Evolution of Long-Term Industrial Meta-Models —
An Automotive Case Study of AUTOSAR

Darko Durisic
Department of Electrical
Systems Design
Volvo Car Corporation
Gothenburg, Sweden
darko.durisic@volvocars.com

Abstract—Meta-models in software engineering are used to
define properties of models. Therefore the evolution of the meta-
models influences the evolution of the models and the software
instantiated from them. The evolution of the meta-models is
particularly problematic if the software has to instantiate two
versions of the same meta-model - a situation common for long-
term software development projects such as car development
projects. In this paper, we present a case study of the evolution
of the standardized meta-model used in the development of the
automotive software systems — the AUTOSAR meta-model - at
Volvo Car Corporation. The objective of this study is to assist
automotive software designers in planning long term development
projects based on multiple AUTOSAR meta-model versions. We
achieve this by performing quantitative analysis of the AUTOSAR
meta-model evolution in order to visualize the size and the
complexity change between different meta-model versions and
calculate the number of changes which need to be implemented
to adopt a newer version. The analysis is done for each major role
in the automotive development process affected by the changes.

I. INTRODUCTION

The evolution of software today is influenced by the
evolution of models and also meta-models. The meta-models
are used to define the properties of the models and as such they
influence the software instantiated from these models [1]. We
consider a model as an abstract representation of a software
system and a meta-model as a model which defines the syntax
and the semantics of a particular domain-specific modeling
environment [2], [3]. One example of such domain-specific
meta-model used in industry is the standardized meta-model
used in the development of automotive software systems - AU-
TOSAR (AUTomotive Open System ARchitecture) [4] meta-
model. A simplified example of the usage of the AUTOSAR
meta-model to allocate software components onto different
Electronic Control Units (ECUs)! is presented in Figure 1.

As industrial models, like AUTOSAR, are usually ex-
changed between a number of stakeholders in the development
process which may use different tools, meta-models are used as
basis for the development of these tools in order to assure tool-
ing interoperability. Therefore the compliance of the models to
their meta-models must be preserved to enable different tools
to work on the same models. For this reason, the evolution of
the meta-models is very important to provide means to express

'Embedded system (hardware and software) responsible for one or more
vehicle functions (e.g. engine control, breaking).

Miroslaw Staron and
Matthias Tichy
Software Engineering Division
Chalmers | University of Gothenburg
Gothenburg, Sweden
firstname.lastname @cse.gu.se

Jorgen Hansson
Software Engineering Division
Chalmers | University of Gothenburg
Gothenburg, Sweden
jorgen.hansson @chalmers.se

new modeling solutions and as such enable innovation in the
software based on these solutions.

Referrable Uil :Ecu

+ shortName :String <I i WG STy

shortName = EngineControlModule
uuid = A2CD0720

diagAddress = 12
wakeUpOverBus = false

+ecu1\

:Sw cToEcuM apping

Ecu SoftwareComponent

shortName = Mapping32
uuid = A19FAB93

Model
+swc!

:SoftwareComponent

+ busWakeUp :Boolean
+ diagAddress :Integer

+ecu 1 [+swe/|\ 1

Sw cToEcuMapping
Meta-Model

Example of the AUTOSAR Meta-Model and its usage

shortName = EnginePowerUni
uuid = FOAAD679

Fig. 1.

In large projects which span over longer period of time
(e.g. 4-5 years), new modeling solutions are sometimes needed
during the development of one project which implies the co-
existence of multiple meta-model versions [5]. The reason for
this co-existence is the fact that long life-cycles usually imply
the existence of legacy software based on the old meta-model
versions but also new software based on the new meta-model
versions. This can be observed in car projects where, due to the
distributed nature of the automotive software systems, different
sub-systems may have their own development cycles so their
models may be instantiated from different AUTOSAR meta-
model versions. Under these circumstances, understanding the
meta-model evolution is crucial part of project planning.

The solution for the identified problems is to monitor the
evolution of the meta-models used in the development projects
and analyze them before their adoption. One reason is to better
understand possible implications of adopting new meta-model
versions based on their size and complexity increase. The
other reason is to estimate the effort needed to implement
the changes (re-work) based on their number. In this paper,
we present a case study analysis of the AUTOSAR meta-
model evolution at Volvo Car Corporation (VCC). We first
identify the most important roles in the automotive software
development process and the relevant types of changes to be
considered in the evolution. Then we develop a method for

extracting the data from different versions of the AUTOSAR
meta-model. Finally we perform quantitative analysis of the
data by applying a number of metrics to visualize the size
and the complexity trends in the evolution and counting the
number of changes between different meta-model versions.

The rest of the paper is structured in the following way:
Section 2 describes the case study context - automotive soft-
ware development based on the AUTOSAR standard. Section
3 describes the related work. Section 4 describes the research
goal and the research questions and presents the design of
the case study. Section 5 presents the results of the case
study. Section 6 discusses and validates the results of the
study and provides recommendation to other companies for
monitoring the evolution of their meta-models. Finally, Section
7 summarizes our conclusions and plans for future work.

II. CASE STUDY CONTEXT

Automotive software systems are distributed systems where
one premium vehicle today typically contains 70 - 100 ECUs
[6]. Together with their distributed nature, the development
of the automotive software systems is also distributed as they
are developed in a collaborative environment which involves a
number of stakeholders. On one side we have car manufactur-
ers (OEMs - Original Equipment Manufacturers) responsible
for designing and verifying the functions and the architecture
of the system. On the other side we have different layers of
suppliers (e.g. application software suppliers, tool suppliers,
hardware suppliers) responsible for design, implementation
and verification of the specific components in the system. In
addition to the high complexity implied by the distributed de-
velopment, the complexity of the automotive software systems
is constantly increasing [7] due to new features in cars [8].

In order to facilitate the distributed development of au-
tomotive software systems, AUTOSAR standard has been
introduced with the goal to separate the responsibilities of
different stakeholders in the process. This separation is based
on a three layer software architecture which aims to separate
the application software from the underlying basic software
(signaling, network management, diagnostics, etc.). Based on
this architecture, AUTOSAR provides standardized interfaces
between architectural components in order to standardize the
exchange format for their models. The models are expressed
using XML and the XML schema used for the validation by
the AUTOSAR based tools is generated from the AUTOSAR
meta-model [9]. A simplified sketch of the AUTOSAR soft-
ware development process in presented in Figure 2.

[loop

AUTOSAR Tool | ML | AUTOSAR Tool c
System Design ’ ‘Code Generation
4

UTOSAR
model

i H
! based on validates ! A Source Code
' i

|

creates

AUTOSAR

AUTOSAR

Fig. 2. Automotive software development process based on AUTOSAR

The AUTOSAR meta-model hierarchy is based on the
Meta-Object Facility (MOF) standard [10] and it contains 5
meta-layers (4 meta-layers plus MOF). The difference between
the classical MOF meta-layers (MOF Mx) and 5 AUTOSAR
meta-layers (AR Mx) is that AUTOSAR defines classifiers and
their instances (objects) on two different layers while according
to MOF they are both defined on MOF M1 (dual classification
problem, see [11]). This is depicted in Figure 3.

MOF | AUTOSAR
MOF M3 MOF 2.0
A
... instance0f>>
<<import>>
MOF M2 UML 2.0 P ARmz | AUTOSAR
Profile
x T
oB> <<EW"Y->}M_‘.V.--"
AUTOSAR | AUTOSAR
MOF M1 AR M2 Templates «instanceofs>| AR M1 User Models
A
...................................... <<instanceOf>> ' [RTTIIRRR
AUTOSAR
MOF M
OF MO AR MO User Objects

Fig. 3. AUTOSAR - MOF relation

AR M3 (AUTOSAR Profile meta-layer) is based on the
UML 2.0 and it defines the used UML stereotypes and anno-
tations. AR M2 (AUTOSAR Templates meta-layer) defines how
to design the automotive electrical system (ECUs, software
components, etc.). AR M1 (AUTOSAR User Models meta-
layer) represents the actual models developed by the system
designers. Finally AR MO (AUTOSAR User Objects meta-layer)
represents the realization of the AUTOSAR models in the
actual ECU. In this paper, we analyze the evolution of the
AR M2 and the standardized part of the AR M1 meta-layers.

The AR M2 meta-layer consists of a hierarchy of classifiers
with their attributes and it is divided into different AUTOSAR
’templates’. Each template is used to define how to model
one specific part of the automotive system (e.g. Software
Component template defines software components and their
interaction, System template defines communication between
ECUs, etc.). The AR M1 meta-layer consists of instances of
the AR M2. The instances used for modeling ECU application
software are developed by the software designers while the
instances used for modeling the configuration of ECU basic
software are standardized by AUTOSAR (e.g., COM stack re-
sponsible for the ECU communication, /O responsible for the
access to sensors and actuators , Services such as Diagnostics,
etc.). In the analysis of the AR M1 evolution, we consider only
the standardized part (models of the ECU configuration).

AUTOSAR uses a three digit numbering scheme Rx.y.z to
identify different releases which all include a new release of the
meta-model. The first digit identifies major releases which are
not compatible between each other and should be considered
independently. The second digit identifies minor releases which
include compatible extensions and bug-fixes. The third digit
identifies revisions which usually contain bug-fixes only. The
first two digits identify one evolution branch. Maximum two
branches may be maintained by the AUTOSAR consortium in
parallel where one branch represents a Development branch
focused on bug-fixes and innovations, and the other branch
represents a Maintenance branch focused mostly on bug-fixes.

III. RELATED WORK

There is a lot of research today related to the visualization
of the software evolution, as presented in the systematic
mapping study by Novais et. al. [12]. For example Lanza
et. al. [13] use several object-oriented metrics for visualizing
the evolution of classes like us, however they focus on the
evolution of source code. Some of the papers are also related
to the visualization of the model and meta-model evolution
such as the one from Madhavi et. al. [14] who propose a
framework for visualizing model-driven software evolution or
the one from Lange et. al. [15] who propose a tool to aid users
in tasks such as model understanding, identification of quality
problems and evolution trends. However, these papers are
analyzing the evolution of entire models without considering
their specific parts relevant for different roles. There is also a
lack of empirical research in this area, especially related to the
visualization of large scale meta-model evolution.

Many papers also present different methods for mining
software repositories in the context of the software evolution,
as presented by Kagdi [16]. For example Zimmermann et. al.
[17] and Ying et. al. [18] build prediction models to predict
which classes, functions and attributes will be changed based
on the historical analysis of different source code versions.
With respect to meta-model evolution, Vermolen et. al. [19]
present an interesting research about the coupled evolution of
meta-models and models. They propose a method for detecting
and formalizing the complex meta-model evolution in order
to migrate the existing models according to the new meta-
models more easily. However we believe the area of meta-
model evolution can also be improved with more empirical
studies, especially related to the validation of the proposed
methods for re-constructing and monitoring the meta-model
evolution on industrial meta-models.

