Identifying Optimal Sets of Standardized Architectural
Features - A Method and its Automotive Application

Darko Durisic
Department of Electrical
Systems Design
Volvo Car Corporation
Gothenburg, Sweden
Darko.Durisic@volvocars.com

ABSTRACT

Industrial standards are used to formalize procedures, rules
and guidelines for the industry to follow. Following a stan-
dard requires continuous adoption of the new standardized
features where only their subset is required by individual
companies. Therefore the prioritization of the features and
the assessment of their impact on the development projects
is crucial for the success of the project. In software engineer-
ing, industrial standards are used increasingly often to stan-
dardize a language for designing architectural components
of the system by defining domain-specific meta-models. The
purpose is to assure the interoperability between a number
of software tools exchanging the architectural models. In
this paper, we present a method for identifying optimal sets
of new standardized architectural features to be adopted in
the development projects. The optimization is done based
on the assessment of their benefit for the projects and the
estimated cost of re-work in the modeling tools according to
the changes in the standardized meta-model. We evaluate
the method by applying it on 14 new architectural features
of a new release of the AUTOSAR standard which is followed
in the development of the automotive software systems.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures; D.2.9 [Software Engineer-
ing]: Management—Software Configuration Management

General Terms

Management, Standardization, Measurement

Keywords

Architectural features, industrial meta-models, change man-
agement, optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

QoSA’15, May 4-8, 2015, Montrél, QC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3470-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2737182.2737184.

Miroslaw Staron
Software Engineering Division
Chalmers | University of
Gothenburg
Gothenburg, Sweden
Miroslaw.Staron@cse.gu.se

Matthias Tichy
Software Engineering Division
Chalmers | University of
Gothenburg
Gothenburg, Sweden
Matthias.Tichy@cse.gu.se

1. INTRODUCTION

Industrial standards are often followed in the design and
implementation of architectural components of large soft-
ware systems [1]. There are two reasons for such a trend.
First, the system becomes more reliable due to the use of
common architectural components verified in different prod-
ucts. Second, the development cost and time is reduced due
to increased re-usability of the architectural components and
their implementations. These two reasons are especially im-
portant for distributed embedded systems - reliability due to
constant increase in the size and complexity of the architec-
tural components (see examples in the automotive domain
[2, 3]) and re-usability in order to reduce high development
cost related to the hardware and middleware [4].

Apart from their distributed implementation, the develop-
ment of large distributed embedded systems such as automo-
tive systems is often distributed as well involving a number
of actors in the development process. On the one side we
have OEMs (Original Equipment Manufacturers) responsi-
ble for designing and verifying the architectural components
of the system. On the other side we have a chain of suppli-
ers (e.g. application, middleware, hardware, tool suppliers)
responsible for their implementation. These actors commu-
nicate by exchanging the architectural models and they may
use a number of different software tools to work with them.
In order to assure the interoperability between these tools,
domain-specific meta-models are defined and standardized
requiring a full compliance of the architectural models to
their meta-models.

The design of the architectural components based on the
standardized meta-model requires the standardization of the
architectural features before their utilization in the develop-
ment projects. For this reason, the OEMs and their suppliers
constantly incorporate new features into the standard caus-
ing thousands of changes to the standardized meta-model.
This makes it hardly feasible for the OEMs to adopt all new
features from one release of the standard in the development
projects. For this reason, the OEMs are usually required to
make a prioritization of the architectural features in order
to select their optimal subset.

The obvious question that arises is which set of features
shall be adopted, i.e. how to balance the need for the new
architectural features with the cost of their support in the
internal and external (i.e. supplier) tools? Some features
are well planned in advance and sometimes even driven by
the OEM in the process of their standardization. These fea-
tures are usually selected for implementation. Some features

are not applicable or required by the projects and therefore
rejected. However there may be other features which could
have a positive impact on the final product but are not re-
quired for achieving the predefined goals. For these archi-
tectural features, a tradeoff analysis with respect to their
cost and benefit shall be performed.

One of the most important factors used in the tradeoff
analysis is the impact of the new features on the tools used
for working with the architectural models. The main rea-
son for this is the cost of updating the tools to be able to
work with the new features but also possible interoperabil-
ity issues between different tools which may be caused by
the changes. As these tools are based on the standardized
meta-model, analyzing the evolution of the meta-model with
respect to the changes imposed by the new features could be
a good indicator of the potential impact of the features on
the tools. However due to possibly large number of meta-
model changes combined with the common time and budget
limitations, tools support is needed for such analysis.

In order to support the cost-benefit analysis of adopting
new features in the development projects, we define the fol-
lowing two research questions:

e Q1: How to assess the impact of different architectural
features on the used domain-specific meta-models?

e Q2: How to select the optimum set of features to be
adopted based on the assessed impact?

In order to provide answers to the posed research ques-
tions, we define a method - MeFiA (Meta-model Feature
Impact Assessment method) - for quantifying the evolution
of industrial meta-models related to a specified set of archi-
tectural features. The goal of the method is to identify the
optimal sets of new architectural features to be adopted in
the development projects based on the assessment of their
impact on the standardized meta-models used for modeling
the architectural components of the system. We assess the
method by applying it on a set of 14 new features of a new
release of the AUTOSAR (AUTomotive Open System AR-
chitecture) standard [5] which is followed in the design of the
automotive software architectures. To automate the entire
process, we developed a tool which is used at Volvo Cars.

The rest of the paper is structured as follows: Section 2
describes the related work. Section 3 describes the research
methodology and research questions. Section 4 defines the
MeFiA method. Section 5 describes the automotive domain
used for the evaluation of the proposed method. Section
6 shows the results of applying the MeFiA method on on
the automotive domain. Finally, Section 7 summarizes our
conclusions and describes our plans for future work.

2. RELATED WORK

The proposed MeFiA method shares some similarities with
the ATAM (Architecture Tradeoff Analysis Method) [6] based
on the CBAM (Cost-Benefit Analysis Method) [7], in par-
ticular gathering stakeholders (system architects) and dis-
cussing tradeoffs between different architectural solutions
affecting the system. However we base our tradeoff anal-
ysis on the cost-benefit analysis of the adoption of different
sets of architectural features rather than on the design of
different architectural solutions.

