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Abstract—Measurement in software engineering is an impor-
tant activity for successful planning and management of projects
under development. However knowing what to measure and
how is crucial for the correct interpretation of the measurement
results. In this paper, we assess the applicability of a number of
software metrics for measuring a set of meta-model properties
- size, length, complexity, coupling and cohesion. The goal is
to identify which of these properties are mostly affected by the
evolution of industrial meta-models and also which metrics should
be used for their successful monitoring. In order to assess the
applicability of the chosen set of metrics, we calculate them on a
set of releases of the standardized meta-model used in the devel-
opment of automotive software systems – the AUTOSAR meta-
model – in a case study at Volvo Car Corporation. To identify the
most applicable metrics, we used Principal Component Analysis
(PCA). The results of these metrics shall be used by software
designers in planning software development projects based on
multiple AUTOSAR meta-model versions. We concluded that the
evolution of the AUTOSAR meta-model is quite even with respect
to all 5 properties and that the metrics based on fan-in complexity
and package cohesion quantify the evolution most accurately.

I. INTRODUCTION

Measuring the properties of software today is an insepara-
ble part of software engineering. As the results of the measure-
ments may have a severe impact on project decisions, choosing
the right properties to be measured and the right metrics for
their measurement is crucial for the correct interpretation of
the measurement results [1]. One particularly important use of
software metrics is for monitoring the evolution of software
[2]. As meta-models are used to define properties of models
and as such they influence the software instantiated from these
models [3], monitoring the evolution of the meta-models plays
an important role in planning the evolution of the software
based on them. The goal of this paper is to identify the most
applicable metrics for effective monitoring of the evolution of
the industrial meta-models.

Industrial meta-models represent a specific kind of meta-
models as they are used to define domain-specific models
[4] (e.g. telecommunication, automotive, avionics) which are
usually exchanged between a number of stakeholders in the
development process. As these stakeholders may use different
tools to work with the models, meta-models are used as basis
for the development of these tools in order to assure tooling
interoperability. Therefore the compliance of the models to
their meta-models must be preserved to enable different tools

to work with the same models. For this reason, the evolution
of such product oriented meta-models is very important to
provide means to express new modeling solutions and as such
enable innovation in the software based on these solutions.

One example of such industrial meta-model is the standard-
ized meta-model used in development of automotive software
systems - AUTOSAR (AUTomotive Open System ARchitec-
ture) [5] meta-model. A simplified example of the usage of
the AUTOSAR meta-model to allocate software components
to Electronic Control Units (ECUs)1 is shown in Figure 1.
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Fig. 1. Example of the AUTOSAR Meta-Model and its usage

In large projects which span over longer period of time
(e.g. 4-5 years), monitoring the evolution of meta-models is
even more important as multiple versions of one meta-model
may need to co-exist in one project [6]. The reason for this is
that long life-cycles usually imply the existence of the legacy
software based on the old meta-model versions but also the
new software based on the new versions. This can be observed
in car projects where, due to the distributed nature of the
automotive systems, different sub-systems may have their own
development cycles so their models may be instantiated from
different versions of the AUTOSAR meta-model. Therefore
measuring certain properties of meta-models between different
versions is important to understand the potential impact of
adopting new meta-model versions in terms of compatibility
and effort in updating the existing tools and models.

1Embedded system (hardware and software) responsible for one or more
vehicle functions (e.g. engine control, breaking).



In this paper, we present the assessment of the applicability
of a number of software metrics for monitoring 5 properties
of meta-model evolution - size, length, complexity, coupling
and cohesion [7]. We assess the metrics in a case study of the
AUTOSAR meta-model at Volvo Car Corporation. To identify
the most applicable metrics, we used Principal Component
Analysts (PCA) [8]. The results of these metrics shall be used
by software designers for two main purposes: First, to plan the
adoption of new AUTOSAR meta-model releases in on-going
or future development projects by providing initial estimations
about the adoption effort. Second, to predict the impact of
adopting new AUTOSAR meta-model releases on the existing
models in terms of quality and re-work. Based on the results
of the PCA, concluded that the evolution of the AUTOSAR
meta-model is quite even with respect to all 5 properties. We
also concluded that the metrics based on fan-in complexity and
package cohesion quantify the evolution most accurately. This
is validated by comparing the results of these metrics to the
release notes of each AUTOSAR meta-model release.

