
Supporting Continuous Integration by Code-Churn
Based Test Selection

Eric Knauss∗, Miroslaw Staron∗, Wilhelm Meding†, Ola Söder‡, Agneta Nilsson∗, Magnus Castell†
∗University of Gothenburg

name.surname@gu.se
†Ericsson AB

name.surname@ericsson.com
‡Axis Communications

ola.soder@axis.com

Abstract—Continuous integration promises advantages in
large-scale software development by enabling software develop-
ment organizations to deliver new functions faster. However, im-
plementing continuous integration in large software development
organizations is challenging because of organizational, social and
technical reasons. One of the technical challenges is the ability
to rapidly prioritize the test cases which can be executed quickly
and trigger the most failures as early as possible. In our research
we propose and evaluate a method for selecting a suitable set of
functional regression tests on system level. The method is based
on analysis of correlations between test-case failures and source
code changes and is evaluated by combining semi-structured
interviews and workshops with practitioners at Ericsson and
Axis Communications in Sweden. The results show that using
measures of precision and recall, the test cases can be prioritized.
The prioritization leads to finding an optimal test suite to execute
before the integration.

I. INTRODUCTION

Software development organizations need to meet the de-
mands of rapidly changing requirements and to release new
products and features more often and much faster. A typical
initiative to meet these demands has been the transition from
traditional waterfall software development environment to-
wards agile practices, which embraces change and emphasize
customer collaboration [1]. Agile practices have shown to be
helpful towards this end [2] and companies work towards in-
creasing the velocity in order to be able to release products and
features more often and faster. One of a mechanisms of agile
practices is the continuous integration used in the environment
of large-scale software development. A well-known bottleneck
when introducing continuous integration, concerns the testing
activities and the ability to choose an effective test suite for
each integration cycle [3]. Efficient testing arrangements are
central for achieving continuous integration, and efforts to
organize these activities means dealing with high levels of
complexity [4], [5].

A challenge to arrange efficient testing is to know how to
select what tests to execute on what code and when [6]. There
is a tendency in software development organizations to be
safe rather than sorry and execute more tests than necessarily
needed because they are available, and it is possible. However,
this approach has a negative trade off on the velocity of the
entire software development and consequently may impede

the release of products and features more often and faster.
Execution of unnecessary tests takes resources and can provide
false confidence in the quality of the product. Hence, it
would be useful to know how to identify and select the most
important tests at certain situations.

Our research goal is to develop and evaluate a method for
selecting a suitable set of functional regression tests on system
level to support continuous integration. The method developed
in our study is based on the observation that in continuous
integration and testing we can develop a statistical model of
connections between changed code fragments (so called code
churns) and the results of test cases. In our work we use the
definition of code churn by Kim et al. [7] – Code churn is
defined as a piece of code which has been changed during a
single check-in in the code repository. The statistical model
is a contingency table of test case execution results and code
churns, which can be visualized using the notion of a heatmap
[8], [9]. The statistical model is used to suggest which test
cases should be executed during the integration cycles in order
to get as short feedback loops as possible.

The evaluation of the method is done based on a case study
with two companies – Ericsson AB and Axis Communications.
Both companies develop embedded software using different
flavours of Agile software development [10], [11], [12]. The
different set-up of the software development at both companies
allows us to also explore how robust our method to changes
in the context (e.g. the pace of continuous integration or size
of the source code base/test code base).

This paper is structured as follows: in the next section, we
present the most related work. In Section III, we describe the
method for constructing the statistical model and suggesting
the selection of test cases. In Section IV, we describe the de-
sign of the case study including the description of the system-
level testing at the companies. In Section V, we present the
results of the evaluation. The reported research is concluded
in Section VI along with outlooks to future research.

II. RELATED WORK

We have identified the related work in three areas – test
selection and test prioritization, continuous integration and
visualization of large quantities of data for decision support.