With respect to the optimized selection of features in dif-
ferent product lines, Asadi et al. [8] propose a framework

for automated selection of feature sets based on the func-
tional and non-functional requirements of the system. Re-
lated to the architectural features, White et al. [9] present
a method for selecting highly optimal sets of architectural
features based on their resource consumption. However we
are not aware of any work related to the search for optimal
set of architectural features to be adopted in the develop-
ment projects based on their impact on the domain-specific
meta-models and software modeling tools based on them.

This papers also contributes to the area of change man-
agement of software artifacts developed in distributed work-
ing groups. The development of these artifacts (e.g. mod-
els, specifications, code) usually relies on the existence of a
change management tool containing the requests for changes
and a database with the historical versions of the artifacts.
Considering the links between these two tools, Bachmann
et. al [10] discuss the problems of unreported bugs and miss-
ing links in the software repository commits and propose a
tool - Linkster - to automatically recover the missing links.
Fischer et. al [11] analyze these links in order to find de-
pendencies between features. Our focus is on the utilization
of these links to predicting the effort needed to adopt new
architectural features in the development projects.

With respect to the impact of the software architecture
evolution on the development projects, Gustavsson et al.
[12] present the automotive study of how system architects
manage architectural changes in different product lines. Ek-
lund et al. [13] discuss the architectural concerns of extend-
ing the existing software system with new features. In the
automotive domain, Dersten et al. [14] present a system-
atic literature review of the effects of re-factoring the AU-
TOSAR architecture such as lower complexity and increased
efficiency. Soubra et al. [15] use functional size measurement
to estimate the development effort for Electronic Control
Units (ECUs)" based on the AUTOSAR architecture. Our
paper shall be considered as complementary to these studies.

3. RESEARCH METHODOLOGY

We define our research objective according to the struc-
ture presented by Wohlin et. al. [16] as:

e Goal: Identifying the optimal sets of standardized ar-
chitectural features to be adopted in the projects.

e Purpose: Facilitate the decision making process of
which features shall be selected.

e View: Project managers and system architects work-
ing on software development projects.

e Context: The evolution of the standardized meta-
model used in the design of architectural components.

This objective is tightly related to the industrial need
of car manufacturers working with the architectural mod-
els based on the AUTOSAR standard as they often have
to make trade-offs between adopting new standardized ar-
chitectural features and the cost of their implementation.
Therefore a method and a tool for the automated feature
impact assessment on the modeling tools used in the devel-
opment and presenting a set of optimal solutions can be very
helpful in the decision making process of which new features

"Embedded system (hardware and software) responsible for
one or more vehicle functions (e.g. engine control, breaking).

to select. As the problems identified in the automotive do-
main served as a motivation for this research, we define our
research questions focusing on the development of the au-
tomotive software systems. However we believe that other
domains such as avionics may face similar problems.

e Q1: How to assess the impact of different architectural
features on the tools working with the models of the
automotive architectural components?

e Q2: How to select the optimal set of features to be
implemented in the automotive development projects
considering their impact on different tools?

In order to provide answers to the posed research ques-
tions, we define a method - MeFiA - for identifying the
optimal sets of architectural features to be adopted in the
development projects. The method is developed in 3 steps:

A. Define how to link AUTOSAR meta-model changes to
different AUTOSAR features.

We conduct a case study analysis [17] of the AUTOSAR
development process in order to identify means of link-
ing the AUTOSAR meta-model changes to the AU-
TOSAR features. We define an approach based on the
links between a change management tool (Bugzilla)
containing the description of the features and a soft-
ware code/model repository (SVN) containing differ-
ent meta-model versions.

B. Define a measure of impact of an AUTOSAR feature
on the AUTOSAR based tools.

As AUTOSAR based tools are based on the AUTOSAR
meta-model, quantitative analysis [18] of the changes
in the AUTOSAR meta-model related to a particu-
lar feature could indicate potential re-work required
in the tools to support this feature. For measuring
the amount of changes between different releases of
the AUTOSAR meta-model, we use the Number of
changes (NoC') metric which has shown to be an ef-
fective measure of the size change [19]. We consider
only the changes which require certain implementa-
tion/integration effort in the AUTOSAR based tools.
This is in contrast to the editorial changes (e.g. in the
notes of the elements) or changes in the auxiliary parts
of the AUTOSAR meta-model (e.g. Methodology).

C. Define how to identify the optimal sets of features to
be adopted in the development projects.

For identifying the optimal sets of features to be adopted
in the development projects based on their cost-benefit
analysis, we follow the approach based on Pareto op-
timality. When searching for the optimal sets of fea-
tures, we consider their impact on the entire AUTOSAR
meta-model but also on its separate parts related to
the most important roles in the automotive software
development process. We used the roles and the map-
ping of the roles to different parts of the AUTOSAR
meta-model presented in [19)].

We assess the proposed method by applying it on an au-
tomotive scenario where the optimal set of features from
the AUTOSAR release 4.2.1 shall be identified. In order to
extract the relevant data from the AUTOSAR meta-model,

perform feature related calculations and present the optimal
solutions, we developed a tool to fully automate the process.

This study represents a continuation of our work presented
in [19] where we show the historical analysis of the AU-
TOSAR meta-model evolution and [20] where we assess a
number of metrics for monitoring the evolution of the AU-
TOSAR meta-model.

4. MEFIA METHOD DEFINITION

The goal of the MeFiA method is to identify optimal sets
of new standardized architectural features to be adopted in
the software development projects. In subsection 4.1 we
define a meta-data model used for calculating the Number
of changes (NoC) between different meta-model versions.
In subsection 4.2 we define how to establish a link between
the meta-model changes and the corresponding features. In
subsection 4.3 we show how to search for the optimal sets
of features to be adopted in the projects considering their
prioritization and the required implementation effort in the
meta-model based tools. Finally in subsection 4.4 we discuss
our assumptions for the utilization of the MeFiA method.

