexample Guided Abstraction Refinement (CEGAR for short) has been shown to be an
effective paradigm in a variety of hardware and software verification scenarios. Originally pio-
neered by Kurshan [7], it has since been adopted by several researchers as a powerful means for
coping with verification complexity. The wide-spread use of such a paradigm hinges, however, on
the automation of its abstraction and refinement phases. Without automation, CEGAR requires
laborious user intervention to choose the right abstractions and refinements based on a detailed
understanding of the intricate interactions among the components of the design being verified.
Clarke et al. [3], Jain et al. [5], and Dill et al. [2] have successfully demonstrated the automation
of abstraction and refinement in the context of model checking for safety properties of hardware
and software systems. In particular, these approaches create a smaller abstract transition system
from the underlying concrete transition system and iteratively refine it with the spurious coun-
terexamples produced by the model checker. The approaches in [3] and [5] are additionally based
on the extraction of unsatisfiability explanations derived from the infeasible counterexamples to
provide stronger refinement of the abstract model and to significantly reduce the number of
refinement iterations.

All of these approaches are examples of predicate abstraction which essentially projects the
concrete model onto a given set of relevant predicates to produce an abstraction suitable for
model checking a given property. In contrast, we describe in [1] a methodology for datapath
abstraction that is particularly suited for equivalence checking. In this approach, datapath com-
ponents in behavioral Verilog models are automatically abstracted to uninterpreted functions
and predicates while refinement is performed manually using the ACL2 theorem prover [6]. 

The use of (near)-minimal explanations of unsatisfiability forms the basis of another class of
abstraction methods. These include the work of Gupta et al. [4] and McMillan et al. [8] who
employ “proof analysis” techniques to create an abstraction from an unsatisfiable concrete
bounded model checking (BMC) instance of a given depth.

In this talk we explore the application of CEGAR in the context of microprocessor correspon-
dence checking. The approach is based on automatic datapath abstraction as in [1] augmented
with automatic refinement using minimal unsatisfiable subset (MUS) extraction. One of our
main conclusions is the necessity of basing refinement on the extraction of MUSes from both the
abstract and concrete models. Additionally, refinement tends to converge faster when multiple
MUSes are extracted in each iteration. Finally, localization and generalization of spurious coun-
terexamples are also shown to be crucial for refinement to converge quickly. We will describe our
implementation of these ideas in the Reveal system and discuss the effectiveness of the various
refinement options in the verification of a few benchmarks.

Microprocessor Verification Based on
Datapath Abstraction and Refinement
Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122

{zandrawi,liffiton,karem}@eecs.umich.edu



DCC 2006 SubmissionASP-DAC 2006

2

REFERENCES
[1] Z. S. Andraus and K. A. Sakallah, “Automatic Abstraction of Verilog Models”, In Proceed-

ings of 41st Design Automation Conference 2004, pp. 218-223.
[2] S. Das and D. Dill, “Successive Approximation of Abstract Transition Relations” in 16th

Annual IEEE Symposium on Logic in Computer Science (LICS) 2001.
[3] E. Clarke, O. Grumberg. S. Jha, Y. Lu and H. Veith, “Counterexample-Guided Abstraction

Refinement,” In CAV 2000, pp. 154-169.
[4] A. Gupta, M. Ganai, Z. Yang, and P. Ashar, “Iterative Abstraction Using SAT-based BMC

with Proof Analysis.” In Proc. of the International Conference on CAD, pp. 416-423, Nov.
2003.

[5] H. Jain, D. Kroening and E. Clarke, “Predicate Abstraction and Verification of Verilog,”
Technical Report CMU-CS-04-139.

[6] M. Kaufmann and J. Moore, “An Industrial Strength Theorem Prover for a Logic Based on
Common Lisp.” IEEE Transactions on Software Engineering 23(4), April 1997, pp. 203-213.

[7] R. Kurshan, “Computer-Aided Verification of Coordinating Processes: The Automata-Theo-
ritic Approach,” Princeton University Press, 1999.

[8] K. L. McMillan and N. Amla, “Automatic Abstraction without Counterexamples.” In Inter-
national Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’03), pp. 2-17, Warsaw, Poland, April, 2003, LNCS 2619.


