
An Industrial Case Study on Visualization of Dependencies
between Software Measurements

Ludvig Johansson

IT University of Göteborg
412 96 Göteborg
ludvig@ituniv.se

Wilhelm Meding
Ericsson SW Research

Ericsson, Sweden
wilhelm.meding@ericsson.com

Miroslaw Staron
IT University of Göteborg

412 96 Göteborg
 miroslaw@ituniv.se

ABSTRACT
Managing large software projects requires working with a large
set of measurements to plan, monitor, and control the projects.
The measurements can, and usually are, related to each other
which raise an issue of efficiently managing the measurements by
identifying, quantifying, and comparing dependencies between
measurements within a project or between projects. This paper
presents a case study performed at one of the units of Ericsson.
The case study was designed to elicit and evaluate viable methods
for visualizing dependencies between software measurements
from a perspective of project and quality managers. By
developing a series of prototypes, and evaluating them in
interviews, we get results showing applicability of each
visualization method in the context of the studied organization.
The prototypes were used to visualize correlation coefficients,
distribution dependencies, and project differences. The results
show that even simple methods could significantly improve the
work of quality managers and make the work with measurements
more efficient in the organization.

Categories and Subject Descriptors
D.2.8 [Metrics]: Process metrics, Product metrics.

General Terms
Management, Measurement.

Keywords
Software metrics, visualization, quality management.

1. INTRODUCTION
Using measurements as a mean of monitoring software projects is
a characteristics of mature processes and management practices.
The larger the projects, the larger the data sets used and the more
measurements collected. One of the daily works of quality
managers is to work with measurements to assure the quality of
the final product which involves identifying anomalies in data
sets. Currently, the identification is based on experience and

monitoring of limited number of measurements. Better use of the
measurements in projects requires automated support in
identifying and visualizing dependencies between measurements,
especially when data sets are large. The existing visualization
solutions require extensive customization work in order to be
adjusted to the processes used at Ericsson and to integrate with
existing toolset at the company. In this paper we identified and
evaluated a set of visualization methods which do not require any
initial investments nor entail large customization/integration
costs.

Hence, in this paper we address the following research question:

How can dependencies between measurements be quantified and
visualized in the context of a software development unit at
Ericsson?

We consider both the dependencies between the measurements,
and, to a limited extent, measured entities. Our research is
performed in the context of software development organization,
which in particular means that our work focuses on project and
process measurements.
By dependency we mean such relationship between measurements
in which a change of value of one measurement causes a change
in another measurement.
The results of this study show that simple visualization techniques
integrated with MS Excel and mind mapping tools could
significantly improve the work of quality managers. Using mind
maps to visualize dependencies between the whole (or part of)
sets of variables were found to be the method which suits the
evaluation criteria best, and visualizing correlation coefficients
using colored MS Excel worksheets was found to be the most
useful method.
The paper is structured as follows. Section 2 presents the most
related research relevant for our work. Section 3 presents the
context of the study – measurement systems being used at
Ericsson. Section 4 describes the design of the case study and
Section 5 presents the results from it. Section 6 addresses the
main threats to validity of the study and Section 7 presents the
conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. RELATED WORK
In the area of software measurement and measurement
dependencies, the ISO standards ISO/IEC 15939 [1] and ISO/IEC
9126-1 [2] provide a standardized way of structuring the software
measurement process and preserving product quality during the
process. These standards, however, are high level standards and

mailto:ludvig@ituniv.se
mailto:wilhelm.meding@ericsson.com
mailto:miroslaw@ituniv.se

do not give solid theoretical background on how measurements
should be used. Such fundamental application of measurement
theory for software engineering is provided by Fenton and
Pfleeger [3]. This study combines these two views on
measurements, i.e. (a) the measurement theory perspective and (b)
the ISO/IEC industrial standards perspective, in order to develop
methods that are industrially applicable on theoretically solid
ground.
The discussion of introducing measurement systems into an
organization is, however, not covered in this study. Authors like
Clark [4], Kilpi [5] Dekkers and McQuaidfor [6], Pfleeger et al.
[7] and Brökcers et al. [8], describe how to/why introduce
measurement systems in to an organization, and reflect on
problems/solutions that measurements can result in. Their
findings are used in the process of introducing the methods
described in this paper into the organization.
One of the challenges in this study was to quantify measurements
in a correct way – that is, whether it is possible to statistically
compute dependencies: methods for statistic calculations are
presented in [9, 10].
Techniques for visualizing dependencies in other areas have a
wider research base than visualizing measurements in software
engineering. The main focus in the existing studies of
visualization is on program code dependencies, for example [11-
18]. Hence, visualizing measurements dependencies is mostly
about visualizing large groups of information complexes, like
visualization of code dependencies and SQL dependencies,
visualizing techniques provided by Spencer [19] were used as
ground for identifying problems around visualizing information.
Software measurements are used in the process of visualizing

such aspects as code complexity, but then the focus is on the
complexity and not on measurement dependency. In our research
the focus is on the identification of measurement dependencies,
not on complexity or size of source code.