4.1 Meta-data model for the changes

In order to calculate the number of changes between differ-
ent meta-model versions, we use the meta-data model pre-
sented in Figure 1 [19]. This meta-data model represents a
simplified version of the MOF meta-model [21].

+element
Package Element

0.*

ClassfierName :string| Attribute

Name» string LowerBound :string|
Note :string Name :sting

-
+packages /|\0..*/|\0..* T‘yep(:msyl:ig Sl 014+ Note :string
+parentElement . + Type :sting

+ UUID :string N

"

+ Name :stiing
+ UUID :string 0.

+attributes

ok o+

UpperBound :strin
UUID :string

+subPackages

+source Connectors 0.x 0.* +targetConnectors

Connector 0.*
0.*

+annotations

Note :string
SourceCardinality :stind *annotations
Stereotype :string
TargetCardinality :stiing| +annotations + Name :sting

Type :string + Value :string
UUID :string 0.*

MetaModel

Annotation
+ Verson :sting|

R

Figure 1: Meta-data model used calculating NoC

Meta-models are divided into Packages which contain El-
ements - classifiers and instances. Classifier Elements con-
tain Attributes, Connectors of different Type (e.g., Associ-
ations, Generalizations) and Annotations describing their
additional properties (e.g., regular expressions for strings).
Instance Elements contain Connectors (except of Type Gen-
eralization as they represent concrete instances) and Anno-
tations (e.g., C type, multiplicities). Finally, Connectors
and Attributes can also contain Annotations. Each of the
mentioned meta-elements of the meta-data model may con-
tain additional properties captured in the attributes of the
meta-elements such as Name, Note etc.

In order to compare different meta-model versions based
on the meta-data model, we define the Number of changes
(NoC') metric which counts the total number of relevant
(causing re-work in the AUTOSAR-based tools) changes be-
tween two meta-model versions [19].

We define a ’change’ as an atomic modification, addi-
tion and removal of the meta-data model elements and their

properties (e.g. Name, Note). For example if one Attribute
changed both its Name and its Type, this counts as two
changes. Additionally when introducing or removing meta-
data elements (e.g. Attributes) containing other meta-data
elements (e.g. Annotations), the total number of changes
considers both changes to the containing and contained meta-
data elements (i.e. both Attributes and Annotations).

As an example, consider the introduction of one Attribute
containing three Annotations. This counts as four changes
- one for the Attribute and three for the Annotations. This
way of calculating the total number of changes is justified by
the fact that introduction of one Element cannot be counted
as one change, like for example the introduction of an An-
notation, as it requires higher implementation effort in the
meta-model based tools.

To identify meta-elements in different meta-model ver-
sions, we used their UUIDs (Universally Unique IDentifiers
of the objects) except for the Annotations where we used
their Name as it is able to uniquely identify them in the
context of one meta-data element.

4.2 Linking meta-model changes to features

In order to link meta-model changes to specific architec-
tural features, certain process for implementing the changes
in the meta-model needs to be established. This is specially
the case with standardized features where many different
parties may be involved in the definition of the final solution.
The process we utilize in this paper relies on the existence
of two commonly used tools in the distributed software de-
velopment - a change management tool (e.g. Bugzilla, Jira)
and a software repository (e.g. SVN, Git).

Change management tools such as Bugzilla can be used
for documentation and traceability of the new standardized
architectural features incorporated into different releases of
the standard. Software repositories on the other hand can be
used for documentation and traceability of different versions
of the architectural meta-models between different releases
of the standard. For linking the meta-model changes to the
features, a link between these two tools can be established
by following a process depicted in figure 2.

Features

& %\ﬁ}a Software Designer

Bug IDs O

@
Repository commit L

Bug tracking with Bug ID
system R Meta-model files

rd
e:

Bug comment based
on repository commit

Repository

Figure 2: Linking meta-model changes to features

For each new feature to be implemented in the meta-
model, an entry in the change management tool shall be

created with a unique identifier (1). Software designer imple-
menting the changes in the standardized meta-model shall
use this identifier (2) in the commit message when commit-
ting a new version of the meta-model to the software repos-
itory (3). The process of modifying the meta-model and
committing a new version to the software repository related
to the same feature can be repetitive. Every time a commit
to the repository is made, a comment is added to the bug
with the identifier from the commit message (4). To assure
that no links are omitted by the change implementers, the
software repository should be configured to accept only cer-
tain structure of commit messages, e.g. a regular expression
starting with the unique identifier of the entry in the change
management tool (e.g. #12345).

4.3 Optimizing the set of adopted features

The search for the optimal sets of new standardized fea-
tures to be adopted in the development projects is a multi-
objective optimization problem [22, 23] with two objectives:

e Maximize the weighted number of features to be adopted
based on their priority.

e Minimize the effort needed to implement the changes
in the meta-model based tools based on the number of
changes in the meta-model.

As the number of new features in different releases of the
standard are limited to a reasonably high number and also
considering the fact that the execution time is not critical,
exhaustive algorithm which considers all possible combina-
tions of features (i.e. starting with feature 1 only and ending
with all features) is the most suitable algorithm.

For representing different solutions, a bit string s of length
equal to the total number of new features n can be used as
shown in formula 1.

s = (81,82, 5n) (1)

Each bit s; in the bit string corresponds to one feature
fi (s1 to feature f1, etc.) and the value of the bit indicates
whether the corresponding feature is included in the solu-
tion (value 1) or not (value 0). The solutions represent all
possible combinations of bit values in the bit string which
yields 2 to the power of n (2") different solutions.

In order to calculate the weighted number of features for
each solution, a weight factor on an interval scale of 1 to
5 shall be assigned by the system designer to each feature
where 5 is considered as the most important®. Then the total
wNoF for one solution represents the sum of the weights w;
of all features included in this solution, as shown formula 2.

wNoF(s) = Zwi * S (2)

In order to measure the effort needed to adopt the fea-
tures from one solution, we calculate the total NoC for this
solution as the sum of the NoC for each feature included in
the solution, as shown in formula 3.

NoC(s) :ZNOC(fi)*S'L (3)

2We consider a scale of 1-5 to be the optimal but different
scales could be more suitable for other situations.