IV. CASE STUDY DESIGN

We conduct a case study analysis of the AUTOSAR
meta-model evolution at VCC based on the guidelines from
Kitchenham et. al. [20] and Runeson et. al. [21]. Our research
objective is defined according to the structure presented by
Wohlin et. al. [22] as:

e Goal: Analyze the AUTOSAR meta-model evolution.

e Purpose: Assist software designers in assessing the
size and complexity increase between AUTOSAR
meta-model releases and the number of changes to
be implemented for adopting a new release.

e View: Software designers working with models in-
stantiating multiple AUTOSAR meta-model releases.

e Context: Automotive embedded software systems
based on the AUTOSAR standard.

In order to achieve this objective, we define the following
research questions:

e QI1: What is the trend in the size change between
AUTOSAR meta-model releases?

e (Q2: What is the trend in the complexity change
between AUTOSAR meta-model releases?

e (Q3: How many changes need to be implemented to
adopt a new AUTOSAR meta-model release?

e (Q4: Which roles are mostly affected by the evolution
of the AUTOSAR meta-model?

In order to provide answers to the research questions, we
design our case study analysis around the following 5 steps:

A) Identify roles in the development process which are
affected by the AUTOSAR meta-model evolution.

B) Map the identified roles to the relevant parts of the
AUTOSAR meta-model.

C) Identify the relevant types of changes to be consid-
ered in the AUTOSAR meta-model evolution.

D) Define which AUTOSAR meta-model releases shall
be considered and extract the relevant data from them.

E) Calculate the metrics on each considered release and
visualize their results.

Step A: In order to identify the most important roles in
the development process based on AUTOSAR, we conducted
semi-structured interviews with software engineers from four
different companies. We interviewed two engineers from each
of two OEM and one engineers from each of two supplier
companies. They all have at least ten years of experience with
developing automotive software systems and at least five years
of experience with AUTOSAR.

Step B: We mapped the identified roles to the relevant parts
of the AUTOSAR meta-model (changes in these parts affect
the mapped roles) in a workshop based on the expert opinion
of the AUTOSAR team at VCC (4 software engineers).

Step C: In the workshop mentioned in step B, we agreed
upon the relevant types of changes to be considered in the
analysis based on the analysis of a small sample of changes.
We define 'relevant’ changes as changes which require certain
implementation and/or integration effort.

Step D: In the workshop mentioned in steps B and C, we
agreed upon the set of AUTOSAR meta-model releases which
shall be considered in the analysis. We used a meta-data model
presented in Figure 4 for the extraction of the relevant data
from the considered releases. The meta-data model is based
on the relevant part of the MOF meta-model.

+elementy
&

Package Element

+ Name :string 0214 ClassfierName :string| Attribute
+ UUID :string 0.*| + Name :string +attributes + LowerBound :string|
+ Note :string
y + Stereotype :string ol " DTS SE)
+packages /|\ 0..* /|\ 0-- - “ |+ Note :string
+ Type :string
+parentElement + UUID ‘strin + Type :string
- 9 + UpperBound :string
+ UUID :string
+subPackages
+sourceConnectors\[/ 0.* 0.* \|/*targetConnectors
Connector 0.*| +annotations
- 0.*
+ Note :string
MetaModel
+ SourceCardinality :string *+annotation: .
Annotation
+ Version :string| + Stereotype :string
+ TargetCardinality :sting| +annotationg + Name :stiing
+ Type :string + Value :string
+ UUID :string 0.

Fig. 4. Meta-data model used for the measurements

Meta-models are divided into Packages which contain El-
ements - classifiers and instances. Classifier Elements contain

Attributes, Connectors of different Type (e.g., Associations,
Generalizations) and Annotations describing their additional
properties (e.g., regular expressions for strings). Instance El-
ements contain Connectors (except of Type Generalization as
they represent concrete instances) and Annotations (e.g., C
type, multiplicities). Finally, Connectors and Attributes can
also contain Annotations. Each one of the mentioned meta-
elements of the meta-data model contains additional properties
captured in the attributes of the meta-elements such as Name,
Note etc. These properties are also considered when com-
paring meta-elements between different meta-model releases.
To identify meta-elements in different releases, we used their
UUIDs (Universally Unique IDentifiers of the objects) except
for Annotations where we used their Name.

Based on the presented meta-data model, we developed a
tool to extract the relevant data from the AR M2 and the AR M1
meta-layers designed in the Enterprise Architect tool (used by
AUTOSAR meta-model developers). Due to the structure of
the AUTOSAR meta-model, Elements in the AR M2 represent
classifiers and Elements in the AR M1 represent instances.

Step E: In order to measure the properties of the AU-
TOSAR meta-model evolution, we used the metrics presented
in Figure 5 driven by the Goal-Question-Metric approach [23].
The chosen metrics are based on the structural object-oriented
metrics defined by Genero et. al. [24] and Yi et. al. [25].

GOAL
< Analyze the AUTOSAR meta-model evolution

QUESTIONS

Q1: What is the trend in
the size change between
meta-model releases?

Q2: What is the trend in the
complexity change
between meta-model releases?