Figure 1, Software Measurement Model [1]

An interesting similarity can be observed between measurements
visualization and neural networks, since both include similar
calculations [20]. The case-by-case comparison (described later in
the paper) is based on analogy-based estimation techniques from
the neural networks [21-23].
More advanced techniques for visualizing large quantities of data
can be found in [24]. Although the methods presented there are
applicable for our context, they required advanced visualization
tools, which contradicted the requirements from the organization.

3. MEASUREMENT SYSTEMS
Ericsson is a world-wide telecommunication manufacturer. Its
projects vary in size, but the majority comprises of large and
long-term projects that involve both hardware and software
components. Ericsson has adopted and further developed mature
methods for developing software and managing projects,
including managing/assuring quality of Ericsson products. The
management use measurements together with expert opinions of
project managers and engineers as the provider for information
and a basis for making decisions – which is a common situation in
mature organizations. In large software projects, however, the
situation becomes hard to manage since the number of
measurements used is very large, which makes it hard to manage
the measurements and therefore several decisions are based on
experience. In order to make the work with measurements more
efficient, the studied organization at Ericsson has adopted the

ISO/IEC standard for software measurements – ISO/IEC 15939
[1].
The ISO/IEC 15939 standard defines the elements of the
measurement systems as presented in Figure 1. The measurement
process is driven by an information need (top of Figure 1). The
information need is what the customer (or a stakeholder) of the
measurement system wants to know, for example: ‘Is the project
within budget?’, or ‘Is the project running according to the
schedule?’
In order to satisfy the information need, a series of measurements
need to be examined. The measurements are collected by
measuring relevant entities, for example, a design model, project
status, or a process. An entity is a real world entity which has
measurable attributes. The standard defines an attribute as “a
property or characteristic of an entity that can be distinguished
quantitatively or qualitatively by human or automated means”.
The quantification of the attribute is the process of obtaining a
base measure. Several base measurements can then be merged
throughout a measurement function to a derived measurement. A
measurement function is an algorithm or calculation performed to
combine two or more base measures.
Further, indicators are created from the derived measures to
provide an estimate or evaluation of specified attributes derived
from the real world. It is the indicators that should fulfill the
stakeholder’s information need.
Table 1 presents a definition of an example measurement system
which is based on a working measurement system at Ericsson.

Table 1. Defect reports measurement system - definition

Concept Definition

Information Need How much, compared to the budget of project
X, is the cost of defect reports?

Measurable Concept Budget deviation (budget is fixed, project cost
on the other hand is dynamic)

Entity Budget deviation
Attributes 1. Project X related defect reports

2. Cost of one defect report in project X
3. Budget of project X

Measurement
Method

1. Count total number of defect reports
2. Calculate the number of hours per defect

report based on data from previous projects
[cost]

3. State the budget of project X (no need to
calculate, it’s only a number)

Base measures 1. NoD – Number of Defects
2. DC – Defect Cost
3. PB – Project Budget

Measurement
Function

((NoD times DC) divided by PB) in percent

Indicator Red/Yellow/Green
Analysis Model Green if DM1 < 1%

Yellow if 3% > DM ≥ 1 %
Red If DM ≥ 3%

Interpretation If Red: Situation critical. Re-planning necessary.
Inform steering group
If Yellow: Take actions to avoid budget overrun
and time plan delays
If Green: No action

1 Abbreviation for Derived Measurement

In this example the information need that the stakeholder, in this
case the project manager, is concerned about is how much,
compared to the project X2 budget is the cost of defect reports.
The entity and measurable concept is the budget deviation.
Attributes like project X defect reports [as a number]; Cost [in
hours] of one defect report in project X and Budget [in hours] of
project X are then chosen. These attributes are chosen out of
experience by the developers of the measurement system (who
usually have experienced as project managers). When having
these attributes, a method is created to be able to measure the
attribute, that is, convert the physical attribute to a numerical
value to be used in mathematical calculations. The use of multiple
measurements in a calculation results in obtaining derived
measurements. In this example the measurement methods are: (a)
count number of defect reports for X; (b) cost (in hours) of a
defect report based on empirical experience and (c) budget (in
hours) for project X. In this example, the indicators are set to
green if the result value from the derived measurement is below
1%, yellow if between 1% and 3% and red if it is above 3%.
These values are carefully selected out after a discussion with the
stakeholders and based on experience from former and current
projects.
An instance of this definition is presented in Table 2.

Table 2. Defect reports measurement system - instance

Concept Definition

Values of measurements 4. NoD: 78 [defects]

5. DC: 3 [hours per defect
report]

6. PB: 8000 [hours]

Derived Measurement (DM) ((58*3)/8000) * 100 % = 2,2 %

Indicator value Yellow

Interpretation Yellow: Project was slightly re-
planned, more effort was put into
solving defect before further
development.

The example shows that even constructing simple indicators, one
needs to be concerned with several measurements. Computing
derived measures can require checking assumptions of
measurements independence or dependence. The indicators are
built based on these assumptions – slight deviations from
established dependency relationships could make the indicators
show false alarms or not indicating problematic situations. In the
example above one such assumption is the cost of repairing one
defect – if the cost is much lower than assumed, then this
indicator would raise false alarms; if the cost is much higher than
assumed, then the indicator would not inform in time about
budget problems in the project.

4. CASE STUDY DESIGN
We performed our case study at Ericsson, a world-wide provider
of telecom network equipment. The study was conducted at one
of the quality management departments, working with
measurements and measurement systems on a daily basis. The

2 Project X can be compared to a real project at Ericsson however

questions and values has been altered.

data which was used to evaluate the prototypes comes from
several large software projects which the department is
responsible for. The study is performed in a similar context as our
previous studies (e.g. [25]).

The studied organization posed the following high-level
requirements on the solutions which we should consider:

• The solutions should visualize large number of
measurements

• The solutions should be able to compare dependencies
between projects

• The solutions should use and/or integrate with existing
toolset available at the company

• The solutions should follow the standards adopted by
the company

• It should be possible to combine individual solutions
into larger ones

The case study was divided into two parts – identification of
viable visualization methods including elicitation of criteria for
evaluating the methods, and evaluation of the visualization
methods using data from historical and on-going projects at the
studied unit at Ericsson. In short, our research process was:

1. Elicit criteria for comparing visualization methods – for
assessing their applicability for the company.

2. Identify viable visualization methods via literature
study.

3. Develop prototypes.
4. Evaluate prototypes on actual data from the company

and through interviews.

The second author is working at the company and conducting
both research and development in the area of software
measurements. The results of the study are to be used in his work
which makes this study an action research study. The third author
is working closely with the company on the development of
prototype measurements systems and evaluating them at the
company. The first author spent the entire time of the study on
site of the company.

4.1 Interviews
As the first step in the study we performed interviews with a
designer of existing measurement systems, who is a quality
manager with long term experience on working with
measurements, project, and quality management at Ericsson. The
purpose of an interview at the beginning of the study was to elicit
criteria for assessing the usability of the tools. The goal of
eliciting the criteria was to provide a basis for assessing the
applicability of each prototype. By developing the criteria we also
gained more knowledge of the non-functional requirements for
each prototype. After eliciting the criteria the quality manager
was asked to prioritize them using the $100 technique (in which a
respondent is asked to distribute $100 for each prioritized element
– larger amounts should got for the elements which are prioritized
higher).
In the middle and by the end of the study we performed
interviews with the same respondent, to evaluate the prototypes
which were developed during this study. The criteria elicited from
the interviews at the beginning were used to assess the prototypes.
The interviewer made notes during the interviews; the notes were
used later during the study. All interviews were semi-structured as

they contained both closed-ended, open-ended questions and the
interviewee was allowed to make own remarks and comments.

4.2 Prototype development
After identifying the applicable visualization methods we created
a set of prototypes to use these methods at the studied
organization at Ericsson. In particular we developed a set of MS
Excel add-ins using Visual Basic for Applications (VBA) that
could parse the data, produce diagrams/charts, or export the data
to other tools. One add-in was developed per visualization
method.
We considered using dedicated visualization environments, but it
was a strong requirement from the company to work with the
toolset available and already adopted at the company. As a
common ground, MS Excel 2003 was used in developing the
prototypes as the used toolset at the company provided features to
export data to MS Excel.
We used freeware mind mapping tools and hyperbolic browsers in
more advanced visualization prototypes in order to test simple
ways of presenting the information which MS Excel is not
capable of.
The goal of developing the prototypes was to demonstrate the
visualization methods and to provide our industrial partner with
software to be used in their development of measurement systems.

4.3 Evaluation process
To evaluate the prototypes we used them on real data from on-
going and past projects at the company. The results of running the
prototypes on the data were shown to a quality manager who
evaluated how the prototypes fulfilled the criteria.
The data from the ongoing project was a snapshot taken at the
current time – this means that the data was not altered between
evaluations of particular prototypes.
The weighted criteria are presented in Table 3.

