Wired - a Language for Describing Non-Functional
Properties of Digital Circuits

Emil Axelsson, Koen Claessen and Mary Sheeran
Chalmers University of Technology

Abstract

Increasingly, designers need to estimate non-functional prop-
erties such as area, power consumption and timing, even
when working at a high level of abstraction, early in the de-
sign. In deep sub-micron processes, it is the routing wires
that account for most of the power consumption and signal
delays. So, information about the wires is vital for con-
trolling non-functional properties. To deal with more and
more complex constructions, current design methods and
languages strive towards higher and higher levels of abstrac-
tion, and provide only very limited possibilities for low-level
control. Often, detailed information about wire properties is
only available in the very last design stages - after placement
and routing.

We propose a language, Wired, that aims to bridge this
gap in abstraction levels. The main idea is construction
with combinators, an approach previously used in Ruby and
Lava [3, 1]. Regular circuits, such as arrays and trees, are
described with generic higher-order connection patterns [1].
The key to the usefulness of this style is that the connection
patterns have both functional and geometric interpretations.
This allows us to construct circuits at high-level, without
loosing control over lower levels. The descriptions have a
recursive structure, with the leaves being primitive building
blocks.

What distinguishes Wired from previous work is: (1) There
is a clear distinction between circuits with geometry (hard
circuits), and those without (soft circuits). The hard circuits
have a more strict geometrical interpretation than in Lava.
(2) Wires are circuits with size, and are not implicit. In
order to take wire properties into account, wires shouldn’t
be treated as anything but normal circuits. (3) Circuits are
3-dimensional objects. This is necessary in order to describe
circuits with several metal layers, or the 3-dimensional cir-
cuits that may soon appear [6]. However, in our first proto-
type, used to explore our ideas, we only model 2-dimensional
circuits.

In 2D Wired, a hard circuit is a rectangle, whose four sides
are called ports. Each port is a sequence of unit-size contact
segments, where each segment can be either a connection or
an insulator. Note that circuit (and wire) size is encoded
in this way. The contact sequence is referred to as the type
of the port, and the port can only be connected to other
ports with the same type. This ensures that no unintentional
connection/insulator mismatches are made. When two cir-
cuits are composed horizontally, using the beside combina-
tor, for example, the top and bottom ports of the resulting
circuit are structured into a pair of ports, giving them a type
that can only be connected to other pairs. To convert be-
tween different types, a special thin circuit, called port map,
is used. It can, however, not change the location of the
contacts - only rearrange the structure of lists and tuples
into which they are gathered. Having ports with structure
makes it possible to describe connection patterns using re-
cursion over port lists. This results in one type of generic
circuits. We also have primitive wires with generic length.
This genericity is also reflected in the port types of such a
circuit, and we can use the type system to instantiate the
generic circuits by placing them in a context of circuits with
known types.

Soft circuits describe circuit function only. We are still de-
bating whether to use relational or functional descriptions
here, and at present we simply use ordinary Lava descrip-
tions. A hard primitive is made by giving ports to a soft
circuit (soft-to-hard conversion), and mapping the soft cir-
cuit’s signals unto the connections in the ports. We think of
nailing down the wires. A description of a hard circuit can
also be converted back into a soft circuit (hard-to-soft con-
version). This is useful when, for example, we want to con-
nect two hard circuits and the wiring is too hard to describe.
A construction could contain a mix of hard and soft parts,
and we hope to have an interaction, where Wired takes care
of the hard parts, and place-and-route tools implement the
soft parts.

This is work in progress. We are currently studying the
effect of different placement alternatives on wire length in
a high-speed multiplier [2]. We plan also to tackle layout
aware synthesis of arithmetic circuits (see [5, 4]). This will
involve combining Wired with the idea of clever circuits [7].



Acknowledgement

This research is funded by the Semiconductor Research Cor-
poration, in an Intel-custom research project called Express-
ing and Estimating Non-Functional Properties of Circuits
(TASK ID 1041.001).

1.
1]

REFERENCES
K. Claessen, M. Sheeran and S. Singh: The design and
verification of a sorter core. Proceedings of the 11th
Advanced Working Conference on Correct Hardware
Design and Verification Methods, vol. 2144 of LNCS,
Springer-Verlag, 2001.

H. Eriksson, P. Larsson-Edefors, and W. P. Marnane:
” A Regular Parallel Multiplier Which Utilizes
Multiple Carry-Propagate Adders”. Proceedings of
IEEE International Symposium on Circuits and
Systems, 2001.

G. Jones and M. Sheeran: Circuit design in Ruby. In
Formal Methods for VLSI Design, J. Staunstrup ed.,
North-Holland, 1990.

Junhyung Um and Taewhan Kim: Layout-Aware
Synthesis of Arithmetic Circuits. Proceedings Design
Automation Conference, 2002.

C. Martel, V. Oklobdzija, R. Ravi, and P. Stelling:
Design strategies for optimal multiplier circuits.
Proceedings 12th Symposium on Computer
Arithmetic, 12:42-49, 1995.

Matrix Semiconductor Inc.,
http://www.matrixsemi.com

M. Sheeran: Finding regularity: describing and
analysing circuits that are not quite regular.
Proceedings 12th Advanced Research Working
Conference on Correct Hardware Design and
Verification Methods, vol. 2860 of LNCS,
Springer-Verlag, 2003.