Q3: How many changes

need to be implemented

to adopt a new AUTOSAR
meta-model release?

Q4: Which roles are mostly
affected by the evolution
of the meta-model?

I

METRICS !
[Number of changes] -
[Number of changed elements]
Number of attributes Average depth of
[Number of changed attributes] inheritance
Fig. 5. Goal-Question-Metric approach

The Number of elements (NoE) and the Number of at-
tributes (NoA) metrics count the total number of Elements /
Attributes respectively in each meta-model release. We use
these metrics to measure the increase in size of the meta-
model during its evolution as elements (classifiers with their
attributes and objects) represent the main building blocks of
the AUTOSAR meta-model.

The Number of changes (NoC) metric counts the total
number modifications, additions or removals of the meta-
elements of the meta-data model. This means that in case
one Attribute changed both its Name and its Type, this counts
as two changes. Additionally when introducing or removing
meta-elements containing other meta-elements (e.g., Elements
with Attributes and Connectors), the total number of changes
is defined as the total number of modifiable meta-elements
contained in the introduced / removed meta-element plus one

for the introduced / removed meta-elements itself. For example
if one Attribute with three Annotations is removed, this counts
as four different changes - one for the Arfribute and three
for the Annotations. This behavior is justified by the fact that
introduction of one Element cannot be counted as one change,
like for example a change of Connector’s lower bound, as it
requires much more effort to be implemented. The Number
of changed elements (NoCE) and the Number of changed
attributes (NoCA) metrics are based on the NoC metric but this
time, all modifications, additions and removals of one Element
and Attribute respectively count as one change only. We use
these metrics to identify the roles which are mostly affected by
the changes and to count the number of changes needed to be
implemented to adopt a new AUTOSAR meta-model release.

The Complexity (CPX) metric represents a sum of Henry
and Kafura’s structural complexities [26] of all Elements in
one meta-model release. It is defined as

CPX(n) = zi;l [FanIn(i) * FanOut(i))?

where n represents a number of Elements and Fanln(i) /
FanOut(i) a number of sourceConnectors / destinationCon-
nectors (not counting Connectors of Type Generalization) of
the Element i respectively. Generally metrics based on fan-
in and fan-out are widely used for measuring the structural
complexity of modules [7]. Fan-in is defined as the number
of modules which are calling a given module while fan-out is
defined as the number of modules which are called by the given
module. As modules in the AUTOSAR meta-model represent
Elements connected by Connectors, it is not possible to call
one module from another. However since different Elements
may be part of different domains and as such modeled by dif-
ferent teams, any interaction between them can be considered
as increase in the overall complexity of the AUTOSAR meta-
model. Therefore we consider a sourceConnector as fan-out
and a destinationConnector as fan-in property of the Element
rather than just its Attribute used for the size measurement.

Finally the Average depth of inheritance (ADIT) metric
calculates the average number of parent Elements (connected
by Generalization Type of Connectors) for all Elements in one
AUTOSAR meta-model release and it complements the CPX
metric in measuring the complexity increase between releases.

In order to calculate the metrics on the extracted data from
each considered release of the AUTOSAR meta-model, we
developed a tool to compare the models of different releases
which is also able to visualize the results using line charts, his-
tograms and heatmaps. As Elements in the AR M1 meta-layer
represent instances with no Attributes nor Connectors of type
other than aggregation (containers aggregating parameters), the
NoA, NoCA, CPX and ADIT metrics are not applicable to this
meta-layer.

V. CASE STUDY RESULTS

In this section, we present the results of the case study
structured according to the steps in the case study design.

A. Identified roles

Based on the interviews with software engineers from
VCC, we identified the following roles in the AUTOSAR based

software development process (our objective was to capture the
most important roles but other roles may exist too):

1) Application software designers - a team at the
OEMs responsible for designing vehicle functions by
defining software components and their interaction.

2) ECU communication designers - a team at the
OEMs responsible for designing the communication
between ECUs (e.g., transmitting signals on buses).

3) ECU basic software configurators - a team at the
OEMs responsible for specifying the basic software
configuration (i.e. which parameters are needed).

4) Basic software designers - a team at the basic
software suppliers responsible for designing the basic
software modules (e.g., interfaces, services, etc.).

5) ECU communication configurators - a team at the
application software suppliers responsible for config-
uring ECU communication basic software modules.

6) Diagnostics configurators - a team at the application
software suppliers responsible for configuring car
diagnostics basic software modules.

7) Upstream mapping tool developers - a team at the
tool suppliers responsible for automated derivation of
parts of the ECU configuration from the models.

B. Mapping of roles

In a workshop with the AUTOSAR team from VCC,
we mapped the identified roles to the relevant parts of the
AUTOSAR meta-model (if they are affected by the changes in
these parts). The outcome is presented in Figure 6 ("X’ denotes
that the corresponding role is affected by the changes in the
corresponding part of the meta-model). We use this mapping
to analyze the results for the identified roles separately.

w
2 E “E 2 . w g_
5 @
258 5&23
— % &= ® S5 3
3z v 0O & 8 O & o
3 e £ E s
= 238288¢
& 0= § o © s
3 CEEREEEE
S Partofthemeta-model £ 8 @ 8 8 58 5
GenericStructure X X X X
CommonStructure X X X X
SWComponentTemplate X
SystemTemplate X X
ECUCParameterDefTemplate X
ECUCDescriptionTemplate X
BswModuleTemplate X
COM-Stack X X
Mode_Mgm X X
Services (only diagnostic) X