Table 3. Evaluation Criteria

Criteria Description Weight
Usability
(measurement
systems
developers)

It should be easy to use the
prototypes, e.g. easy to fill in data,
easy to start execution of macros, etc. 0.26

Time for execution Execution should be performed very
fast, that is, in less than a minute 0.24

Easy to overview
and interpret
results

It must be easy to overview and
interpret results, e.g. tables, graphs,
correlations, method.

0.12

Handle large sets
of data

It should be possible to visualize
dependencies in large data sets (e.g.
more than 1000)

0.10

Comparing
projects

Two different projects could be
compared in the prototype showing
how similar the dependencies are
between the projects.

0.08

Parameters It should be possible to use parameters
to select a subset of measurements
which are input to the add-in.

0.04

Maintainability When prototype is finished,
developers should be able to
understand the concept and the code
behind the prototype.

0.04

Magnitude of
variables

If dependencies have different
magnitudes (scale) it shall not affect
the results

0.04

Strength of
correlation

A strength of correlation should be
calculated and shown in the resulting
information

0.04

Usability (expert
users)

The prototype could be used by other
experts on measurements systems
which has no prior experience in the
current measurement system

0.04

During the interview the respondent was asked to assess to which
degree the prototype fulfills the criteria using 5 point Likert scale:
1- totally unsatisfactory, 2- somewhat unsatisfactory, 3- neutral,
4- somewhat fulfills, 5- totally fulfills.
After the assessment we calculated the normalized score of the
prototype. The normalized score was the product between the
scores and the applicable criteria divided by the sum of weights of
applicable criteria.
During the evaluation we recorded also qualitative comments
from the respondents, including information how the prototype is
supposed to contribute to the company.

5. RESULTS
By searching literature on visualization methods, we identified six
viable visualization methods. Despite a significant body of
research on visualization of source code, the methods were not
applicable directly and required customization of the visualization
tools, which in turn contradicting our requirements from the
company.
In a series of interviews we evaluated the prototypes and
identified their strengths and weaknesses. A summary of the
interviews follows the results from the literature study.

5.1 Identified applicable visualization
methods
Through literature study and the initial interview with the quality
manager at Ericsson we identified two main ways of visualizing
the dependencies (dependencies between measurements and
dependencies between measured cases), grouped into three
categories below.

5.1.1 Correlation visualization
The basic dependency between measurements is the correlation
between two measurements. The correlation is an important
indicator of dependency as correlated measurements should not
be used when building predictive models. As the number of
measurements collected in the organization was rather large, one
could not be expected to manually run computations pair-wise.
The rationale behind the developed prototypes was that they
should support the users of measurements in their work by
decreasing the time required to identify correlated variables.
As an extension to correlation visualization we also considered
visualizing the results of Principal Component Analysis (PCA).
PCA, however, had the disadvantage that it was hard to interpret
and required visualization in more than three dimensions which
was hard to obtain using available or freeware tools.
The most basic and well-known way of visualizing dependencies
between two variables (measurements) is using scatter plots. If
produced automatically for a set of variables, the scatter plots
have an advantage that they could be used for more detailed
examination of variables. An example scatter plot is presented in
Figure 2.

0

500

1000

1500

2000

2500

3000

3500

w
1

w
3

w
5

w
7

w
9

w
11

w
13

w
15

w
17

w
19

w
21

w
23

w
25

w
27

w
29

w
31

w
33

w
35

w
37

w
39

Var1
Var2

Figure 2. Visualization of dependencies using a scatter plot

The figure presents a scatter plot of two variables Var1 and Var2,
which are correlated as the growing trends are observed for both
variables.
Another way of visualizing the correlation between measurements
is to use a matrix and a list containing colored cells with values of
the correlation coefficient. An example is presented in Figure 3 as
a matrix.

Figure 3. Visualization of correlation coefficients – a matrix

Figure 4 shows a subset of the matrix as a list.

Figure 4. Visualization of correlation coefficients – a list

These prototypes are intended to provide an overview of
correlations within a single data set – e.g. measurements for one
project.
When building measurement systems, however, examining a
single data set is sometimes insufficient. In measurement systems
measurements are used based on assumptions about their
dependencies, which reflect the process followed by the company.
The measurements, nevertheless, tend to change over time and
hence the same measurement system might provide misleading
information when used at two different projects if dependencies
between variables are different.. Therefore a support is needed to
check whether the dependencies between measurements in two
projects are indeed the same. For this purpose we created the
correlation differences prototype, which visualizes the differences
in correlation coefficients between two sets of measurements. An
example is presented in Figure 5. Once again the colors are used
to emphasize the magnitude of differences. The colors are chosen
as parameters of the prototype and therefore highlight differences
important for the user.