The rest of the paper is organized in the following way:
Section 2 describes the related work. Section 3 describes the
context of the case study - AUTOSAR meta-model. Section 4
describes the design of the case study including the research
questions and the research method. Section 5 formally defines
the assessed metrics. Section 6 presents the results of the PCA
performed on the results of the metrics calculated on a number
of releases of the AUTOSAR meta-model. Finally, Section 7
summarizes our conclusions and plans for future work.

II. RELATED WORK

There exist a number of papers today analyzing the evo-
lution of software, especially related to visualization of the
software evolution [9]. Some of them focus on the evolution
of models, like the one from Madhavi et. al. [10], or they define
or analyze the metrics applicable for measuring their properties
such as the ones from Hyoseob et. al. [11], Marchesi et. al. [12]
and McQuillan et. al. [13]. However not many papers focus on
the analysis of the meta-model evolution. Additionally, there
is a lack of empirical research in this area, especially related
to the evolution of long-term industrial meta-model.

For the definition of metrics, we decided to use formalized
definition based on the mathematical model. However there are
several other applicable approaches to the formal definition of
object-oriented software metrics such as the one proposed by
Baroni et. al. using OCL [14], the one proposed by Wakil et.
al. using XQuery expressions for XMI documents [15] or the
one proposed by Lamrani et. al. using Z language [16].

Finally we use PCA to assess the correlations between
different metrics and to identify the metrics which are able
to measure the desired properties most accurately. This was
the goal of several other papers such as the ones from Del
Almo et. al. [17], Dash et. al. [18] and Nagappan et. al. [19].

III. AUTOSAR META-MODEL AND ITS ROLE

Automotive software systems are distributed systems where
one premium vehicle today typically contains around 70 - 100
ECUs [20]. Together with their distributed nature, the devel-
opment of the automotive software systems is also distributed
as they are developed in a collaborative environment which

involves a number of stakeholders. On one side we have car
manufacturers (OEMs - Original Equipment Manufacturers)
responsible for designing and verifying the functions and the
architecture of the system. On the other side we have different
layers of suppliers (e.g. application software suppliers, tool
suppliers, hardware suppliers) responsible for design, imple-
mentation and verification of the specific components in the
system. In addition to the high complexity implied by the
distributed implementation and development, the complexity
of the automotive software systems is constantly increasing
[21] due to new features in cars [22].

In order to facilitate the distributed development of auto-
motive software systems, the AUTOSAR standard has been
introduced with the goal to separate the responsibilities of
different stakeholders in the process. This separation is based
on a three layer software architecture which aims to separate
the application software from the underlying basic software
(signaling, network management, diagnostics, etc.). Based on
this architecture, AUTOSAR provides standardized interfaces
between the architectural components in order to standardize
the exchange format for their models between different tools.
The models are expressed using XML and the XML schema
used for the validation of the models is generated from the
AUTOSAR meta-model [23] (see the simplified sketch of
the AUTOSAR software development process in Figure 2).
Therefore the AUTOSAR meta-model is used as a basis for
designing different parts of the AUTOSAR architecture.
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Fig. 2. Automotive software development process based on AUTOSAR

The AUTOSAR meta-model hierarchy is based on the
Meta-Object Facility (MOF) standard [24] and it contains
5 meta-layers (4 meta-layers plus MOF). Each meta-layer
instantiates the layer above, as depicted in Figure 3.
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Fig. 3. AUTOSAR meta-model layers



AR M3 (AUTOSAR Profile meta-layer) is based on the
UML 2.0 and it defines the used UML stereotypes and anno-
tations. AR M2 (AUTOSAR Templates meta-layer) defines how
to design the automotive electrical system (ECUs, software
components, etc.). AR M1 (AUTOSAR User Models meta-
layer) represents the actual models developed by the system
designers. Finally AR M0 (AUTOSAR User Objects meta-layer)
represents the realization of the AUTOSAR models in the
actual ECU. In this paper, we analyze the AR M2 meta-model
which we refer to as the AUTOSAR meta-model.