Fig. 6. Mapping of roles to meta-model parts

We identified that the mapping of roles to meta-model parts
is not 1:1. This means that several roles may be affected by
the changes in the same part of the AUTOSAR meta-model
and also that changes in different parts may affect the same
role. We also identified that not all parts of the meta-model are
covered by the identified roles, in particular the Methodology,
the EcuResourceTemplate and non-communication and non-
diagnostic parts of the AR M1. As the Methodology part is
auxiliary, the EcuResourceTemplate is not currently used and

other non-communication and non-diagnostic parts of the AR
M1 are relevant only to specific roles which do not have a
significant impact on the development process, we decided
to exclude them from the analysis even though they may be
relevant for some additional roles.

C. Relevant types of changes

By examining a small sample of AUTOSAR meta-model
changes between R4.0.3 and R4.1.1 with the AUTOSAR team
at VCC, we realized that several types of changes which belong
to the relevant parts of the meta-model are not relevant for
any of the mapped roles. We considered a change not to be
relevant if it does not require any implementation / integration
effort, such as editorial changes in the Notes of Elements
| Attributes or change in the format of the Amnnotations.
Therefore we decided to exclude from the analysis the changes
to the Notes of Elements | Attributes | Connectors. We also
decided to consider only the changes to Annotations (i) of
type ’obsolete’ (the Element will be removed in future), (ii)
related to configuration classes of AR M1 instances (when the
instance shall be defined, i.e. pre-compile time, link time or
post-build time) and (iii) related to the identification of the
model Elements (AR M2) from which the ECU configuration
Elements (AR M1) are derived from.

In order to validate our assumption that it is necessary to
exclude the changes which are not relevant from the analysis,
we compared the results of several metrics considering all
and considering the relevant changes only. Figure 7 shows an
example of the comparison between the number of all changes
and the number of relevant changes in R4 (i.e. releases R4.x.y).

25000
—All changes
N Relevant changes
20000
u c
m h
b a 15000
e n
r g 10000
e
° % 5000
f / \
0
4.0.1 4.0.2 4.03 41.1 4.1.2
Releases
Fig. 7. Number of all vs. relevant only changes in R4

We can see that the number of all changes between R4.0.2
and R4.0.3 was less than the number of all changes between
R4.0.1 and R4.0.2 even though the number of relevant changes
only between R4.0.2 and R4.0.3 was increased in comparison
to the number of relevant changes only between R4.0.I and
R4.0.2. This behavior is explained by many editorial (not
relevant) changes between R4.0.1 and R4.0.2. There are several
other similar cases like this so we concluded that the results
considering all and considering relevant changes only differ
quite a lot. This result validates our assumption that wrong
conclusions can be derived from the results considering all
changes in the AUTOSAR meta-model.

D. Considered releases

In a workshop with the AUTOSAR team at VCC, we
agreed to consider only the AUTOSAR meta-model releases
presented in green in Figure 8. Apart from these releases,
there are three additional release branches in the beginning
of AUTOSAR (R1.0, R2.0 and R2.1) which we decided not
to consider for two reasons. First, they are not used today.
Second, the release process back then was quite different
(releases occurred after every change or a small group of
changes), plus the maturity of the meta-model was not as
good as in R3.0.1 and onwards. Additionally we decided not
to consider releases R3.0.4 - R3.0.7 as their maintenance was
negligible due to the fact that most of the AUTOSAR partners
quickly moved to release branch R3.1.

Release | Dec '07 | Feb '08 | Jun '08 | Aug'08 | Feb'09 | Jul'09 | Feb'10 | Sep '10 [May '11| Jun'11

small decrease between R3.0.1 and R3.0.2 and a small increase
between R3.2.1 and R3.2.2 affecting mostly the Application
software designers role). However in R4 (see Figure 11), we
can see a much higher increase in the results of both the CPX
and the ADIT metrics (more than double increase between
R4.0.1 and R4.1.1) which is mostly related to the introduction
of new concepts in R4. This is also the reason for 3-5 times
higher increase in the results of the CPX and the ADIT metrics
between the releases in R3 and R4.

Q3: Number of changes: In order to count the changes
needed to be implemented to adopt a new AUTOSAR meta-
model release in one project, we compare the results of the
NoC, NoCE and the NoCA metrics for all considered releases.
Figure 10 shows the total number of changes between each
two releases of the AUTOSAR meta-model.

R3.0 R3.0.1 | R3.0.2 | R3.0.3 9 R3.0.4 | R3.0.5 | R3.0.6 | R3.0.7

R 3.0

o

3.02]3.03]311(312]313]314(315]321]322]401]|402]403[411]412

R3.1 ~ [R3.L.1[R3.1.2 [R3.13 [R3.14 | R3.LS
R3.2 ~> [Rr321] R3.22

Release | Dec'09 | Apr'11 | Dec'11 | Mar '13 | Oct '13
R4.0 R4.0.1 | R4.0.2 | R4.0.3

305 323| 1665| 1708| 1708| 1953| 2212| 7210| 8301| 30254| 33747| 37866 49695| 50675
28| 1370| 1413| 1413| 1662| 1921| 6967| 8057| 30039 33531| 37656| 49487 50467,
0 1382 1425| 1425| 1674| 1933| 6979| 8069| 30052| 33544| 37669| 49500| 50480
0| 53 5 304 563| 5609| 6743| 29242| 32929| 37055| 49022| 50004
0| 10| 261 520| 5574| 6708| 29256| 32943| 37069| 49036| 50018|
0| 261| 520 5574| 6708| 29256(32943| 37069 49036(50018

R4.1 S [R411 | RA12

0 299 5351| 6489| 29348 33040(37171 49141 50123

Fig. 8. Considered AUTOSAR releases

E. Measurement results

In this section, we present and analyze the results of the
measurements applied on the considered set of AUTOSAR
meta-model releases with respect to the research questions.