Figure 5. Visualization of differences of correlation

coefficients
The result of running the prototype on two sets of data is a list of
pairs of measurements and the differences between the correlation
coefficients of the measurements in the pair in the two projects.
The column labeled sign differ indicates whether there was a
difference in the sign of the correlation coefficient (i.e. actual pair
had the opposite behavior/trend in project B compared with
project A?).
The difference between the correlation coefficient is to be
interpreted manually based on the need. For example, when
predicting quality of the project one uses regression equation
which are built on one data set to predict quality using another
data set. If the correlations between variables in these two data
sets are significantly different, then the predictions might not be
accurate. Therefore, significant differences between the
correlations can be seen as an indicator of small accuracy.

Visualizing dependencies using a matrix or a list does not show a
transitive dependencies – e.g. measurement A depending on B, B
depending on C, etc. Therefore we developed the so-called X-
Centric model prototypes using external freeware viewers:
H3Viewer [26] and FreeMind [27]. This visualization method
shows a network of dependent measurements, centered on a single
measurement (Var1 in the example below). An example output
from the FreeMind tool is presented in Figure 6. The numbers in
the figure are correlation coefficients.

Figure 6. X-centric model visualization - FreeMind

The figure shows Var1 in the center and Var2, Var3, and Var4
which are correlated with Var1 with the strengths given in
brackets – 0.98, 0.974, and 0.751 respectively. Var2 and Var4
(top left-hand corner) are correlated with Var3 with strengths
given in brackets – 0.996, and 0.765 respectively.
An example visualization using the H3Viewer tool is presented in
Figure 7.

Figure 7. X-Centric model visualization – H3Viewer

Visualizing the transitive dependencies is used when building the
measurement systems to identify measurements which can (if
they are strongly correlated) be used interchangeably for some
purposes (e.g. when building prediction models).

5.1.2 Distribution visualization
Visualizing correlations between variables shows whether the
trends in the measurements are the same. The measurements,
however, might be of different magnitude and/or distribution. The
differences are important since the indicators in the measurement
systems are built based on the values of measurements. The
interpretation of indicators might depend on the distribution.
Hence we developed a prototype to compare distributions. The
prototype results in a bar chart with distributions of a pair of
measurements and a p-value from the Chi-Square test for
independence. The p-value denotes the probability that the two
variables are indeed dependent.
In order to visualize the distributions between variables we used
simple bar charts for graphical presentations and the chi-square
test for independence to obtain the chi-square value and the
probability of the measurements of being independent. An
example is presented in Figure 8.

0

20

40

60

80

100

120

1 12 23 34 45 56 67 78 89 100 111 122

Fr
eq

ue
nc

ie
s

Var1
Var2

p-value: 0.67

Figure 8. Visualization of distributions – bar chart showing
frequencies for Var1 and Var2

The example shows that the distributions of the two variables are
not different from each other, and that there is a significant
probability that they are dependent on one another.

5.1.3 Case dependencies
Dependencies between the measurements provide only partial
information. The information can be complemented by
visualizing the dependencies between particular cases (or data
subsets in the extended version of the prototype). The idea is that
this comparison can identify two most similar vectors of
measurements. The most similar cases to each other are believed
to be dependent on each other. In this particular context we
perceive this as a variation of analogy-based comparison – i.e.
identifying similar cases by computing a distance between them.
Analogy-based estimation has its foundation in project cost
estimation [23, 28]. There, the elementary belief is that similar
projects are probable to have the same behavior, for example
estimated cost. In our case the rationale is that similar weeks
(w.r.t. test effort) in two projects are probable to have the same
characteristics (e.g. defect inflow). In analogy-based approach the
estimations are derived from historical measurements. A distance
function δ is calculated on l number of measurements. Weighting
can be used to alter how much a measurement is supposed to
affect the result. Scaling can be used if the two compared
measurements are of different scale.

The distance is a weighted Euclidean distance δ, calculated using
the formula:

∑
=

′−=′
l

i
iiii ddswpp

1

22)(),(δ

Equation 1, Distance calculation for Analogy-based Estimation [21]

In Equation 1, δ stands for distance, p for points, w for weight, s
for scale, d for value of a variable, while i is the index over
measurement values for the data point.

The results of case dependencies is radar plot showing the most
similar cases and the distance between them – an example is
presented in Figure 9.

20

111

152

284

295

432
502

533

588

598

0

100

200

300

400

500

600
51

52

50

49

53

54

48

46

55

47

47

Figure 9. Visualization of case comparison – a radar plot

Figure 9 shows distances of 10 most similar cases to case 47.
Each axis shows the distance between pairs of cases: case 47 and
the case which is used as the name of the axis. In this example,
the most similar case is case 51, as its distance to case 47 is
shortest. The number of cases shown in the plot is an arbitrary
number, which is a parameter in the prototype.
As an extension of comparing a single data point, the developed
prototype provided a possibility to compare a series of data points
and identify the most similar series in a reference data. Each data
point from the series was then visualized separately using the
radar plot. The similarity between the series was visualized using
a colored list, as presented in Figure 10. The result is δ/d*100%
using the symbols from Equation 1.

Figure 10. Visualization of similarities between series of data

points
The example shows three series of data points (column Case
Original) similar to the given series (column Case Cmp) and the
differences as percentages (Result).

5.2 Evaluation of the methods
The evaluation of the methods is presented in two parts – the
evaluation against the criteria and qualitative evaluation
(including how the method is supposed to be used in the
company).

5.2.1 Evaluation against criteria
The evaluation against the criteria is presented in Table 4. The
evaluation was conducted by the quality manager. The
visualization that was chosen as the best one is the X-centric view
using mind-maps, although its maintainability was very low. The
reason for the low value is the fact that the creation of mind-maps

using the available tools could not be automated and required
manual intervention every time new data points are added to the
data set.

5.2.2 Qualitative evaluation
The qualitative evaluation is a summary of respondent comments
recorded during the interviews when the quality manager
evaluated the prototypes.
The scatter plot prototype could be used directly and for example
be used at project meetings to show how measurements depend on
one another. As an overview it could also be used to compare
different projects which would be of use for project managers that
test various changes to see how these would affect the
dependencies. Today, such comparisons are not done, as the
manual creation of so many plots is very time consuming.
When using the scatter plots on the real data at the company, the
resulting scatter plots had one large disadvantage, namely the
magnitude of the values. If two measurements had values in
different scales, the scatter plot could result in that only one
variable could be seen and the other variable would not be visible
(due to the scaling of the plot itself). Despite this, if a basic
knowledge around the dependencies exists among the
stakeholders, the magnitude problem can be overseen and/or
examined through the other prototypes, making this prototype a
good starting point for identifying correlated measurements. .
The problem of different magnitudes of measurements in scatter
plots is solved by using the correlation prototype. In the prototype
another method for showing correlations was used, the Pearson’s
Product correlation coefficient. Using this coefficient the trends of
the curves were compared while the magnitude was not crucial.
Because of this, the prototype was easier to follow and interpret.
In MS Excel a list with results could easily be sorted given
different criteria, which was a big benefit for the respondent. It
allows easier searches in the data or shows only a subset of
dependencies.
In the matrix result, a full overview of all dependencies could be
seen. This gave the possibility to spot if some dependencies were

Table 4. Evaluation against the criteria (the highest score in boldface)

Criteria Scatter plots Correlation X-centric
(mind-map)

Correlation
compare

Distribution Analogy

Usability
(developers) 5 5 5 5 5 5

Time for execution 5 5 5 5 5 5
Easy to overview
and interpret
results

5 4 5 4 2 4

Handle large sets of
data 5 5 5 5 5 5

Comparing projects N/A1 N/A N/A 5 5 5
Parameters 5 N/A 5 N/A 5 5
Maintainability 3 2 2 3 2 3
Magnitude of
variables 2 5 5 5 2 3

Strength of
correlation N/A 5 5 5 4 5

Usability (experts) 5 5 5 5 2 4
Normalized score 4.77 4.73 4.87 4.79 4.24 4.68

of exceptionally high or low correlation by examining the
overview.
This prototype has the potential to improve the measurement
systems being currently built at the studied organization at
Ericsson.
H3Viewer was at an early stage rejected as a solution for
modeling dependencies because of its low configurability.
Strengths and correct colors for the dependencies could not be
included. A hyperbolic browser was created and dependencies
could be visualized, but due to the above limitations we did not
include it in the evaluation.
FreeMind on the other hand, which used XML syntax with full
configurability through the input file, was of good help. The clear
overview with colors and correlation strengths gave a good
overview of the network of dependencies. This could be used to
easily and understandable show the dependency tree on how
measurements were related.
One drawback of FreeMind was when more than two levels of
dependencies were visualized. The resulting image spanned over
a large area which was hard to get overview of when using
computer screen.
Like the scatter plots, this prototype can be used to show an
overview for the surrounding stakeholders during presentations. It
is not certain, however, that the result will be used in the company
to the same extent as the Pearson correlation.
When having a new project and a new measurement system is to
be built upon the assumptions on older projects, this prototype
could be used to see if the dependencies are the same in the two
projects. The task of comparing projects is almost an impossible
task to do by hand.
For project managers the prototype and the method could be used
to track changes in the project progress/behavior compared to past
experiences. When a change is introduced, a new project could be
compared to older projects to see if the changes had any affect on
the measurements. In this way the experts get a support in
answering the question if the measurements measure the same
things in the same way in the new project as in the old projects.
This prototype will, as Pearson correlation, also be useful for the
company. It will be integrated in the core of the measurement
systems. This prototype makes it possible for comparison of large
sets of data and gives an accurate result. Today, to do this kind of
comparison by hand is not possible due to the time it would take.
The comparison of the distribution of values shows how
distributions of two variables could be related to each other as
they have similar distributions.
This method uses the Chi-Square test for independence to obtain
the p-value. During the evaluations the Chi-Square was shown not
to work perfectly on the real data sets since the distributions differ
too much to be compared with the Chi-Square, at least to give a
meaningful result. The implementation of Chi-Square has also a
limitation that it can’t be computed if zero exists in the expected
range. This affected the frequency table to be altered accordingly
to the excepted range of values since it had to be re-configured in
a way that all frequencies had at least one value. This altered
frequency table gave some kind of a manipulated result which
was not sufficiently good.