A. Test selection and prioritization

Test case selection has been studied from a number of
perspectives. One of the perspectives is the increase of test
coverage by automated means. Arts et al. [13] and Derrick
et al. [14] used formal methods to derive the minimal failing
test suite in an automated way based on formally defined sets
of properties. The property-based testing approach, however,
requires formalization of what should be tested (the property).
In our approach we reuse the existing test suites and study
their sensitivity to capture source code changes and assess
their quality.

An alternative to the automated increase of test coverage is
pre-selection of test cases based on program modifications and
manual models for test-code relationships. Yoo and Harman
[6] presented a survey of how test suites are prioritized and
optimized. One of the studied problems was test case selection
based on modifications of the program. According to their
classification our approach is similar to text-based approach.
An example of such a technique is Vokolos and Frankl’s
work [15]. They presented a technique for selecting test cases
based on textual differences of programs reduced to symbolic
representation. Although the results are very promising, they
require one extra step translating the programs to symbolic
code which can add additional burden on the designers.

Another approach to linking of test cases to code is parti-
tioning of programs. An example is the work of Chen et al.
[16] who used partitioning of programs to map test cases to
tested parts of the source code and trace the modifications of
the source code. Their approach is similar to ours but requires
pre-processing in terms of partitioning of the programs into
entities, which is not required for our approach.

Marculescu et al. [17] presented an approach for test suite
selection based on search-based techniques. The search-based
approach uses a set of predefined fitness functions to assess the
suitability of test suites. Our approach is compatibles with that
approach and can be used to deliver fitness functions based on
source code changes.

Engström et al. [18] studied the state-of-practice in using au-
tomated test selection by conducting a customized systematic
literature review. One of the important findings, which is in
line with our goal, was that the automated test selection should
be assisted by experienced testers the software should make a
recommendation and the testers should make the decision. In
our work we prepare the testers with support for simulations
of what-if scenarios through test recommender.

B. Continuous integration

Nilsson et al. [4] developed a Continuous Integration Visu-
alization Technique (CIViT) that provides an overview of end-
to-end testing activities. The CIViT model serves as a solution
to the lack of a holistic, end-to-end understanding of the testing
activities and their periodicity in organizations. The model has
proven particularly useful as a basis for discussion, which help
to identify problems of current testing activities, regarding
scope and periodicity, and to reason about suitable measures
and to identify how to best improve their testing activities

towards continuous integration. In our work, we see the need
for combining this overview with support for decisions of how
testing activities could be made more efficient through the use
of simulations of what-if scenarios through test recommender.

Stolberg [19] described a number of experiences from in-
troducing continuous integration into a software development
organization. The experiences are aligned with many of the
observed challenges in our industrial partners – need to run
the complete regression suite, lack of prioritization methods
that are automated. In this paper we intend to address this
gap. Similar experiences were shared by Kim et al. [20] which
indicates that the gap affects more than a limited number of
organizations.

C. Metrics visualization

Visualization of source code changes using heatmaps was
previously studied by Feldt et al. [9] in a context of daily
follow up of project progress. In this paper we expand on these
experiences and present a case where heatmaps can be used for
visualizing dependencies between test cases and source code.

The presentation of the results from the test case prioritiza-
tion requires an efficient distribution mechanism. In the studied
case we investigate the use of cloud-based dissemination
presented in our previous works [21]

III. CCTS: CODE-CHURN BASED TEST SELECTION
METHOD

The CCTS method comprises of two parts – (i) historical
analysis of code churns and test execution results, and (ii)
finding optimal test suite using precision and recall metrics.

A. Historical analysis of code churns and test execution
results

The historical analysis takes two inputs – the list of source
code changes (e.g. results from diff in the source code repos-
itory per day) and the results of test case execution (e.g. a
list of test cases executed and the results of the execution per
day). The method creates a contingency table which shows
how often a test case fails if there is a source code change in
that particular day – for example as shown in table I.