Q1: Size trend: In order to measure the trend in the size
increase between different releases of the AUTOSAR meta-
model, we compare the results of the NoE and the NoA metrics
for all considered releases. Figure 9 shows the number of
relevant Elements per each minor release / revision in R3 (i.e.
releases R3.x.y) and R4 (i.e. releases R4.x.y).

7000
6000
5000

4000

- o o 3 c 2

3000

2000

w + 3 0 3 0 — 0

f 1000

0
3.0.1 302 303 311 312 313 314 315 321 322 401 402 403 411 412
Releases

Fig. 9. Number of elements - R3 and R4

We can see a much higher increase in size between different
major releases (R3 and R4) and also between minor releases
(e.g. R3.1.5 to R3.2.1 and R4.0.3 to R4.1.1) in comparison to
revisions. Similar results can be seen by comparing the number
of Artributes between different releases which is also true for
the analysis of the identified roles separately.

Q2: Complexity trend: In order to measure the trend
in the complexity increase between different releases of the
AUTOSAR meta-model, we compare the results of the ADIT
and the CPX metrics for all considered releases. The results
of the ADIT metric for different roles in R3 are stable and
the same is true for the results of the CPX metric (except a

0| 5150 6287| 29557| 33143| 37274| 49254| 50236
0| 1237| 33723| 37174| 41170| 53194| 54177
34695| 38138| 42095| 54065| 55047,
0| 3987| 10343| 25406| 26430
6783| 22030| 23064
0 15621 16720
0 0| 1229
0 0 0

=)

=)

w
o
@
olo|o|olo|o|o|o|olo|o|o|o|o|o
olo|ololo|o|o|o|o|o|o|o|o|o
olo|o|o|o|olo|o|o|o|o|o
olo|o|olo|olo|o|olo]o
olo|o|olo|o|o|o|o|o
olo|o|olo|olo]o
olo|o|olo|o|o
olo|o|olo|o
olol|olo|o

0
0
0
0

olo|o

Fig. 10. Number of changes between all releases

We can see that more changes are made between the
releases in branch R3.2 and the releases in branch R4.0 /
R4.1, than between the releases in branch R3.0 / R3.1 and
the releases in branch R4.0 / R4.1. This indicates that the
changes done in branch R3.2 are more than just a subset of
the changes done in branch R4.0 / R4.1, even though the
Maintenance branch R3.2 should be focused only on bug-
fixes and back-porting of the most important concepts from
the Development branch R4.0 / R4.1. This means that using
later releases in one evolution branch requires more changes
to be implemented in order to switch to a release in another
evolution branch. By calculating the NoC metric for each
role separately, we identified that this is particularly expressed
for the ECU communication configurators role whereas other
roles are less affected. The NoCFE and the NoCA metrics (for
applicable roles) show similar results.

Q4: Affected roles: In order to identify the roles mostly
affected by the evolution of the AUTOSAR meta-model, we
compare the results of the NoC, NoCE and the NoCA metrics
for all considered releases. Figure 12 shows the results of the
NoC metric between consecutive releases in R3 and R4 for
each role. We can see that the role of the ECU communication
configurators is mostly affected by the evolution followed
by the role of the Diagnostics configurators (R3.1.1, R3.2.1,
R3.2.2 and R4.1.1). The NoCE metric shows similar results
while the NoCA metric is not applicable to these two roles as
they are mapped to the AR M1 parts of the meta-model.

VI. DISCUSSION AND VALIDATION OF THE RESULTS

In order to validate the conclusions we derived from the
measurements, we analyzed the release notes of the considered
AUTOSAR releases. The brief summary is shown in Table I.

250000 16
o
¢ A4
© 200000 v
m g 12
1
P 150000 10
| — App SW designer a " 8
e Com matrix designer ¢ h
100000 i e 6
X ECU configurator p
i —BSW designer t r 4
50000 i
t h
v t 2
0 0
4.0.1 4.0.2 4.03 411 4.1.2 4.0.1 4.0.2 4.0.3 4.1.1 4.1.2
Releases Releases
Fig. 11. Complexity (left) and Average depth of inheritance (right) per role - R4
12000 12000
N N
10000 10000
u c M App SW designer u c
m h 8000 ® Com matrix designer m h 8000
b a] b a
e n 6000 ECU configurator - 6000
g W BSW designer
. 4000 B Com configurator " & 000
0 S 5000 m Diag configurator : 2000
f UTM tool f
o % ENESU R R
4.0.1 4.0.2 4.0.3 4.1.1 4.1.2 3.0.1 3.0.2 3.03 3.1.1 3.1.2 3.1.3 3.14 3.15 3.2.1 322
Releases Releases
Fig. 12. Number of changes per role - R4 (left) and R3 (right)
TABLE 1. FACTORS AFFECTING DIFFERENT RELEASES .
Apart from the new concepts, we believe the meta-model
Release Factors cleanup activity between R3 and R4 is the reason for higher
R3.0.1 Bug-fixes, new AR MI modules (State Mngr), new AR M2 . in th b f ch ded to be i 1 ted
templates (BswModuleTemplate), FIBEX standard harmonization Increase .ln € number ol ¢ X anges needed 1o .e implemente
R3.02 - R3.03 | Bug-fixes only for a switch from a release in R3 to a release in R4.
R3.1.1 Bug-fixes, conc. On-Board Diagnostics (AR M1I)