The AR M2 meta-model consists of a hierarchy of clas-
sifiers with their attributes and it is divided into a number of
top level packages referred to as AUTOSAR ’templates’. Each
template is used to define how to model one specific part of the
automotive system (e.g. Software Component template defines
software components and their interaction, System template
defines communication between ECUs, etc.). Classes in the
AR M2 meta-model may be specialized from multiple classes.

IV. CASE STUDY DESIGN

We conduct a case study analysis [25], [26] of the ap-
plicability of a number of software metrics for quantifying
the evolution of the AUTOSAR meta-model at Volvo Car
Corporation. The formal definition of our research objective
is defined according to the structure of Wohlin et. al. [27] as:

• Goal: Assess the applicability of a number of metrics
for quantifying a set of meta-model properties.

• Purpose: Identify the most applicable metrics for
monitoring the AUTOSAR meta-model evolution.

• Field: Size, length, complexity, coupling and cohesion
properties of the meta-model.

• View: Software designers working with models in-
stantiating multiple AUTOSAR meta-model versions.

• Context: Automotive software systems based on the
AUTOSAR standard deployed to Volvo cars.

In order to extract data for the measurements from differ-
ent AUTOSAR meta-model releases, we defined a meta-data
model (simplified version of MOF) presented in Figure 4.
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Fig. 4. Meta-data-model used for the measurements

At the top we have a MetaModel meta-element which
contains a certain number of top level Package meta-elements
- called templates in the AR M2. Templates are used to define
how to model one specific part of the automotive electri-
cal system, e.g. Generic Structure Template defines generic
Classes from which all other Classes are specialized, the Soft-
ware Component Template defines software components and
their interaction, the System Template defines communication
between ECUs, etc. Templates contain a hierarchy of Pack-
age meta-elements where each Package contains Class meta-
elements and / or other Packages. Classes contain Attribute
meta-elements. Finally, binary relations between Classes are
realized with Connector meta-elements which can be either
Generalizations or Associations.

In order to monitor the evolution of the AUTOSAR meta-
model, we chose to assess a set of structural object-oriented
metrics based on the metrics presented by Genero et. al. [28]
and Yi et. al. [29] as they are applicable to Class diagrams
which represent building blocks of the AUTOSAR meta-
model. We selected 10 metrics presented in Table I. The
metrics are categorized according to the 5 properties defined
by Briand et. al. [7] - size, length, complexity, coupling and
cohesion, and they all satisfy the criteria of the corresponding
property. Our goal was to cover each property considering
only simple (implementation wise) and easily understandable
metrics. Also, the goal was to cover all of the elements of the
used meta-data-model presented in Figure 4.

TABLE I. METRICS

Metric Abbreviation Property

Number of classes NOC Size

Number of attributes NOA Size

Depth of inheritance DIT Length

Fan-in FI Complexity

Fan-out FO Complexity

Fan-IO FIO Complexity

Package coupling PCP Coupling

Coupling between classes CBC Coupling

Package cohesion PCH Cohesion

Cohesion ration CR Cohesion

For the size property, we chose the Number of classes
and the Number of attributes metrics. Classes represent the
main meta-elements of the AUTOSAR AR M2 meta-model
as they give semantics to the objects used in the actual
models instantiating the AUTOSAR meta-model, e.g. ECUs,
SoftwareComponents, SystemSignals, etc. Attributes provide
additional information about the Classes, e.g. length of a
SystemSignal. As the AUTOSAR meta-model does not contain
methods and Packages are just logical structures of Classes
without any semantics, we consider the number of Classes
and the number of Attributes as the most suitable indicators of
the size increase of the AUTOSAR meta-model.

Note that even though in the modeling world Associations
can be considered as Attributes of the source Classes, in case of
industrial meta-models they may have slightly different seman-
tics. The reason for this is the fact that Classes represent logical
entities whose instances may be modeled by separate teams.
Therefore the introduction / removal of one Association may
have globally wider impact than the introduction / removal of
one Attribute which describes only one logical entity (Class).
For this reason, we analyzed them in a context of complexity,
coupling and cohesion rather than in the context of size. Figure



5 shows an example of the different usage of Associations and
Attributes in the AUTOSAR meta-model.

SoftwareComponent Ecu

+ diagAddress  :int

SwcToEcuMapping
+swc +ecu

Fig. 5. Different semantics of associations and attributes.