The magnitude of variables was also a problem. Large projects
could not be compared to smaller projects since this would affect
the outcome of the distribution table. In this case the
measurements need to be standardized first. The magnitude of
differences, however, was found to be important for the company.
Since the frequency table had to be altered to avoid the division
by zero, the result could not be relied on and was difficult to
interpret; hence the prototype will not be used.
The analogy-based comparison prototype had features for scaling
projects to avoid magnitude problems which were found to be
useful. It will be used to find matching groups of weeks in
different projects to identify the most similar weeks. One
drawback with the prototype is that it could be hard to overview
when comparing a large number of weeks.
A particularly useful feature was the comparison between series
of cases, which could help the experts to identify a series of
similar data points (e.g. weeks close to finishing the project) and
the similarity between them.
The prototype will be used by the developers and the analysts of
the measurements systems. It will be used to compare groups of
weeks to adjust the measurement systems, if needed, and could
also be used to find similarities in projects. As the Pearson’s
correlation coefficient, this method will also be a useful for the
company.

6. Validity evaluation
As every empirical research, our case study exposes some threats
to validity. The validity evaluation follows the framework
presented in [29].
The main external validity threat of the results is that this case
study was performed at a single company, at one of its
organizations. Even though the company cannot be regarded
representative for all software industry, the context of this study is
general. The evaluation criteria, however, have not been
generalized to other organizations than the studied one. We are
currently collecting more data from the use of measurement
systems in order to increase the external validity of these results.
The internal validity threat, which seems to be the most
influential, is the fact that the study was performed on a “static”
data set – i.e. a snapshot of the data at a current time in the study.
This was dictated by the time frame of the study. We intend to
further evaluate the prototypes after they are integrated with the
measurement systems developed at the company.
The main construct validity threat is that we developed the
evaluation framework as part of this study. This might bias the
results as there is a danger that the framework is not complete. In
order to minimize this threat we took two measures: (a)
developing the framework before developing the prototypes, and
(b) recording the interview data to identify additional evaluation
criteria (which did not happen).

7. CONCLUSIONS
Working with large number of measurements is a characteristic of
large and mature organizations. As the maturity of the
organizations increases the organizations seek improvements in
their processes, optimizations, and better control. This leads to
using more sophisticated methods for working with data being
collected. In this study we evaluated several basic methods for
identifying, quantifying, and visualizing dependencies between

measurements. The identified methods were evaluated empirically
on data from large software projects and through a series of
interviews with the quality manager working with measurements.
During the study we identified a set of criteria used to evaluate
the methods. The criteria reflect the main requirements from the
organization on the toolset used to work with measurements.
The results show that these simple methods are indeed very useful
in working with large number of measurements as they allow
identifying dependencies very efficiently. Using the evaluation
criteria resulted in identifying mind maps as the best visualization
method. Qualitative analysis showed that the expert found
visualization of correlations between large data sets to be useful
method in his work.
Our further work is focused on integrating the presented
prototypes into measurement systems used at the studied
Ericsson’s organization.

ACKNOWLEDGMENTS
The authors would like to thank Ericsson Software Research and
Software Architecture Quality Center for their support in the
study. We would also like to thank managers at Ericsson who
made this work possible and supported us – thank you!

REFERENCES
1. International Standard Organization and International Electrotechnical
Commission, Software engineering – Software measurement process,
ISO/IEC, Editor. 2002, ISO/IEC: Geneva.

2. International Standard Organization and I.E. Commission, Software
engineering – Product quality Part: 1 Quality model, ISO/IEC, Editor.
2001: Geneva.

3. Fenton, N.E. and S.L. Pfleeger, Software metrics : a rigorous and
practical approach. 2nd ed. 1996, London: International Thomson
Computer Press. XII, 638 s.