R3.12-R3.1.5 | Bug-fixes only By analyzing different concepts, we concluded that they
R3.2.1 Bug-fixes, new concepts Partial networking and Production z'md mostly affect the ECU communication related parts of the
development errors, back-ported concepts End2End protection, . . .

extended Complex Device Driver, Basic Software Mode Man- AUTOSAR meta-model (Cg harmonization with the FIBEX
ager and FlexRay ISO Transport protocol modules standard used to specify the communication between ECUs,
R3.2.2 Bug-fixes only

R4.0.1 Bug-fixes, new concepts Ethernet, Variant handling, Timing
model, etc. meta-model cleanup

Bug-fixes, new AR M2 templates (StandardizationTemplate, Au-
tosarTopLevelStructure), new AR M1 module MemMap

R4.0.3 Bug-fixes, forward-ported concept Partial networking (R3.2.1),
new AR M1 module FlexRay AR Transport Protocol, new SPEM
UML profile for Methodology

R4.1.1 Bug-fixes, new concepts Partial networking on Ethernet, contin-
ued FIBEX harmonization and Timing model, J1939 for heavy
duty vehicles, etc., maintainability improvements (revision of the
ECU vs. Local scope of AR M1 parameters)

Bug-fixes only

R4.0.2

R4.1.2

We identified a substantial increase in the size and the
complexity of R4 releases in comparison to R3 and we relate
this to many more new concepts incorporated in R4 than in R3.
The incorporation of fewer concepts into R3./ / R3.2 is related
to the fact that R3.2 is a Maintenance branch. Generally we
see that new concepts are the main drivers of the AUTOSAR
evolution and as such they are mostly responsible for the
increase in the number of changes, size and complexity of the
meta-model. They are also responsible for the higher increase
in the number of changes between minor releases (e.g. R3.1.1
to 3.2.1 related to the new concepts On-Board Diagnostics
II and Partial networking) in comparison to revisions which
contain bug-fixes only (e.g. R3.1.2 - R3.1.5, R3.2.2, R4.1.2).

Ethernet as a communication medium, Partial networking for
partially switching off the communication). Several concepts
are also related to the ECU diagnostics (e.g. On-board di-
agnostics, Production and development errors). This validates
our conclusion that the ECU communication configurators and
the Diagnostics configurators roles are mostly affected by the
AUTOSAR meta-model evolution and need most re-work.

Even though we designed our case study for analyzing the
evolution of the AUTOSAR meta-model, we believe that most
of the steps are applicable to a wider range or industrial meta-
models based on MOF. Therefore we recommend to other
companies who would like to monitor the evolution of meta-
models used in their development projects the following:

1) Role based analysis of the meta-model by mapping
different roles to the relevant parts of the meta-model.

2) Consideration of the relevant changes only. This is
applicable only if the meta-model contains data which
does not affect the tools working with the models.

3) Usage of the proposed data-model and the metrics for
the analysis of the meta-model evolution. Note that
not all data-model parts are applicable to all meta-
models, e.g. Generalization Connectors in case of flat
meta-model structure.

VII. CONCLUSIONS

In this paper, we present a case study analysis of the
AUTOSAR meta-model evolution. The goal of the study is to
assist software designers who work with multiple AUTOSAR
meta-model releases in planning the adoption of newer releases
in the development projects. We achieve this by visualizing the
size and the complexity increase between different meta-model
releases and calculating the number of changes needed to be
implemented in order to adopt a newer release. As these results
are based on the quantitative data analysis, they can be fully
automated and as such used as an early indicator of possible
impact of adopting new meta-model releases on the existing
projects and used tooling and also as a preliminary estimate
of the effort needed to implement the changes.

In order to understand possible implications of adopting
new meta-model releases, we showed the results of the Number
of elements, the Number of Attributes, the Complexity and
the Average dept of inheritance metrics for each role in each
release. For example, a high complexity increase between
current and adopting meta-model release for a certain role
may have a substantial impact on the quality of the corre-
sponding models instantiating these releases. We showed that
the size and the complexity of the AUTOSAR meta-model is
increasing between different minor and major releases while
it is relatively stable between different revisions. The ECU
communication configurators role followed by the Diagnostics
configurators role is mostly affected by the changes.

In order to estimate the effort needed to switch from one
meta-model release to another, we calculated the Number of
changes and the Number of changed elements | The number
of changed attributes metrics between each two release of the
meta-model. We assume that each change requires a certain
implementation effort and therefore more changes between two
releases indicate higher effort in switching from one release
to another. We showed that the highest effort is needed when
switching from a late AUTOSAR meta-model release in one
evolution branch to a late release in another evolution branch.

In our future work, we plan to study the evolution of the
UML 2.0 meta-model using the same approach as described in
this paper. We also plan to assess the applicability of different
metrics for measuring the evolution of meta-models.