TABLE I
EXAMPLE CONTINGENCY TABLE

Test case 1 Test case 2
Module 1 1 0

Module 2 1 7

Module 3 1 10

Module 4 0 0

This contingency table shows which test cases are the most
sensitive to changed in the relevant source code modules. This
contingency table constitutes the statistical model which is
used in the next step – finding the optimal test suite.

B. Finding optimal test suite

The automatic recommender of optimal test suite takes as
input i) the contingency table and ii) a list of recently changed
modules. The contingency table is the statistical model which
forms the baseline of which test cases should be recommended
for which source code modules.

In order to find the optimal test suite we use the information
retrieval measures – recall, precision and the f-measure. These
measures are based on four categories of errors:

1) True positives: The set of tests that are both recom-
mended by the recommender system and failed accord-
ing to the ground truth.

2) False positives: The set of tests that are recommended
but did not fail according to the ground truth.

3) True negatives: The set of tests that are not recom-
mended and that did not fail according to ground truth.

4) False negatives: The set of tests that are not recom-
mended but should have been, as they failed according
to the ground truth.

Recall indicates the percentage of the tests that actually
failed which were recommended. It is defined as:

recall = |True Positive|
|True Positive|+|False Negative|

A high recall (close to 1) is important, because other-
wise tests that would have failed would have been omitted.
Precision indicates the percentage of the tests that were
recommended which actually failed. It is defined as:

precision = |True Positive|
|True Positive|+|False Positive|

An increased precision (close to 1) is important, because it
corresponds to a relative speedup of testing by eliminating the
need to run tests that do not provide new knowledge about the
quality of the system.

Recall and precision relate to each other. The easiest way to
get a high recall is to simply recommend all tests. In that case,
all tests that could fail are selected but the precision is minimal
and no execution time is saved. It is an open question of
whether recall or precision is more important for test selection,
which we evaluate in section V.

Under the assumption that both precision and recall are
equally important, it makes sense to compute the f-measure.
The f-measure is the geometric mean of recall and precision,
defined as:

f-measure = 2∗recall∗precision
recall+precision

The f-measure allows comparing the overall performance –
and this allows to choose the optimal set of test cases to run
given the changed source code modules and the contingency
table from historical analysis.

For the continuous integration this measure is crucial as it
enables automated selection of test cases. Together with the
ability of automatically adjust the contingency table (along
with each integration/test cycle), this approach reduces the
effort for test planning and increases the chances of finding
defects already during the integration.

IV. CASE STUDY DESIGN

We evaluate the CCTS method at two companies – Ericsson
and Axis Communications. The goal of the evaluation is
to address the following research question – How can the
CCTS method be applied during continuous integration cycles
in practice? We perform the evaluation by collecting the
historical data for the integration cycles and by simulating
which test cases should be selected in order to optimize the
effectiveness of the test suite. We can classify this case study
as ecaluative multiple case study [22], [23], consisting of two
cases.

The data is collected using the following methods:
1) Document analysis – collecting the historical data about

code churns and test results.
2) Semi-structured interviews – collecting the feedback on

the visualization and the correctness of the contingency
table (i.e. the statistical model).

3) Focus group discussions iteratively with key represen-
tatives from development and management – to inform
our thematic coding and triangulate our findings from
an organizational perspective, i.e. how code churn based
test selection supports continuous integration.

4) Group discussions with testing experts – to triangulate
our findings and verify the findings during the research
process (and decide upon further directions).

A. Collaborating companies

Research in this paper is carried out at two companies,
which we shortly introduce in the following sections.