4. Clark, B., Eight Secrets of Software Measurement, in IEEE Software.
2002. p. 12-14.

5. Kilpi, T., Implementing a Software Metrics Program at Nokia, in
IEEE Software. 2001. p. 72-77.

6. Dekkers, C.A. and P.A. McQuaid, The Dangers of Using Software
Metrics to (Mis) Manage in IT Professional. 2002. p. 24-30.

7. Pfleeger, S.L., et al., Status Report on Software Measurement, in
IEEE Software. 1997. p. 33-34.

8. Brökcers, A., C. Differding, and G. Threin. The Role of Software
Process Modelling in Planning Industrial Measurement Programs. in
METRICS. 1996: IEEE.

9. Walpole, R.E., Probability & statistics for engineers & scientists. 7th
ed. 2002, Upper Saddle River, NJ: Prentice Hall. xvi, 730 p.

10. Anderson, T.W., An introduction to multivariate statistical analysis.
3rd ed. Wiley series in probability and statistics. 2003, Hoboken, N.J.:
Wiley-Interscience. xx, 721 p.

11. Alfert, K., F. Engelen, and A. Fronk, Experiences in three-
dimensional visualization of java class relations. SDPS Journal of Design
& Process Science, 2001. 5(3): p. 91-106.

12. Alfert, K. and A. Fronk. Manipulation of three-dimensional
visualization of java class relations. in The Sixth World Conference on
Integrated Design & Process Technology,. 2002.

13. Hendrix, D., J.H.C. II, and S. Maghsoodloo, The effectiveness of
control structure diagrams in source code comprehension activities. IEEE
Transactions on Software Engineering, 2002. 28(5): p. 463-477.

14. Voinea, L. and A. Telea, Visual data mining and analysis of software
repositories. Computers & Graphics, 2007. 31(3): p. 410-428.

15. Kuhn, A., S. Ducasse, and T. Girba, Semantic clustering: Identifying
topics in source code. Information and Software Technology, 2007. 49(3):
p. 230-243.

16. Umphress, D.A., et al., Software visualizations for improving and
measuring the comprehensibility of source code. Science of Computer
Programming, 2006. 60(2): p. 121-133.

17. Noser, H. and P. Stucki. Dynamic 3D visualization of database-
defined tree structures on the WWW by using rewriting systems. in
Advanced Issues of E-Commerce and Web-Based Information Systems,
2000. WECWIS 2000. Second International Workshop on. 2000.

18. Hing-Yan, L., et al. A multi-dimensional data visualization tool for
knowledge discovery in databases. in Computer Software and
Applications Conference, 1995. COMPSAC 95. Proceedings., Nineteenth
Annual International. 1995.

19. Spence, R., Information visualization: design for interaction. 2nd ed.
2007, New York: Addison Wesley.

20. Abdi, H., A Neural Network Primer. Journal of Biological Systems,
1994. 2(3): p. 247-283.

21. Auer, M., et al. Implicit analogy-based cost estimation using textual
use case similarities. in International Conference on Intelligent Computing
and Information Systems. 2005. Cairo.

22. Bode, J., Decision support with neural networks in the management of
research and development: Concepts and application to cost estimation.
Information and Management, 1998. 34(1): p. 33-40.

23. Sheppard, M. and C. Schofield, Estimating software project effort
using analogies. IEEE Transactions on Software Engineering, 1997.
23(12): p. 736-743.

24. Traina, C., Jr., et al., Fast indexing and visualization of metric data
sets using slim-trees. Knowledge and Data Engineering, IEEE
Transactions on, 2002. 14(2): p. 244-260.

25. Staron, M. and W. Meding. Short-term Defect Inflow Prediction in
Large Software Project - An Initial Evaluation. in International Conference
on Empirical Assessment in Software Engineering (EASE). 2007. Keele,
UK: British Computer Society.

26. Munzner, T., H3Viewer. 2001, Stanford University.

27. Freemind, FreeMind - free mind mapping software. 2007,
Sourceforge.

28. Huang, S.-J. and N.-H. Chiu, Optimization of analogy weights by
genetic algorithm for software effort estimation. Information and Software
Technology, 2006. 48(11): p. 1034-1045.

29. Wohlin, C., et al., Experimentation in Software Engineering: An
Introduction. 2000, Boston MA: Kluwer Academic Publisher.

	1. INTRODUCTION
	2. RELATED WORK
	3. MEASUREMENT SYSTEMS
	4. CASE STUDY DESIGN
	4.1 Interviews
	4.2 Prototype development
	4.3 Evaluation process

	5. RESULTS
	5.1 Identified applicable visualization methods
	5.1.1 Correlation visualization
	5.1.2 Distribution visualization
	5.1.3 Case dependencies

	5.2 Evaluation of the methods
	5.2.1 Evaluation against criteria
	Qualitative evaluation

	6. Validity evaluation
	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