In this example, one SoftwareComponent can be allocated
onto one Ecu. This allocation is captured in another mod-
eling entity SwcToEcuMapping which contains Associations
to both SoftwareComponent and Ecu entities. Therefore these
Associations may introduce additional complexity to both
SoftwareComponent and Ecu modeling entities as they may be
modeled by separate teams while, for example, the Attribute
diagAddress describes just one Ecu entity (it indicates the ID
of the Ecu entity used for responses to diagnostic routines) and
therefore does not require interaction between different teams.

For the length property, we chose the Depth of inheritance
metric. The reason for this is a deep inheritance hierarchy of
Classes in the AUTOSAR meta-model where Classes at the top
are abstract Classes used for defining the high level properties
of Classes below (e.g. shortName, category, uuid, etc). The
non-abstract Classes may have a hierarchy as well.

For the complexity property, we chose the Fan-in, Fan-out
and Fan-IO metrics. Generally metrics based on fan-in and fan-
out are widely accepted for measuring structural complexity
between different modules. Then the fan-in represents the
number of modules which are calling a given module while
the fan-out represents the number of modules which are called
by the given module. As modules in the AUTOSAR meta-
model represent Classes (or Packages of Classes) connected
by Associations, it is not possible to call one module from
another. However since objects of different Classes may be part
of different domains and as such modeled by separate teams,
any interaction between them can be considered as increase
in the overall complexity of the models instantiating the AU-
TOSAR meta-model (see Figure 5 where SoftwareComponents
modeled by one team can now be allocated onto Ecus modeled
by another team). Therefore we consider the source of the
Association as a fan-out property of the referred Class and the
target as a fan-in property of the referred Class.

For the coupling property, we chose the Package coupling
and the Coupling between classes metrics. Both metrics are
based on fan-in and fan-out properties of Classes, just Cou-
pling between classes metric considers all Associations con-
necting the analyzed Class with other Classes while Package
coupling metric considers only the Associations connecting the
analyzed Class with Classes from other Packages.

Finally for the cohesion property, we chose the Package co-
hesion and the Cohesion ratio metrics. Both metrics are based
on fan-in and fan-out properties of Classes explained above,
just considering only the Associations connecting the analyzed
Class with Classes inside the same Package. Please note that
Package cohesion metric is applicable only to meta-models
which are well logically structured into different packages
according to their functionality rather than according to other
properties such as types vs. prototypes, etc. Imagine the case
where we have all data-type Classes in one Package referred

to by Classes in other Packages. This results in a low cohesion
of these Packages even though the functional cohesion may be
high. As we believe the AR M2 meta-model is strongly based
on the logical wholes starting with the definition of different
templates at the top (see the example of the SystemTemplate
structure in Figure 6), we decided to include this metric in the
assessment even though it may not be a good choice for other
meta-models.
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Fig. 6. Example - Software Component Template package structure

In order to assess the applicability of the analyzed software
metrics for monitoring the evolution of meta-models, we study
their results on the evolution of the AUTOSAR meta-model.
We consider a total number of 22 releases of the AUTOSAR
meta-model from the very beginning of AUTOSAR until now
which represents a period of 8 years. The main goal is to
eliminate the metrics with redundant results and also to find
the metrics with results which can quantify the evolution
of the AUTOSAR meta-model in the most accurate way. In
order to achieve this, we performed the PCA to first identify
the meaningful principal components and then analyze the
importance of the results of each metric in these components.
We validated the accuracy of the results of the most important
metrics together with the AUTOSAR team from Volvo Cars.
We did this by comparing the results of the metrics to their
expectations based on the analysis of the release notes for each
considered AUTOSAR meta-model release.

We analyzed the releases of the AUTOSAR M2 meta-
model from three different perspectives - the entire M2 , the
Software Component Template package of the M2 and the
System Template package of the M2. The Software Component
Template and the System Template are the two biggest top
level packages of the M2 meta-model in size. For example,
the number of Classes of the Software Component Template
represents on average 31% of the number of Classes of the
entire M2 and the number of Classes of the System Template
represents on average 30% of the number of Classes of the
M2. We also included the Common Structure Template top
level package (on average 11% of the number of Classes of
the M2) in the analysis of both Software Component Template
and System Template packages as its classes are commonly
shared between them.

V. DEFINITION OF THE METRICS

The following sub-sections formally define the chosen
metrics based on the meta-data-model presented in Figure 4.