1) System level testing at Ericsson: Ericsson AB (Ericsson)
develops large software products for the mobile telecommuni-
cation network. The size of the organization during the study
is several hundred engineers and the size of the projects is up
to a few hundreds . Projects are increasingly often executed
according to the principles of Agile software development and
Lean production system, referred to as Streamline develop-
ment (SD) within Ericsson [1]. In this environment, various
teams are responsible for larger parts of the process compared
to traditional processes: design teams (cross-functional teams
responsible for complete analysis, design, implementation,
and testing of particular features of the product), network
verification and integration testing, etc. The organization uses
a number of measurement systems for controlling the software
development project (per project) described above, a number
of measurement systems to control the quality of products in
field (per product) and a measurement system for monitoring
the status of the organization at the top level. All measurement
systems are developed using the in-house methods described in
[24], with the particular emphasis on models for design and
deployment of measurement systems presented in [25]. The
needs of the organization evolved from metrics calculations
and presentations (ca. 8 years before the writing of this paper),
to using predictions, simulations, early warning systems and
handling of vast quantities of data to steer organizations at
different levels, and providing information from project and

line. These needs are addressed by the action research projects
conducted in the organization, since the 2006. In this paper we
discuss functional verification on system level at Ericsson.

2) System level testing at Axis Communications: Axis
Communications (Axis) is the market leader in network video
and a driving force behind the shift from analogue to digital
video surveillance. Axis offers network video solutions for
professional installations featuring products and solutions that
are based on innovative and open technical platforms. Thus,
Axis is developing a range of software products software
embedded in network cameras, video encoders and desktop
video management software. Software development processes
at the company are based on the agile principles with fre-
quent deliveries to the main branch and empowered software
development teams. The testing at Axis referred to in this
paper consists of system level tests using complete products
such as they are delivered to the customer. The purpose of
these tests is to reveal not yet known problematic interactions
that cannot be found using lower level testing. The product
which is studied in this company was the network camera
product with a number of releases on the market. The team
was multidisciplinary and comprised designers, architects and
testers.

V. RESULTS

In this section we show the statistical models from both
collaborating companies visualized as heatmaps and we sum-
marize the results from the interviews and group discussions.
Finally we summarize the results in two scenarios where the
CCTS have the most of the potential.

A. Identifying efficient tests: statistical models

Figure 1 shows the contingency table (heatmap) from Erics-
son. The rows are on the component level (i.e. groups of source
code modules) and the columns are test suites (i.e. groups of
test cases). The data used for the recommendations is on the
module and test cases level, but for the purpose of efficient
visualization we choose to compress the changes.

In Fig. 1, on the left hand side there are is one test suite
that is sensitive to changes in a large number of modules.
Then, there are a couple of tests that are not responding to any
changes in modules, represented by a broad white column. On
the top, there are modules that do not cause any tests to fail,
represented by a broad white row. According to our interviews,
the way this visualization can be interpreted depends on the
level of abstraction of the tests and on the purpose of the test
suites – ”The goal of our [platform tests] is to identify hidden
dependencies. Fault omission and lower level faults should be
found on lower levels”.

On system level tests the more intensive colored areas in
the heatmap are valuable for system and test architects when
prioritizing refactoring efforts or creating a test suite with short
execution time (e.g. for daily execution). There is also one test
suite (on the right-hand side) which should be included in all
test executions as it seems to be the most sensitive to the
changed in the source code.

Fig. 1. Heatmap from Ericsson

Our interviewees gave us one candidate explanation for
the white rows and columns in Figure 1. Accordingly, the
visualization shows all tests but not all modules. Specifically,
modules from one of the two major components are missing
and it is likely that the tests associated with the white column
are more sensitive to changes in this component.

At Axis the relationship between the source code changes
and the test failures is shown in Fig. 2. This heatmap is
presented on the module and test case level and shows the size
of the contingency table – hundreds of rows and columns.

Files

Tests

Fig. 2. Heatmap from Axis

The pattern in Fig. 2 is different from the pattern in the
previous figure. For example there is no single test case which
fails based on the majority of code changes. We can also

observe that the majority of test cases do not fail.

B. Simulating test selection using CCTS

The existing heatmap concept allows a simple recommen-
dation algorithm, which, for a given set of changed modules,
selects all tests for which the heatmap reports a co-occurring
test failure.