This formula is based on the assumption that each change
in the meta-model requires certain implementation effort in
the meta-model based tools. Therefore the more changes we
have, the more effort is needed to adopt the features causing
these changes.

In order to represent all possible solutions and identify the
optimal ones with respect to their wNoF (objective 1) and
NoC (objective 2), a Pareto optimality chart presented in
figure 3 can be used.

wNoF ‘N

NoC

Figure 3: Pareto optimality chart

On the z axis we present the NoC and on the y axis we
present the wNoF for all solutions. Then the solutions lying
in the top and left most part of the chart form a Pareto front.
These solutions are considered as better solutions, with re-
spect to the two objectives, than the solutions lying below
and to the right of them. For example solution b has both
higher wNoF and lower NoC' than solutions e, f, g, i and j.
Therefore the optimal solution shall be discussed among the
solutions on the Pareto front. This may significantly reduce
potentially high number of solution and as such facilitate
the decision making process.

Additionally, one solution shall be excluded from the con-
sideration in one of the following 3 cases:

1. If there is a dependency between two or more features
(i.e. one feature cannot be implemented without an-
other feature) and a solution contains only a subset of
the dependent features.

2. In case there is no need for some features and a solution
contains at least one of them.

3. In case some features are required to be implemented
and a solution does not contain all of them.

4.4 Assumptions for the MeFiA method

The MeFiA method is designed and assessed in the au-
tomotive domain where software development is done fol-
lowing the AUTOSAR standard. However we think that
the applicability of this method could be extended to other
domains developing software architectures based on a stan-
dard such as avionics based on IMA (Integrated Modular
Avionics) [24], or banking based on BIAN (Banking Indus-
try Architecture Network) [25]. In particular, the MeFiA
method could be valuable for companies where:

1. The development of the architectural models is done
based on a standardized meta-model which defines the
syntax and the semantics for the models and serves as
a basis for the implementation of the modeling tools.

2. The architectural models are exchanged between a num-
ber of actors involved in the development process.

3. A number of actors is involved in the development of
the standardized meta-model.

The first point implies that the adoption of the new meta-
model versions is needed to enable innovation in the develop-
ment projects. The second point implies that the adoption
of the new meta-model versions may potentially cause inter-
operability issues between the tools of different actors in the
development process. The third point implies that possibly
many new features driven by different stakeholders may be
incorporated into the new versions of the standardized meta-
model which requires careful cost-benefit analysis of which
new features shall be selected for implementation.

In order to utilize the MeFiA method in other domains,
the development of the standardized meta-model needs to
satisfy the following conditions:

1. Standardized features shall be stored in a change man-
agement system, e.g. defect management system such
as Bugzilla or Jira.

2. Different meta-model version shall be stored in a soft-
ware repository such as SVN or Git and each meta-
model commit shall be linked to the corresponding en-
try in the change management system.

3. Changes related to different features should not be
committed simultaneously as the proposed method is
not able to automatically detect which changes are re-
lated to which features. If there are cases like this,
the changes in these commits shall be analyzed by the
system designers and assigned to the right feature.

Additionally the NoC metric assumes that all changes
have equal weight, i.e. that they all require similar imple-
mentation effort in the meta-model based tools. However
changes introducing or breaking dependencies may require
more effort. This could be improved in future work by clas-
sifying the changes into different types automatically de-
tectable and assigning a weight to each type.

S. AUTOSAR BASED DEVELOPMENT OF
AUTOMOTIVE SOFTWARE SYSTEMS

This section describes the development of the automotive
software systems following the AUTOSAR standard which
we used for the evaluation of the MeFiA method.

The development of the automotive software systems is
distributed as they are developed in a collaborative environ-
ment which involves a number of actors. On the one side we
have car manufacturers (OEMs) responsible for designing
and verifying the architecture of the system. On the other
side we have several layers of suppliers (e.g. application soft-
ware suppliers, tool suppliers, hardware suppliers) respon-
sible for the design, implementation and verification of the
specific architectural components of the system [26]. As each
party in the development process may use they own tools for

working with the architectural models, the exchange of these
models between different actors is quite challenging.

In order to facilitate this distributed development of the
automotive software systems, AUTOSAR standard was in-
troduced [27] as a joint partnership of the OEMs and their
suppliers on the European market and wider. One of the
main goals of AUTOSAR is to clearly separate the respon-
sibility of different actors in the development process. For
this purpose, a 3-layer software architecture [28] has been
developed where the application software (i.e. vehicle func-
tions such as auto-braking when pedestrians are detected in
front of the car) is clearly separated from the underlying ba-
sic software (e.g. communication between ECUs, diagnostic
services, etc.) and hardware [29)].

Based on this architecture, AUTOSAR standardizes the
exchange format for the architectural models. This is done
by defining a meta-model which specifies the syntax and the
semantics of the automotive modeling environment [30, 31]
and serves as a basis for the development of the AUTOSAR
based tools used for the modeling of the architectural com-
ponents (e.g. application software components or basic soft-
ware modules) of the system. In order to assure the in-
teroperability between different AUTOSAR based tools, the
exchanged architectural models needs to be fully compliant
to the AUTOSAR meta-model. Figure 4 shows a simpli-
fied example of the usage of the AUTOSAR meta-model to
allocate software components onto different ECUs.

Referrable Identifiable ! Ecu

+ shortName :String <] + uuid Sl

shortName = EngineControlModule
uuid = A2CD0720

diagAddress = 12

busWakeUp = false

+ecu 4\

; :SwcToEcuMapping
Ecu !

+ busWakeUp :Boolean shortName = Mapping32

+ diagAddress :Integer uuid = A19FAB93

i
'
|

+ecu 1 +SWC, 1 :

i

' +SWC

SwcToEcuMapping N '

MetaModel |

i

i

Figure 4: AUTOSAR Meta-Model example

:SoftwareComponent

shortName = EnginePowerUnit
uuid = FOAAD679

The meta-model to the left defines how to allocate soft-
ware components onto ECUs while the model to the right
instantiates this meta-model by mapping the actual FEn-

ginePowerUnit software components onto Engine ControlMod-

ule ECU. Software components and ECUs represents one
of the main architectural units of the automotive software
system and their allocation onto ECUs is an architectural
feature. Another example of the architectural feature may
be the use of Ethernet electronic bus as a communication
medium between ECUs.