A. Number of classes

In order to define the Number of classes metric, we first
define the following sets:

• P (m) = {p1(m), p2(m), ..., pα(m)} - a set of Pack-
ages aggregated by MetaModel m.

• P (p) = {p1(p), p2(p), ..., pβ(p)} - a set of Packages
aggregated by Package p.

• C(p) = {c1(p), c2(p), ..., cγ(p)} - a set of Classes
aggregated by Package p.

The Number of classes metric for Package p is calculated
as a sum of (i) the number of classes aggregated by p and
(ii) the Number of classes of the Packages aggregated by p,
recursively.

NOC(p) = |C(p)|+
|P (p)|∑
i=1

NOC(pi(p))

The Number of classes metric for MetaModel m is calcu-
lated as the Number of classes of the Packages aggregated by
m.

NOC(m) =
|P (m)|∑
i=1

NOC(pi(m))

B. Number of attributes

In order to define the Number of attributes metric, we first
define the following additional set:

• A(c) = {a1(c), a2(c), ..., aδ(a)} - a set of Attributes
aggregated by Class c.

The Number of attributes metric for Class c is calculated
as the total number of Attributes aggregated by c.

NOA(c) = |A(c)|

The Number of attributes metric for Package p is calculated
as the sum of (i) the Number of attributes of the Classes
aggregated by p and (ii) the Number of attributes of the
Packages aggregated by p, recursively.

NOA(p) =
|C(p)|∑
i=1

NOA(ci(p)) +
|P (p)|∑
i=1

NOA(pi(p))

The Number of attributes metric for MetaModel m is cal-
culated as the Number of attributes of the Packages aggregated
by m.

NOA(m) =
|P (m)|∑
i=1

NOA(pi(m))

C. Depth of inheritance

In order to define the Depth of inheritance metric, we first
define the following additional set:

• C(c) = {c1(c), c2(c), ..., cθ(c)} - a set of (’parent’)
Classes connected to Class c via Generalization Con-
nectors, i.e. target of the Generalization refers to a
Class in this set and the source refers to c.

The Depth of inheritance metric for Class c is calculated
as the maximum number of Generalization Connectors in the
inheritance hierarchy starting from the considered Class to the
(’root’) Classes with no further parents.

DIT (c) =

{
0, C(c) = ∅
max(∀c ∈ C(c) : 1 +DIT (c)), otherwise

The Depth of inheritance metric for Package p is calculated
as the sum of (i) the Depth of inheritance of the Classes
aggregated by p and (ii) the Depth of inheritance of the
Packages aggregated by p, recursively.

DIT (p) =
|C(p)|∑
i=1

DIT (ci(p)) +
|P (p)|∑
i=1

DIT (pi(p))

The Depth of inheritance metric for MetaModel m is cal-
culated as the Depth of inheritance of the Packages aggregated
by m.

DIT (m) =
|P (m)|∑
i=1

DIT (pi(m))

D. FanIn

In order to define the Fan-in metric, we first define the
following additional set:

• SI(c) = {si1(c), si2(c), ..., siε(c)} - a set of Associa-
tions whose target refers to Class c. SI is short from
’aSsociation Input’.

The Fan-in metric for Class c is calculated as the total
number of Associations whose target refers to c.

FI(c) = |SI(c)|

The Fan-in metric for Package p is calculated as the sum
of (i) the Fan-in of the Classes aggregated by p and (ii) the
Fan-in of the Packages aggregated by p, recursively.

FI(p) =
|C(p)|∑
i=1

FI(ci(p)) +
|P (p)|∑
i=1

FI(pi(p))

The Fan-in metric for MetaModel m is calculated as the
Fan-in of the Packages aggregated by m.

FI(m) =
|P (m)|∑
i=1

FI(pi(m))

E. FanOut

In order to define the Fan-out metric, we first define the
following additional set:

• SO(c) = {so1(c), so2(c), ..., soζ(c)} - a set of Asso-
ciations whose source refers to Class c. SO is short
from ’aSsociation Output’.



The FanOut metric for Class c is calculated as the total
number of Associations whose source refers to c.

FO(c) = |SO(c)|

The Fan-out metric for Package p is calculated as the sum
of (i) the Fan-out of the Classes aggregated by p and (ii) the
Fan-out of the Packages aggregated by p, recursively.

FO(p) =
|C(p)|∑
i=1

FO(ci(p)) +
|P (p)|∑
i=1

FO(pi(p))

The Fan-out metric for MetaModel m is calculated as the
Fan-out of the Packages aggregated by m.

FO(m) =
|P (m)|∑
i=1

FO(pi(m))

F. FanInOut

The Fan-IO metric for one Class is calculated as the
multiplication of its FanIn and FanOut values. We chose
to multiply Fan-in and Fan-out inspired by the Henry and
Kafura’s [30] complexity metric which equals to the squared
multiplication of Fan-in and Fan-out. However we decided
to remove the square from the formula due to its unjustified
amplification of the results (we explained this more in [21])
and because it does not satisfy the criteria of complexity
metrics defined in [7] which we used as basis for defining
the metrics. The Fan-IO metric for Class c is defined as:

FIO(c) = FI(c) ∗ FO(c)

The Fan-IO metric for Package p is calculated as the sum
of (i) the Fan-IO of the Classes aggregated by c and (ii) the
Fan-IO of the Packages aggregated by p, recursively.

FIO(p) =
|C(p)|∑
i=1

FIO(ci(p)) +
|P (p)|∑
i=1

FIO(pi(p))

The Fan-IO metric for MetaModel m is calculated as the
Fan-IO of the Packages aggregated by m.

FIO(m) =
|P (m)|∑
i=1

FIO(pi(m))

G. Package coupling

In order to define the Package coupling metric, we first
define the following subsets:

• SIP (cx) ⊂ SI(cx) | ∀s ∈ SIP (cx) : s ∈
SI(cx) ∧ s ∈ SO(cy) ∧ cx ∈ C(px) ∧ cy ∈
C(py) ∧ px �= py - a subset of Associations whose
target refers to Class cx aggregated by Package px
such that their source refers to Class cy aggregated by
another Package py . SIP is short from ’aSsociation
Input package couPling’.

• SOP (cx) ⊂ SO(cx) | ∀s ∈ SOP (cx) : s ∈
SO(cx) ∧ s ∈ SI(cy) ∧ cx ∈ C(px) ∧ cy ∈
C(py) ∧ px �= py - a subset of Associations whose

source refers to Class cx aggregated by Package px
such that their target refers to Class cy aggregated by
another Package py . SOP is short from ’aSsociation
Output package couPling’.

The Package coupling metric for Package p is calculated as
the sum of (i) the total number of Associations whose source
/ target refers to a Class aggregated by p and target / source
refers to a Class aggregated by another Package, respectively,
and (ii) the Package coupling of the Packages aggregated by
p, recursively.

PCP (p) =
(|C(p)|∑
i=1

(|SIP (ci(p))|+ |SOP (ci(p))|) +
|P (p)|∑
i=1

PCP (pi(p))

The Package coupling metric for MetaModel m is calcu-
lated as the Package coupling of the Packages aggregated by
m.

PCP (m) =
|P (m)|∑
i=1

PCP (pi(m))

H. Coupling between classes

In order to define the Coupling between classes metric, we
first define the following additional set:

• CP (c) = {cp1(c), cp2(c), ..., cpη(c)} - a set of
Classes where there exists an Association whose
source / target refers to this Class and target / source
refers to c respectively. CP is short from ’Classes
couPled’.

The Coupling between classes metric for Class c is cal-
culated as the total number of Classes connected to this class
via Associations (the source of Association refers to this Class
and the target refers to c or vice versa).

CBC(c) = |CP (c)|

The Coupling between classes metric for Package p is
calculated as the sum of (i) the Coupling between classes of
the Classes aggregated by p and (ii) the Coupling between
classes of the Packages aggregated by p, recursively.

CBC(p) =
|C(p)|∑
i=1

CBC(ci(p)) +
|P (p)|∑
i=1

CBC(pi(p))

The Coupling between classes metric for MetaModel m is
calculated as the Coupling between classes of the Packages
aggregated by m.

CBC(m) =
|P (m)|∑
i=1

CBC(pi(m))

I. Package cohesion

In order to define the Package cohesion metric, we first
define the following subsets:

• SIH(cx) ⊂ SI(cx) | ∀s ