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The structure of designs too often fails verification. Isolating fragments of designs that impact a particular
property can make verification significantly more tractable. Because performing this isolation is challenging,
verifiers often rely on the modular structure of the design for guidance. Unfortunately, the portions of
designs that impact properties often span several modules. As a result, the verification engineer either has
to decompose the properties around the design modules or apply more sophisticated decomposition methods
that do not directly exploit the modular structure. This seems a lost opportunity, and raises a question: are
there modularizations that enable designers to naturally express more of their knowledge that matters for
verification?

Modules in hardware description languages generally correspond to physical subcomponents of a system
(such as the cpu or ram). Aligning design modules with physical components seems natural. Over the
last decade, however, many researchers in software engineering and programming languages have explored
modules that encapsulate user-defined features rather than fragments of implementations [1, 5, 8]. Intuitively,
a feature is a piece of system functionality that is meaningful to an end user (an identifiable piece of
functionality that an end user would pay for). A single system is a composition of the features that the
end user wants. The large number of systems definable from a common set of features form a product-line.
Feature-based constructs are uncommon, but not new, in hardware specification languages. The extend

construct in Verisity’s e language was motivated by the work on features from the software community [4].
To the best of our knowledge, however, they have not exploited this modularization for verification.

Feature-oriented modules are attractive in verification because properties often describe user-identifiable
traits of a system. Many properties align with small sets of features. This alignment reduces, and often
eliminates, the need for property decomposition. Features also support incremental reasoning about designs
as they evolve. They suggest a two-stage verification methodology in which properties are first checked
against individual features to determine constraints that the feature places on the rest of the system. As
features are composed into products, the constraints are checked using lightweight analysis techniques. The
constraints enable incremental verification and amortize verification costs over many products built from the
same core features.

Over the last 5 years, we have been developing theories of incremental and modular model checking for
feature-oriented systems expressed as state machines [6, 7]. Our work has shown that features induce a form
of module composition that lies between purely sequential and purely parallel composition [3]. Furthermore,
modular verification in this framework is best viewed as a combination of constraint generation and constraint
solving, rather than as compositions of results from straightforward model checking [2]. Our work to date is
largely theoretical but has been prototyped (with implementation) against some actual software designs.

The talk has two goals: first, to give an overview of the benefits, assumptions, and challenges of feature-
oriented modeling and verification; second, to spark discussion as to whether this style has a meaningful
role in hardware design. Key questions include (1) the extent to which features are useful for large-scale
organization of hardware designs, (2) how hardware design flows might exploit the opportunities for incre-
mental verification that features enable, and (3) how well feature-based decompositions align with challenging
hardware verification tasks.
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