The architectural models are usually expressed in XML
[32] and they are delivered by OEMs to the suppliers to con-
tinue with the implementation of the software, e.g. by de-
veloping behavioral models in tools such as Matlab Simulink.
Before importing the models into the AUTOSAR based tools,
they are validated by the AUTOSAR XML schema [33, 34]
which is generated from the AUTOSAR meta-model (see
[35] for more details about generating XML schema from
the UML model). This process is depicted in Figure 5.

’ loop I

Architecture | XML ﬂmplementation of c
Design ’ @rchitectural Units
4
i based on validates E AUTOSAR Code
\:/ 1 model

AUTOSAR | “°* | AUTOSAR ;
Meta-Model ML Schem !

i based on

Figure 5: AUTOSAR based development process

To track the changes to the AUTOSAR specifications in-
cluding the AUTOSAR meta-model, Bugzilla tool is used.
Each change can be classified as clarification, correction or
a new feature. For the new features which influence several
different parts of the AUTOSAR architecture, new concepts
are created and elaborated by different experts. The incor-
poration of the new concepts into the AUTOSAR releases
is also documented in Bugzilla where a separate implemen-
tation task is created for the AUTOSAR meta-model.

For the development of the AUTOSAR specifications and
the AUTOSAR meta-model, SVN repository is used. When
updating the meta-model, the corresponding implementa-
tion task from the AUTOSAR Bugzilla needs to be refer-
enced at the beginning of the SVN commit message (e.g.
#54321). This reference is required by the tooling in order
to avoid having SVN commits which are not linked to any
Bugzilla entries. This enables full traceability of the changes
to the AUTOSAR meta-model and other specifications and
Bugtzilla entries where the requests for these changes are de-
scribed and elaborated.

6. THE RESULTS OF APPLYING MEFIA ON
AUTOSAR FEATURES

We apply the MeFiA method on a set of 14 new features
(referred to as concepts in AUTOSAR) incorporated into
the AUTOSAR release 4.2.1. In order to fully automate
the generation of the optimal solutions, we implemented a
tool which is used for this purpose at Volvo Cars. A brief
description of each feature is presented below (the features
have no dependencies between each other as stated in the
feature documents of AUTOSAR):

e Feat 1: Ethernet Switch Configuration - provides
means to configure Ethernet switches in an ECU.

e Feat 2: Sender-Receiver Serialization - signifi-
cantly reduces the number of signals needed for the
transmission of complex data.

e Feat 3: CAN FD - introduces a new communication
protocol for CAN bus with higher bandwidth.

e Feat 4: Efficient COM for Large Data - faster
transmission of large data through the ECU.

e Feat 5: End-to-End Extension - extends the safety
communication means between the ECUs for the trans-
mission of large data via TCP/IP.

e Feat 6: Global Time Synchronization - provides a
common time base for accurate ECU data correlation.

e Feat 7: Support for Post-Build ECU Configu-
ration - enables simultaneous configuration of ECU
variants in one vehicle and different car lines.

e Feat 8: Secure On-Board Communication - pro-
vides mechanisms for securing the communication be-
tween the vehicle and the outside world.

e Feat 9: Safety Extensions - provides mechanisms to
realize and document functional safety of AUTOSAR
systems (e.g. according to the ISO 26262).

e Feat 10: Decentralized Configuration - provides
means for transferring diagnostic needs of the OEMs
to the suppliers.

e Feat 11: Integration of Non-AUTOSAR Sys-
tems - enables integration of non-AUTOSAR (e.g.
Genivi) systems into AUTOSAR during development.

e Feat 12: Efficient Non-Volatile Data Handling -
provides efficient mechanisms for software components
to handle non-volatile data.

e Feat 13: ECU State Manager Enhancement for
Multi-Core - provides support for state handling on
multi-core ECUs.

e Feat 14: ASIL-QM protection - provides means to
protect modules developed according to safety regula-
tions from other modules.

In order to calculate the number of changes caused by each
feature, we analyzed the changes between 97 SVN commits
of the AUTOSAR meta-model. Out of these commits, 80
referred to only one feature and 17 additionally referred to
other implementation tasks (13 to defects and 4 to other
features). We excluded the changes not related to particu-
lar features from the latter 17 commits by analyzing them
together with the AUTOSAR team at Volvo Cars.

As different companies may be interested in different fea-
tures where some are required to be implemented, some are
not needed and some may be considered only in case the
cost of their implementation is acceptable, different scenar-
ios for the usage of the MeFiA method are possible. For the
purpose of this paper, we define the following scenario: A
company wants to implement Feat 1 (Ethernet Switch Con-
figuration) and Feat 3 (CanFD) and all other features are
subject to the cost-benefit analysis with equal weights>.

Subsection 6.1 discusses the optimal sets of features for the
given scenario based on the analysis of their impact on the
entire AUTOSAR meta-model. As the evolution of indus-
trial meta-models may have significantly different impact on
different parts of the AUTOSAR meta-model affecting dif-
ferent roles (teams) [19], the impact of the changes on differ-
ent roles shall also be considered. This is especially impor-
tant when analyzing the impact of feature related changes
as some features may be related only to a limited number of
roles. Subsection 6.2 shows how to search for the optimized
set of features considering their impacts on a particular role
and subsection 6.3 presents an example of how to aggregate
the results of the analysis for different roles and use them in
the decision making process.

3For simplicity and having in mind that different compa-
nies may use different prioritization of features, we assigned
weight 1’ to all analyzed features.

6.1 Optimization for the entire meta-model

Before searching for the optimal set of features to be
adopted in the development projects, we should analyze if
there are features which do not affect the AUTOSAR meta-
model or features causing significantly more meta-model
changes than the others. The adoption of these outliers
should be analyzed separately in order not to cause major
dissbalance in the results. In order to identify these kinds of
features, a chart presenting the total number of meta-model
changes for each feature can be used. Figure 6 shows the
results of the NoC metric calculated for the 14 new features
of the AUTOSAR release 4.2.1.