To understand the performance of this algorithm, we used
the heatmap constructed based on data from Axis. Analysis of
the heatmap reveals that 1051 tests exist of which test failures
were reported for 958. Thus, a first recommendation of test
selection can be to suggest removing almost 100 tests from the
test suite without considering the input of changed modules.

Axis also provided us with a single observation of a list of
changed modules and tests that failed, representing results of
one specific run. Note that this being only one data point does
not allow for a conclusive assessment. The specific observation
contains a list of 142 changed modules and 326 failed tests. For
this observation, the simple heatmap algorithm recommends
948 tests for which failures are known, leading to a recall of
1, a precision of 0.26, and an f-measure of 0.41, which can
be considered as a weak recommendation, as the number of
tests is not sufficiently reduced.

We therefore experimented with two strategies to further re-
duce the number of recommended tests based on the following
algorithm, which requires a heatmap h and a list of recently
changed modules c to recommend tests:

1) Use the heatmap h to look up nc: how often each test
failed together with a change in a module in c.

2) Order the tests in the heatmap according to this value,
highest value first into the prioritized list of tests.

3) Return the top tests from the list:
a) Strategy 1: Return the first n% tests from the list.
b) Strategy 2: Return the first item from the list and

every other test with nc ≥ m% of the first items
nc.

Results from applying these strategies on the Axis data are
presented in Table II. The first row in Table II shows that if
all 1051 tests are executed, there is no speedup. Columns n
and m refer to Strategy 1 and 2 in the above algorithm and do
not apply for this row. Because we run all tests, we also run
all tests that could fail and recall is 1. However, we also run
the maximum number of tests that did not fail, which results
in this data set into a precision of 0.24 and a f-measure of
0.39.

For the second row, we give the same data for all 958
tests that have previously failed according to our heatmap.
As we run less tests that would not have failed, precision and
f-measure are slightly better and, assuming similar execution
time for each test, the recommended testsuite runs 1.1 times
faster than all tests.

The third row presents the data from only running step one
of the heatmap algorithm, again with small improvements. The
two last rows finally show the quite similar results that we
can get with both selection strategies for optimal choice of n

0

0.2

0.4

0.6

0.8

1

Recall
Precision
F-Measure

Fig. 3. Results for reporting only the best n% of recommendations.

(or m respectively). These rows are quite promising, as they
indicate that we can run the recommended test suits more than
3.5 times more often than all tests in the same time.

Figure 3 and 4 show how recall, precision, and f-measure
change if the values for n and m (according to both selection
strategies) are tweaked.

The leftmost data point in Figure 3 shows recall, precision,
and f-measure for returning all tests that have a recorded
failure in the heatmap. While the list of recommended tests
gets smaller, the precision slowly goes up: Less tests are
recommended that do not fail. At some point around n =
35%, the recall starts to drop from 0.1, when tests that
would have failed according to the Axis data set would
no longer be recommended. Without further information on
whether to prioritize recall or precision, the highest value of
f-measure (yellow line in Fig. 3) denotes the optimal length
of recommendations of ≈ 30% of the tests in this case.

Figure 4 shows similar values for the second strategy. In
the investigated case, all recommended tests should have at
least 60% of the recorded test failures that the first test in
the prioritized list of tests has for the given set of changed
modules (0.6 ≤ m ≤ 0.72).

The data to conduct the simulations for Ericsson was not
available at the time of writing of this paper.

TABLE II
RESULTS FROM ASSESSMENT OF DIFFERENT CONFIGURATIONS OF TEST

CASES

No. of Speed-
Case Tests up n m f-m. prec. rec.

All tests 1051 0 – – 0.39 0.24 1.00
Previously
failed tests

958 1.10 – – 0.41 0.26 1.00

Heatmap
algorithm

948 1.11 1.00 0.00 0.41 0.26 1.00

Optimal case
1 (Fig. 3)

287 3.68 0.30 – 0.69 0.54 0.97

Optimal case
2 (Fig. 4)

283 3.71 – 0.65 0.69 0.54 0.97

0

0.2

0.4

0.6

0.8

1

Recall
Precision
F-Measure

Fig. 4. Results for reporting only the recommendations within m% of the
best recommendation’s quality.

C. Scenarios for Applying CCTS

With respect to research goal of refining scenarios on how
risk based test selection can offer value in daily work, we
found that heatmaps enable refactoring and restructuring of
the test landscape. In our interviews at Ericsson we identified
two scenarios, which were confirmed by interviewees at Axis:
i) Re-distributing effort over test scope levels and ii) re-
structuring test suites.

Scenario 1: Re-distributing effort over test scope levels. It is
a goal to find problems as early as possible, i.e. to find all the
problems inside of a unit with unit tests. The heatmap supports
test managers in this, because they can start an analysis from
the dark red areas. The goal then would be to reduce the
darkness in the heatmap, i.e. having less test failures on this
abstraction level.

Scenario 2: Re-structuring test suites. Interviewees at both
companies indicated that tests should be selected and sched-
uled based on different scopes, e.g. for hourly, daily, and
weekly execution. Thus, it seems like a good strategy to select
tests for these test suites dynamically based on the changes to
software artifacts (at least in the case of the hourly tests).

Both scenarios are in line with our research goal to develop
a method which will help to select a suitable set of functional
regression tests on system level that balances the need to find
integration problems with the need to execute the tests quickly
enough to support the fast pace of continuous integration. By
dynamically constructing test suites for XFTs, obsolete tests
are removed from their test suites. By taking into account
all available tests and their history, tests that were previously
missing in a XFTs test suite can be included if they promise
enough value based on historical data and current source code
changes.

VI. CONCLUSIONS

Continuous integration requires new ways of selecting test
cases and requires more automation in that area, but this au-
tomation provides also new possibilities. One of such possibil-
ities is automated collection of statistics of test case executions
and collection of code churn statistics. These statistics allow
for developing statistical models over which test cases are the

most sensitive to changed in the source code – both in the
total code base and in selected areas.

In this paper we explored the possibilities for using the
new data as input to an automated test selection algorithm.
The algorithm uses historical data and measures from the
information retrieval area (precision, recall and f-measure) to
find the optimal test suite to execute given a set of code churns.

The initial evaluation of the method at Ericsson and Axis
Communications showed that the approach is feasible and can
be used in practice in two scenarios. The first scenario is the
restructuring of the test suites and the other redistribution of
the test scope levels.

In our future work we intend to develop a tool for orches-
trating test cases to further refine our method and provide a
smarter test infrastructure.

ACKNOWLEDGMENT

This research has been carried out in the Software Centre,
Chalmers, Göteborgs Universitet and Ericsson AB, AB Volvo,
Saab AB, Volvo Car Group, Sony Mobile, Grundfos, Axis
Communications, Jeppesen, Malmö University

This work has been partially supported by the Swedish
Strategic Research Foundation under the grant number SM13-
0007.

REFERENCES

[1] P. Tomaszewski, P. Berander, and L.-O. Damm, “From traditional
to streamline development - opportunities and challenges,” Software
Process Improvement and Practice, vol. 2007, no. 1, pp. 1–20, 2007.

[2] M. Pikkarainen, O. Salo, R. Kuusela, and P. Abrahamsson, “Strengths
and barriers behind the successful agile deploymentinsights from the
three software intensive companies in finland,” Empirical software
engineering, vol. 17, no. 6, pp. 675–702, 2012.

[3] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration:
improving software quality and reducing risk. Pearson Education, 2007.

[4] A. Nilsson, J. Bosch, and C. Berger, “Visualizing testing activities to
support continuous integration: A multiple case study,” in Agile Pro-
cesses in Software Engineering and Extreme Programming. Springer,
2014, pp. 171–186.

[5] N. Mellegård and M. Staron, “Characterizing model usage in embedded
software engineering: a case study,” in Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume.
ACM, 2010, pp. 245–252.

[6] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[7] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoring challenges and benefits at microsoft,” 2014.

[8] M. Staron, J. Hansson, R. Feldt, A. Henriksson, W. Meding, S. Nilsson,
and C. Hoglund, “Measuring and visualizing code stability–a case study
at three companies,” in Software Measurement and the 2013 Eighth
International Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2013 Joint Conference of the 23rd International
Workshop on. IEEE, 2013, pp. 191–200.

[9] R. Feldt, M. Staron, E. Hult, and T. Liljegren, “Supporting software de-
cision meetings: Heatmaps for visualising test and code measurements,”
in Software Engineering and Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on. IEEE, 2013, pp. 62–69.

[10] M. Staron, W. Meding, and K. Palm, “Release readiness indicator for
mature agile and lean software development projects,” in Agile Processes
in Software Engineering and Extreme Programming. Springer, 2012,
pp. 93–107.

[11] M. Staron, W. Meding, J. Hansson, C. Höglund, K. Niesel, and
V. Bergmann, “Dashboards for continuous monitoring of quality for
software product under development,” System Qualities and Software
Architecture (SQSA), 2013.

[12] M. Staron and W. Meding, “Monitoring bottlenecks in agile and lean
software development projects–a method and its industrial use,” Product-
Focused Software Process Improvement, pp. 3–16, 2011.

[13] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing telecoms
software with quviq quickcheck,” in Proceedings of the 2006 ACM
SIGPLAN workshop on Erlang. ACM, 2006, pp. 2–10.

[14] N. Walkinshaw, K. Bogdanov, J. Derrick, and J. Paris, “Increasing
functional coverage by inductive testing: a case study,” in Testing
Software and Systems. Springer, 2010, pp. 126–141.

[15] F. I. Vokolos and P. G. Frankl, “Pythia: a regression test selection
tool based on textual differencing,” in Reliability, quality and safety
of software-intensive systems. Springer, 1997, pp. 3–21.

[16] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo, “Testtube: A system for
selective regression testing,” in Proceedings of the 16th international
conference on Software engineering. IEEE Computer Society Press,
1994, pp. 211–220.

[17] B. Marculescu, R. Feldt, and R. Torkar, “Practitioner-oriented visu-
alization in an interactive search-based software test creation tool,”
in Software Engineering Conference (APSEC, 2013 20th Asia-Pacific.
IEEE, 2013, pp. 87–92.

[18] E. Engström, R. Feldt, and R. Torkar, “Indirect effects in evidential
assessment: a case study on regression test technology adoption,” in
Proceedings of the 2nd international workshop on Evidential assessment
of software technologies. ACM, 2012, pp. 15–20.

[19] S. Stolberg, “Enabling agile testing through continuous integration,” in
Agile Conference, 2009. AGILE’09. IEEE, 2009, pp. 369–374.

[20] S. Kim, S. Park, J. Yun, and Y. Lee, “Automated continuous integration
of component-based software: An industrial experience,” in Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, 2008, pp. 423–426.

[21] M. Staron and W. Meding, “Metricscloud: Scaling-up metrics dissemi-
nation in large organizations,” Advances in Software Engineering, vol.
2014, 2014.

[22] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[23] R. K. Yin, “Discovering the future of the case study method in evaluation
research,” Evaluation Practice, vol. 15, no. 3, pp. 283–290, 1994.

[24] M. Staron, W. Meding, and C. Nilsson, “A framework for developing
measurement systems and its industrial evaluation,” Information and
Software Technology, vol. 51, no. 4, pp. 721–737, 2008.

[25] M. Staron and W. Meding, “Using models to develop measurement
systems: A method and its industrial use,” vol. 5891, pp. 212–226, 2009.

