
Is Feature-Oriented Verification Useful for Hardware?

Kathi Fisler and Shriram Krishnamurthi

November 12, 2005

The structure of designs too often fails verification. Isolating fragments of designs that impact a particular
property can make verification significantly more tractable. Because performing this isolation is challenging,
verifiers often rely on the modular structure of the design for guidance. Unfortunately, the portions of
designs that impact properties often span several modules. As a result, the verification engineer either has
to decompose the properties around the design modules or apply more sophisticated decomposition methods
that do not directly exploit the modular structure. This seems a lost opportunity, and raises a question: are
there modularizations that enable designers to naturally express more of their knowledge that matters for
verification?

Modules in hardware description languages generally correspond to physical subcomponents of a system
(such as the cpu or ram). Aligning design modules with physical components seems natural. Over the
last decade, however, many researchers in software engineering and programming languages have explored
modules that encapsulate user-defined features rather than fragments of implementations [1, 5, 8]. Intuitively,
a feature is a piece of system functionality that is meaningful to an end user (an identifiable piece of
functionality that an end user would pay for). A single system is a composition of the features that the
end user wants. The large number of systems definable from a common set of features form a product-line.
Feature-based constructs are uncommon, but not new, in hardware specification languages. The extend

construct in Verisity’s e language was motivated by the work on features from the software community [4].
To the best of our knowledge, however, they have not exploited this modularization for verification.

Feature-oriented modules are attractive in verification because properties often describe user-identifiable
traits of a system. Many properties align with small sets of features. This alignment reduces, and often
eliminates, the need for property decomposition. Features also support incremental reasoning about designs
as they evolve. They suggest a two-stage verification methodology in which properties are first checked
against individual features to determine constraints that the feature places on the rest of the system. As
features are composed into products, the constraints are checked using lightweight analysis techniques. The
constraints enable incremental verification and amortize verification costs over many products built from the
same core features.

Over the last 5 years, we have been developing theories of incremental and modular model checking for
feature-oriented systems expressed as state machines [6, 7]. Our work has shown that features induce a form
of module composition that lies between purely sequential and purely parallel composition [3]. Furthermore,
modular verification in this framework is best viewed as a combination of constraint generation and constraint
solving, rather than as compositions of results from straightforward model checking [2]. Our work to date is
largely theoretical but has been prototyped (with implementation) against some actual software designs.

The talk has two goals: first, to give an overview of the benefits, assumptions, and challenges of feature-
oriented modeling and verification; second, to spark discussion as to whether this style has a meaningful
role in hardware design. Key questions include (1) the extent to which features are useful for large-scale
organization of hardware designs, (2) how hardware design flows might exploit the opportunities for incre-
mental verification that features enable, and (3) how well feature-based decompositions align with challenging
hardware verification tasks.

1



References

[1] Don Batory, Clay Johnson, Bob MacDonald, and Dale von Heeder. Achieving extensibility through
product-lines and domain-specific languages: A case study. ACM Transactions on Software Engineering

and Methodology, April 2002.

[2] Colin Blundell, Kathi Fisler, Shriram Krishnamurthi, and Pascal Van Hentenryck. Parameterized in-
terfaces for open system verification of product lines. In IEEE International Conference on Automated

Software Engineering, 2004.

[3] Kathi Fisler and Shriram Krishnamurthi. Modular verification of collaboration-based software designs.
In Symposium on the Foundations of Software Engineering, pages 152–163. ACM Press, September 2001.

[4] Yoav Hollander, Matthew Morley, and Amos Noy. The e language: A fresh separation of concerns. In
Proceedings of TOOLS Europe, March 2001.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented
programming. In European Conference on Object-Oriented Programming, pages 220–242, 1997.

[6] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg. Verifying aspect advice modularly. In
Symposium on the Foundations of Software Engineering, November 2004.

[7] Harry Li, Shriram Krishnamurthi, and Kathi Fisler. Modular verification of open features through
three-valued model checking. Journal of Automated Software Engineering, 12(3):349–382, July 2005.

[8] H. Ossher and P. Tarr. Multi-dimensional separation of concerns in hyperspace. Technical Report RC
21452(96717), IBM, April 1999.

2