NoC per feature
%gggg 17961
16000
14000
12000
10000
8000
6000
4000 1777 2327
2008 121 — u | . —
= ¢ Q 2 & o S =S o & 9 N
0‘00 &° (,‘?§< s & & Lé\ & @‘\0 ?gb* & @§ vz,“‘oo
& &L FF TS S
& & @Ké\ FEFS S E LSS
& & S & L & ¢ & & F &
& ¢ & & & & N L& &
T & SEE O
& (,\50 > & N

Figure 6: NoC per feature

We can see that the results of the NoC' metric are very
diverse ranging from 0 in case of Feat 11 (Integration of Non-
AUTOSAR Systems) to 17961 in case of Feat 7 (Support
for Post-Build ECU Configuration)®. These two features
represent the outliers so we decided to exclude them from
the analysis of optimal features with the recommendation
to do the cost-benefit analysis for their adoption separately
(e.g. Feat 7 should probably not be selected due to its high
number of changes affecting the AUTOSAR meta-model).

Additionally based on the scenario presented above, Feat
1 (Ethernet Switch Configuration) and Feat 3 (CanFD) shall
be added to all solution as they are required to be imple-
mented. Figure 7 shows the Pareto optimality chart with
Pareto front containing 11 optimal solutions (s - s11) based
on their impact on the entire AUTOSAR meta-model. Table
1 shows which features are included in which solution.

Optimized solutions

10 12

8
1

wNoF

2000 3000 4000 5000 6000 7000

NoC (relevant)

Figure 7: Optimal sets of features based on their
impact on the entire meta-model

We can see that a higher increase in the number of changes
needed to be implemented to support an additional features

4The reason why Feat 11 brings no changes is that it does
not affect the AUTOSAR based tools.

Table 1: Features of the optimal solutions

Solutions Features
sl Feat 1, 3
s2 Feat 1, 3,9
s3 Feat 1, 3, 9, 14
s4 Feat 1, 3, 9, 14, 12
sb Feat 1, 3,9, 14, 12, 13
s6 Feat 1, 3,9, 14, 12, 13, 5
s7 Feat 1, 3,9, 14, 12, 13, 5, 4
s8 Feat 1, 3,9, 14, 12, 13, 5, 4, 2
s9 Feat 1, 3,9, 14, 12, 13,5, 4,2, 8
s10 Feat 1, 3,9, 14, 12, 13, 5,4, 2, 8, 6
s11 Feat 1, 3,9, 14, 12, 13, 5, 4, 2, 8, 6, 10

starts with solutions s7 and s8. Therefore the optimal solu-
tion should be searched among solutions s6 and s7, i.e. Feat
1 (Ethernet Switch Configuration), Feat 3 (CAN FD), Feat
9 (Safety Extensions), Feat 14 (ASIL-QM protection), Feat
12 (Efficient Non-Volatile Data Handling), Feat 18 (ECU
State Manager Enhancement for Multi-Core), Feat 5 (End-
to-End Extension) and alternatively Feat 4 E(fficient COM
for Large Data) shall be selected for adoption. However be-
fore making a final decision, the analysis of the impact of
the features on different roles shall be done first, especially
for the most critical ones.

6.2 Role-based optimization

For the role based analysis of the AUTOSAR meta-model
changes, we consider 7 major roles in the AUTOSAR based
automotive software development process which we defined
in [19] (a mapping of roles to different parts of the AU-
TOSAR meta-model can also be found in this paper). A
brief summery of these roles is presented below:

e Role 1: Application software designers - a team
responsible for designing vehicle functions by defining
software components and their interaction.

e Role 2: ECU communication designers - a team
responsible for designing the communication between
ECUs (e.g., transmitting signals on buses).

e Role 3: ECU basic software configurators - a
team responsible for specifying the basic software con-
figuration (i.e. which parameters are needed).

e Role 4: Basic software designers - a team respon-
sible for designing the basic software modules (e.g.,
interfaces, services, etc.).

e Role 5: ECU communication configurators - a
team responsible for configuring ECU communication
basic software modules.

e Role 6: Diagnostics configurators - a team re-
sponsible for configuring basic software modules re-
lated to car diagnostics.

e Role 7: Upstream mapping tool developers - a
team responsible for automated derivation of parts of
the ECU configuration from the system models.

In order to identify the most critical roles, we analyze
the chart presented in figure 8 which shows the number of

feature related changes affecting each role separately (there
may be other non-feature related changes affecting these
roles such as corrections of defects).

Concept changes per role
16000

14000 13419

12000
10000
8000
6000
4000 3685

2000

538 a23
105 79 52
0 I

App Design. Com Design. BSW Config. BSW Design. Com Config. Diag Config. UTM Dev.

Figure 8: Number of feature changes per role

This conforms to our conclusion in paper [19] that the
evolution of the AUTOSAR meta-model mostly affects the
Role 5 (ECU communication configurators) and the Role 6
(Diagnostics configurators) while the other roles are less af-
fected. Low impact is especially important for the Role 1
(Application software designers) and the Role 2 (ECU com-
munication designers) as the architectural models developed
by these two roles are usually exchanged between the OEMs
and the suppliers and therefore they affect multiple actors
in the development process. Considering this and the fact
that the role of ECU communication designers is more than
5 times more affected by the changes than the role of Ap-
plication software designers, we consider the FECU commu-
nication designers as the most critical role.

Based on the scenario presented above, Figure 9 shows
the Pareto optimality chart with Pareto front containing 9
optimal solutions (s12 - s20) based on their impact on the
ECU communication designers role. Table 2 shows which
features are included in which solution.