ACKNOWLEDGMENT

The authors would like to thank Swedish Governmental
Agency for Innovation Systems (VINNOVA) for funding the
work presented in this paper and the AUTOSAR team at Volvo
Car Corporation for contributing to the research.

REFERENCES

[1] D. D. Ruscio, L. Iovino, and A. Pierantonio, “What is Needed for Man-
aging Co-evolution in MDE?” in Proceedings of the 2nd International
Workshop on Model Comparison in Practice, 2011, pp. 30-38.

[2] T. Kdhne, “Matters of (Meta-) Modeling,” Journal of Software and
Systems Modeling, vol. 5, no. 4, pp. 369-385, 2006.

[3] G. Nordstrom, B. Dawant, D. M. Wilkes, and G. Karsai, “Metamodeling
- Rapid Design and Evolution of Domain-Specific Modeling Environ-
ments,” in Proceedings of the IEEE Conference on Engineering of
Computer Based Systems, 1999, pp. 68-74.

[4] AUTOSAR Standard, www.autosar.org, 2003.

(5]

(6]

(7]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Becker, B. Gruschko, T. Goldschmidt, and H. Koziolek, “A Process
Model and Classification Scheme for Semi-Automatic Meta-Model
Evolution,” in MDD, SOA und IT-Management Workshop, 2007, pp.
35-46.

M. Broy, “Challenges in Automotive Software Engineering,” in Pro-
ceedings of the 28th international conference on Software engineering,
2006, pp. 33-42.

D. Durisic, M. Nilsson, M. Staron, and J. Hansson, “Measuring the
Impact of Changes to the Complexity and Coupling Properties of
Automotive Software Systems,” Journal of Systems and Software,
vol. 86, no. 5, pp. 275-1293, 2013.

M. Broy, I. Kruger, A. Pretschner, and C. Salzmann, “Engineering
Automotive Software,” in Proceedings of the IEEE, ser. 2, vol. 95,
2007.

C. David, Modelling XML Applications with UML Practical e-Business
Applications. Addison-Wesley Professional; 1 edition, 2001.

OMG. MOF 2.0 Core Final Adopted Specification, Object Management
Group, www.omg.org, 2004.

C. Atkinson and T. Kihne, “Rearchitecting the UML Infrastructure,”
Transactions on Modeling and Computer Simulation, vol. 12, no. 4,
pp- 291-321, 2002.

R. L. Novais, A. Torres, T. S. Mendes, M. Mendonga, and N. Zazworka,
“Software Evolution Visualization: A Systematic Mapping Study,”
Information and Software Technology, vol. 55, no. 11, pp. 1860-1883,
2013.

M. Lanza and S. Ducasse, “Understanding Software Evolution Using
a Combination of Software Visualization and Software Metrics,” in In
Proceedings of Langages et Modéles a Objets Conference, 2002, pp.
135-149.

K. Madhavi, “A Framework for Visualizing Model-Driven Software
Evolution,” in Advance Computing Conference, 2009, pp. 1628-1633.

C. Lange, M. Wijns, and M. Chaudron, “MetricViewEvolution: UML-
based Views for Monitoring Model Evolution and Quality,” in Software
Maintenance and Reengineering, 2007, pp. 327-328.

H. Kagdi, M. L. Collard, and J. I. Maletic, “A Survey and Taxonomy
of Approaches for Mining Software Repositories in the Context of
Software Evolution,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 19, no. 2, pp. 77-131, 2007.

T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
Version Histories to Guide Software Changes,” Journal of IEEE Trans-
actions on Software Engineering, vol. 31, no. 6, pp. 429-445, 2005.

A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Predicting Source
Code Changes by Mining Change History,” Journal of IEEE Transac-
tions on Software Engineering, vol. 30, no. 9, pp. 574 — 586, 2004.

S. Vermolen, G. Wachsmuth, and E. Visser, “Reconstructing Complex
Metamodel Evolution,” in Proceedings of the 4th international confer-
ence on Software Language Engineering, 2011, pp. 201-221.

B. Kitchenham, S. Pfleeger, L. Pickard, L. Jones, P. Hoaglin, K. Emam,
and J. Rosenberg, “Preliminary Guidelines for Empirical Research
in Software Engineering,” Journal of IEEE Transactions on Software
Engineering, vol. 28, no. 8, pp. 721-734, 2002.

P. Runeson, M. HGst, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples. John Wiley &
Sons, 2012.

C. Wohlin, P. Runeson, M. H&st, M. Ohlsson, B. Regnell, and
A. Wesslen, Experimentation in Software Engineering. Springer
Heidelberg, 2012.

V. Basili, G. Caldiera, and H. Rombach, The Goal Question Metric
Approach. Encyclopedia of Software Engineering, Wiley, 1994.

M. Genero, M. Piattini, and C. Calero, “Early Measures for UML Class
Diagrams,” in L’OBJET: Software, Databases, Networks, ser. 4, vol. 6,
2000.

T. Yi, F. Wu, and C. Gan, “A Comparison of Metrics for UML Class
Diagrams,” in ACM SIGSOFT Software Engineering Notes, ser. 1-6,
vol. 29, 2004.

S. Henry and D. Kafura, “Software Structure Metrics Based on Infor-

mation Flow,” Journal of IEEE Transactions on Software Engineering,
vol. 7, no. 5, pp. 510-518, 1981.

