MUTAGEN: Faster Mutation-Based Random Testing

Agustin Mista
Chalmers University of Technology
Gothenburg, Sweden
mista@chalmers.se

Abstract—We present MUTAGEN, a fully automated mutation-
oriented framework for property-based testing. Our tool uses
novel heuristics to improve the performance of the testing loop,
and it is capable of finding complex bugs within seconds. We eval-
uate MUTAGEN by generating random WebAssembly programs
that we use to find bugs in a faulty validator.

Index Terms—random testing, mutation, heuristics

I. INTRODUCTION

Using randomly generated inputs is a popular and powerful
approach when it comes to testing software [1]. While plenty,
the tools designed for this purpose can be divided into two
main categories: those that use an existing corpus of inputs,
and those that generate such inputs from scratch.

On one hand, corpus-based tools create new inputs by com-
bining and mutating seeds from their input corpora using sev-
eral heuristics [2], [3]. Being mostly black-box, this approach
is often limited by the lack of knowledge about the structure of
its inputs, although there exist efforts to improve this situation,
e.g., by using grammars describing the syntactic structure of
the generated data while combining seeds in order to produce
syntactically valid test cases [4]-[6].

On the other hand, generational approaches can circumvent
this limitation by generating valid data from scratch using spe-
cialized random generators [7]-[10]. However, writing good
random generators by hand is a demanding task that involves
several iterations of trial and error and can take hundreds of
hours [11]. While there exist tools that tackle this problem
by automatically synthesizing (with varying degrees of com-
plexity) random generators directly from the static information
present in the codebase [12]-[15], such approaches are unable
to derive suitable generators when the target data involves
complex invariants like those required to generate random
programs, e.g., well-scopedness and well-typedness. In such
cases, generators obtained by automatic tools are extremely
unlikely to produce random data with enough structure to
penetrate deep layers of our systems before being discarded.

Recently, Lampropoulos et al. introduced FuzzChick [11],
a property-based testing framework for the Coq programming
language that borrows ideas from the fuzzing community to
generate highly structured values while using automatically
derived generators. Instead of continuously generating random
invalid test cases from scratch, FuzzChick keeps a queue of
interesting previously executed test cases that can be mutated
using type-preserving transformations in order to produce new
ones. The logic behind this is simple, mutating an interesting
test case in a small way (at the data constructor level) has a

much higher probability of producing a new interesting test
case than generating a new one from scratch using a naive gen-
erator. FuzzChick is likely to preserve the semantic structure
of the mutated data, as mutations are applied directly at the
data type level — the random AST in case of generating code.

In order to work in practice, FuzzChick relies on execution
traces to distinguish which executed test cases were interest-
ing and are therefore worth mutating. Mutated test cases are
considered interesting for mutation only when they produce
new execution traces — any other test case is simply discarded.
While powerful, the implementation of FuzzChick is relatively
simple, leaving the door open for future extensions.

In this work we present MUTAGEN, a random property-
based testing framework implemented in the strongly typed
language Haskell that follows the mutational approach be-
hind FuzzChick, extending it with novel mutation heuristics
designed to converge to counterexamples in fewer tests. We
outline these heuristics in the next section and evaluate them
in Section III.

II. MUTAGEN’S HEURISTICS

This section introduces some of MUTAGEN’s novel heuristics.
a) Exhaustive Uniform Mutations: Perhaps the biggest
distinction between FuzzChick and MUTAGEN lies in how
mutations are applied over test cases. Along with random
data generators, FuzzChick automatically derives simple type-
preserving mutators. These mutators work in a simple recur-
sive manner: with uniform probability, they either mutate a
node at the top level of the given value, or apply a mutation re-
cursively to one of its subexpressions. This mechanism favors
mutations to happen on the shallower levels of their inputs,
while deeper mutations are unlikely to happen due to the mul-
tiplicative decline of their probability on each recursive call.
To find complex bugs, we believe that mutations should
be able to occur deep inside of the generated values in a
reasonable proportion. To allow this, the mutators derived by
our tool follow a different approach. They first traverse the
input, collecting the path to each mutable subexpression. Then,
the testing loop schedules mutations targeted over each one of
them, ensuring that all of them are mutated in a timely manner.
Furthermore, for a given target subexpression, the testing
loop produces and tests every possible mutation exhaustively,
reducing the reliance on randomness in order to find bugs.
This approach is inspired by exhaustive testing tools like
SmallCheck [16] or Korat [17]. However, testing mutations
exhaustively comes attached to a high testing cost per test

Bug QuickCheck MUTAGEN MUTAGEN (no inheritance) MUTAGEN (no scheduling)
Time (s) | Passed | Discarded | Time (s) | Passed | Discarded | Time (s) | Passed | Discarded | Time (s) Passed Discarded
1 N/A 14.8 1000000 2.16 2194 11706.7 4.06 4079 15123.3 3659.45 | 101536.4 | 134107.1
2 N/A 12.7 1000000 0.07 83.7 131.6 0.23 159.5 206.5 0.33 261.9 234
3 N/A 14.9 1000000 0.03 56.7 91.8 0.04 51 71.9 0.28 217.2 107.1
4 N/A 13.7 1000000 0.21 157.2 314.2 0.63 4272 903.3 10.85 6740.6 7372.2
5 N/A 14.3 1000000 6.45 6464 34856 0.82 560.1 1543.6 454.26 315779 43837.5

Table 1. Time to first failure, passed and discarded tests accross different bugs for the faulty WebAssembly validator. Mean values computed after 10 executions.

candidate, so the next heuristic is, in part, focused on reducing
the time complexity of the testing loop of our tool.

b) Mutation Inheritance: The second mutation heuristic
focuses on preserving the semantically important subexpres-
sions generated on previous steps. For this purpose, child
mutants keep a record of the subexpressions that were already
mutated by their ancestors. This allows each mutant to focus
on the previously untouched subexpressions, as well as the
ones freshly generated by its parent.

As a consequence, this heuristic greatly reduces the avail-
able positions where mutations can occur on each new mutant.
This, in turn, helps to cope with the cost of running mutations
exhaustively, as described above.

¢) Mutants Scheduling: FuzzChick keeps a queue of mu-
tation candidates obtained by analyzing the execution trace of
every executed mutant. If a candidate executes a completely
new branch in the code, it is inserted at the end of the queue,
and the testing loop will first have to process every candidate
ahead of it before it can start mutating this new (and likely
more interesting) test case.

To account for this, our tool uses a preemptive (FIFO)
schedule with priority for scheduling mutant candidates. In
this setting, we capture the depth at which each new execution
trace differs from all the previous ones. This depth is later used
to give more priority to those candidates that “discover” new
parts of the code at earlier stages, favoring a wider traversal
of the execution trace space in less time.

III. CASE STUDY: WEBASSEMBLY VALIDATOR

This section evaluates how the heuristics implemented in
our MUTAGEN affect the testing performance. For this pur-
pose, we use the validator of the WebAssembly programming
language [18] as a case study. We took an exiting Haskell
implementation of the WebAssembly validator [19] and in-
jected several bugs into it. These bugs let invalid WebAssem-
bly modules pass the validation process. Then, we tested for
false positives of the faulty validator by comparing it against
the output of the validator from the WebAssembly reference
implementation (written in OCaml). This was expressed using
the following property:
prop_valid :: WasmModule —-> Result
prop_valid wasm = validHs wasm ==> validOCaml wasm

Using validHs as a precondition, we avoid executing the
reference validator on invalid modules. Instead, they get auto-
matically discarded and the testing loop continues.

Table 1 shows the performance of our tool against
QuickCheck [20] (the reference tool for random testing in
Haskell) across five different bugs, using the same automati-
cally derived random generator. To evaluate the effectiveness
of our inheritance and scheduling heuristics, we included the
results obtained when they are disabled.

Unsurprisingly, QuickCheck fails to find any of the bugs we
planted after generating more than a million values. This is
because the automatically derived generator is virtually unable
to produce valid modules on its own. In comparison, MUTA-
GEN is able to find all the bugs in a couple of seconds. Guided
by the execution traces, the type-preserving mutations that our
tool applies allows us to run a much larger number of valid
WebAssembly modules through the reference validator, which
in turn helps finding bugs faster. As an example of the level of
invariants required to find bugs, the following WebAssembly

module AST is a counterexample for bug #1:
Module {
types=[FuncType{params=[],
functions=|[
Function{resultType=0,
I32Const O,

results=[]}],

localTypes=[], body=[

If{resultType=[], then=[], else=[I32Const 0]}11},
tables=[], mems=[], globals=[], elems=[],
datas=[], start=Nothing, imports=[], exports=[],

}

This bug causes false validations by not checking that the
type of an else branch in an if expression matches that of
the then one. Despite this, several other things need to be
in place for this value to be considered valid: the type of
the generated function must be declared beforehand, and the
function must refer to it by its index in the types list (marked
in red). Moreover, the type of its actual outputs must match
the one declared by its type (marked in blue). Generating
valid modules satisfying such invariants is extremely rare
using automatically derived generators.

If we look at the effect of our heuristics, we can observe
that mutation inheritance can provide substantial speedups in
most cases. In the case of bug #5, however, disabling mutation
inheritance seems to help as a shortcut to find counterexamples
faster. This suggests that perhaps a hybrid approach would
work best in the general case.

Furthermore, our preemptive scheduling heuristic greatly
improves the testing performance in most cases, being orders
of magnitude faster in the case of bugs #1, #4, and #5.

The heuristics we developed for MUTAGEN offer a sub-
stantial improvement over the simple (though still powerful)
approach taken by FuzzChick. Our current work focuses on
gathering more empirical evidence to strengthen this claim.

IV. FUTURE WORK

As for future work, we are focused on extending MUTA-
GEN with dependent mutations, where the existence of certain
subexpressions would allow or disallow certain mutations to
occur. Concretely, this could be useful to improve the perfor-
mance of our tool when used for testing systems expecting
programs as inputs. There, for instance, a mutation that intro-
duces a new identifier would allow subsequent mutations to
refer to it, preserving the well-scopedness of the program.

[1]
[2]
[3]

[4]

[7]
[8]
[9]

[10]

[11]

REFERENCES

J. W. Duran and S. C. Ntafos, “An evaluation of random testing,” IEEE
transactions on Software Engineering, no. 4, pp. 438-444, 1984.

M. Zalewski, “American fuzzy lop,” 2014.

R. Swiecki, “Honggfuzz: A general-purpose, easy-to-use fuzzer with
interesting analysis options,” URI: https://github. com/google/honggfuzz
(visited on 06/21/2017), 2017.

C. Miller, Z. N. Peterson et al., “Analysis of mutation and generation-
based fuzzing,” in Independent Security Evaluators, Tech. Rep, vol. 4,
2007.

J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). 1EEE, 2019, pp. 724-735.

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,”
in Presented as part of the 21st {USENIX} Security Symposium
({USENIX} Security 12), 2012, pp. 445-458.

M. Eddington, “Peach fuzzing platform,” Peach Fuzzer, vol. 34, 2011.
Mozilla, “Dharma: a generation-based, context-free grammar fuzzer,”
https://github.com/MozillaSecurity/dharma, 2015.

G. Grieco, M. Ceresa, and P. Buiras, “Quickfuzz: An automatic random
fuzzer for common file formats,” ACM SIGPLAN Notices, vol. 51,
no. 12, pp. 13-20, 2016.

G. Grieco, M. Ceresa, A. Mista, and P. Buiras, “Quickfuzz testing for
fun and profit,” Journal of Systems and Software, vol. 134, pp. 340-354,
2017.

L. Lampropoulos, M. Hicks, and B. C. Pierce, “Coverage guided, prop-
erty based testing,” Proceedings of the ACM on Programming Lan-
guages, vol. 3, no. OOPSLA, pp. 1-29, 2019.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Mista, A. Russo, and J. Hughes, “Branching processes for quickcheck
generators,” ACM SIGPLAN Notices, vol. 53, no. 7, pp. 1-13, 2018.

A. Mista and A. Russo, “Generating random structurally rich algebraic
data type values,” in 2019 IEEE/ACM 14th International Workshop on
Automation of Software Test (AST). 1EEE, 2019, pp. 48-54.

J. Duregard, P. Jansson, and M. Wang, “Feat: functional enumeration of
algebraic types,” ACM SIGPLAN Notices, vol. 47, no. 12, pp. 61-72,
2012.

L. Lampropoulos, Z. Paraskevopoulou, and B. C. Pierce, “Generating
good generators for inductive relations,” Proceedings of the ACM on
Programming Languages, vol. 2, no. POPL, pp. 1-30, 2017.

C. Runciman, M. Naylor, and F. Lindblad, “SmallCheck and Lazy Small-
Check: automatic exhaustive testing for small values,” in Proceedings
of the first ACM SIGPLAN symposium on Haskell, 2008, pp. 37-48.

C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated testing
based on java predicates,” ACM SIGSOFT Software Engineering Notes,
vol. 27, no. 4, pp. 123-133, 2002.

A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up
to speed with webassembly,” in Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2017, pp. 185-200.

Ilya Rezvov, “wasm: WebAssembly Language Toolkit and Interpreter,”
https://hackage.haskell.org/package/wasm, 2018.

K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random
testing of haskell programs,” Acm sigplan notices, vol. 46, no. 4, pp.
53-64, 2011.