Optimized solutions

8 10 12

WNoF
6
|

NoC (relevant)

Figure 9: Optimal sets of features based on their
impact on the ECU communication designers role

If we compare solutions s12 and s15, we can see that with
a relatively small increase in the number of changes we can
implement 3 additional features - Feat 4 (Efficient COM
for Large Data), Feat 9 (Safety Extensions) and Feat 12
(Efficient Non-Volatile Data Handling). We can also see
that a big increase in the number of changes required to be
implemented for adopting an additional feature starts with
the implementation of the solution s17, in particular with
the Feat 5 (End-to-End Extension). Therefore the optimal
solution should be searched among solutions s15 and s16.

Table 2: Features of the optimal solutions for the
ECU communication designers role

Solutions Features

s12 Feat 1, 3, 13, 14

s13 Feat 1, 3, 13, 14, 4

s14 Feat 1, 3, 13, 14, 4, 9

s15 Feat 1, 3, 13, 14, 4, 9, 12

s16 Feat 1, 3, 13, 14, 4, 9, 12, 8

s17 Feat 1, 3, 13, 14, 4,9, 12, 8, 5

s18 Feat 1, 3, 13, 14, 4, 9, 12, 8, 5, 10

s19 Feat 1, 3, 13, 14, 4, 9, 12, 8, 5, 10, 6
s20 Feat 1, 3, 13, 14, 4, 9, 12, 8, 5, 10, 6, 2

6.3 Aggregated role-based optimization

In the previous two subsections we discussed several op-
timal solutions based on the impact of their features on
the entire meta-model (s6 and s7) and the ECU commu-
nication designers role which is considered the most critical
(s15) and s16. This means that apart from Feat I (Ethernet
Switch Configuration) and Feat 3 (CAN FD) which are re-
quired, the decision about the adoption of Feat 4 (Efficient
COM for Large Data), Feat 5 (End-to-End Extension), Feat
8 (Secure On-Board Communication), Feat 9 (Safety Exten-
sions), Feat 12 (Efficient Non-Volatile Data Handling), Feat
13 (ECU State Manager Enhancement for Multi-Core) and
Feat 14 (ASIL-QM protection) shall be made.

Before making a final decision about the adoption of these
features, their impact on other roles in the development pro-
cess shall be considered. Figure 10 shows the number of
changes needed to be implemented by different roles to sup-
port each one of the listed features.

NoC Role 1 Role 2 Role 3 Role 4 Role 5 Role 6 Role 7
Feat 4 0 1 0 0 214 0 3
Feat 5 1 27 2 32 0
Feat 8 0 27 0 0 525 0 19
Feat 9 2 2 2 2 2 0 1
Feat 12 16 22 8 8 64 7 3
Feat 13 0 0 0 0 84 0 0
Feat 14 0 0 0 0 15 0 0

Figure 10: The impact of the features on other roles

We can see that the impact of the considered features on
the other roles is smaller than their impact on the ECU
communication designers except for the ECU communica-
tion configurators role. Therefore the decision about which
new features shall be adopted together with Feat 1 (Ether-
net Switch Configuration) and Feat 3 (CAN FD) shall be
made based on the assessment of their impact on the ECU
communication configurators role.

7. CONCLUSION AND FUTURE WORK

Following a standard in the development of software ar-
chitectures requires continuous adoption of the new stan-
dardized features where only their subset is required by in-
dividual companies. In order to decide upon which set of
new features shall be adopted in the development projects,
the assessment of their impact on the software tools used
for modeling the architectural components is an important
aspect in the decision making process. This is specially the
case with large distributed systems where the architectural

models are exchanged between a number of actors in the
development process in order to assure the interoperability
between different tools working with the models.

In order to facilitate the decision making process of which
new standardized architectural features shall be implemented
in the development projects, we defined a method - MeFiA
- for identifying the optimal sets of features. The optimal
sets are identified based on the tradeoff analysis between
their importance for the final product and the amount of re-
work needed in the software modeling tools caused by the
changes in the standardized meta-model.

We evaluate the MeFiA method in the automotive do-
main where software architectures are developed following
the AUTOSAR standard. We present the cost-benefit anal-
ysis for adoption of 14 new architectural features of the AU-
TOSAR release 4.2.1. The analysis is done based on a sce-
nario considering different roles in the development process.

We concluded that the proposed method is applicable for
identifying the optimal set of new architectural features to
be adapted in the automotive development projects. How-
ever we also believe that the method is applicable to a wider
range of domains where software is developed based on in-
dustrial meta-models and where the link between a change
management tool and a software repository is maintained.
Further empirical studies are needed to support this.

In our future work we intend to evaluate the robustness of
the MeFiA method to violations of the method assumptions,
in particular the assumption of equal weights of different
meta-model changes. We plan to address this by classifying
the changes into different categories where each category
contains a predefined weight. We also plan to investigate
the impact of different prioritization of features in a case
study at different companies.

8. ACKNOWLEDGMENTS

The authors would like to thank Swedish Governmental
Agency for Innovation Systems (VINNOVA) for funding this
research (grant no. 2013-02630) and the AUTOSAR team
at Volvo Car Corporation for contributing to the work.

9. REFERENCES

[1] M. Di Natale and A. L. Sangiovanni-Vincentelli,
“Moving From Federated to Integrated Architectures
in Automotive: The Role of Standards, Methods and
Tools,” Proceedings of the IEEE, vol. 98, no. 4, pp.
603-620, 2010.

[2] D. Durisic, M. Nilsson, M. Staron, and J. Hansson,
“Measuring the Impact of Changes to the Complexity
and Coupling Properties of Automotive Software
Systems,” Journal of Systems and Software, vol. 86,
no. 5, pp. 275-1293, 2013.

[3] S. Fiirst, “Challenges in the Design of Automotive
Software,” in Proceedings of the European Conference
on Ezhibition on Design, Automation & Test, 2010,
pPp. 256-258.

[4] S. Gal-Oz, “Standard API Would Significantly
Accelerate Embedded System Development,”
Real-Time Magazine, vol. 5, pp. 81-87, 1999.

[5] Automotive Open System Architecture, AUTOSAR,
www.autosar.org, 2003.

[6] R. Kazman, M. Klein, M. Barbacci, and T. Longstaff,
“The Architecture Tradeoff Analysis Method,” in

[13]

[14]

[20]

Proceedings of the IEEE International Conference on
Engineering of Compler Computer Systems, 1998, pp.
68-78.

R. Nord, M. Barbacci, P. Clements, R. Kazman,

M. Klein, L. O’Brien, and J. Tomayko, “Integrating
the Architecture Tradeoff Analysis Method (ATAM)
with the Cost Benefit Analysis Method (CBAM),”
Software Engineering Institute, Tech. Rep., 2003.

M. Asadi, S. Soltani, D. Gasevic, M. Hatala, and

E. Bagheri, “Toward Automated Feature Model
Configuration with Optimizing Non-Functional
Requirements,” Journal of Information and Software
Technology, vol. 56, pp. 1144-1165, 2014.

J. White, B. Dougherty, and D. Schmidt, “Selecting
Highly Optimal Architectural Feature Sets with
Filtered Cartesian Flattening,” Journal of Systems
and Software, vol. 82, pp. 1268—-1284, 2009.

A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and
A. Bernstein, “The Missing Links: Bugs and Bug-fix
Commits,” in Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, 2010, pp. 97-106.

M. Fischer, M. Pinzger, and H. Gall, “Analyzing and
Relating Bug Report Data for Feature Tracking,” in
Proceedings of the Working Conference on Reverse
Engineering, 2003, pp. 90-100.

H. Gustavsson and U. Eklund, “Architecting
Automotive Product Lines: Industrial Practice,” in
Proceedings of the International Conference on
Software Product Lines: Going Beyond, 2010, pp.
92-105.

U. Eklund, C. M. Olsson, and M. Ljungblad,
“Characterising Software Platforms from an
Architectural Perspective,” in Proceedings of the
European Conference on Software Architecture, 2013,
pp. 344-347.

S. Dersten, J. Axelsson, and J. Fréberg, “Effect
Analysis of the Introduction of AUTOSAR,” in
Proceedings of the International Conference on
Software Engineering and Advanced Applications,
2011, pp. 239-246.

H. Soubra and K. Chaaban, “Functional Size
Measurement of Electronic Control Units Software
Designed following the AUTOSAR Standard,” in
Proceedings of the International Conference on
Software Process and Product Measurement, 2012, pp.
78-84.

C. Wohlin, P. Runeson, M. Hést, M. Ohlsson,

B. Regnell, and A. Wesslen, Experimentation in
Software Engineering. Springer Heidelberg, 2012.

P. Runeson, M. Hést, A. Rainer, and B. Regnell, Case
Study Research in Software Engineering: Guidelines
and Examples. John Wiley & Sons, 2012.

J. W. Creswell, Research Design. Sage, 1994.

D. Durisic, M. Staron, M. Tichy, and J. Hansson,
“Evolution of Long-Term Industrial Meta-Models - A
Case Study of AUTOSAR,” in Proceedings of the
FEuromicro Conference on Software Engineering and
Advanced Applications, 2014, pp. 141-148.

D. Durisic, M. Staron, and M. Tichy, “Quantifying
Long-Term Evolution of Industrial Meta-Models - A

(21]

(22]

23]

(24]

25]

[26]

27]

(28]

29]

(30]

(31]

(32]

33]

(34]

(35]

Case Study,” in Proceedings of the International
Conference on Software Process and Product
Measurement, 2014, pp. 104-113.

OMG. MOF 2.0 Core Final Adopted Specification,
Object Management Group, www.omg.org, 2004.

J. Branke, K. Deb, K. Miettinen, and R. Slowinski,
Multiobjective Optimization. Springer Berlin
Heidelberg, 2008.

M. Harman and B. Jones, “Search Based Software
Engineering,” Journal of Information and Software
Technology, vol. 43, no. 14, p. 833aAS839, 2001.

C. Watkins and R. Walter, “Transitioning from
Federated Avionics Architectures to Integrated
Modular Avionics,” in Proceedings of the Conference
on Digital Avionics Systems, 2007, pp. 2.A.1-1 —
2.A.1-10.

Banking Industry Architecture Network, BIAN,
www.bian.org, 2008.

B. Boss, “Architectural Aspects of Software Sharing
and Standardization: AUTOSAR for Automotive
Domain,” in Proceedings of the International
Workshop on Software Engineering for Embedded
Systems, 2012, pp. 9-15.

C. Wang, L. Ge, and T. Lee, “Automotive ECU
Software Design Based on AUTOSAR,” Journal of
Applied Mechanics and Materials, vol. 577, pp.
1034-1037, 2014.

C. Briciu, I. Filip, and F. Heininger, “A New Trend in
Automotive Software: AUTOSAR Concept,” in
Proceedings of the International Symposium on
Applied Computational Intelligence and Informatics,
2013, pp. 251-256.

B. Huang, H. Dong, D. Wang, and G. Zhao, “Basic
Concepts on AUTOSAR Development,” in Proceedings
of the International Conference on Intelligent
Computation Technology and Automation, 2010, pp.
871-873.

T. Kiithne, “Matters of (Meta-) Modeling,” Journal of
Software and Systems Modeling, vol. 5, no. 4, pp.
369-385, 2006.

G. Nordstrom, B. Dawant, D. M. Wilkes, and

G. Karsai, “Metamodeling - Rapid Design and
Evolution of Domain-Specific Modeling
Environments,” in Proceedings of the IEEE Conference
on Engineering of Computer Based Systems, 1999, pp.
68-74.

J. Suzuki and Y. Yamamoto, “Managing the Software
Design Documents with XML,” in Proceedings of the
International Conference on Computer
Documentation, 1998, pp. 127-136.

M. Pagel and M. Brérkens, “Definition and Generation
of Data Exchange Formats in AUTOSAR,” in
Proceedings of the Furopean Conference on Model
Driven Architecture-Foundations and Applications,
2006, pp. 52-65.

U. Honekamp, “The Autosar XML Schema and Its
Relevance for Autosar Tools,” IEEE Software, vol. 26,
pp. 73-76, 2009.

C. David, Modelling XML Applications with UML
Practical e-Business Applications. Addison-Wesley
Professional; 1 edition, 2001.

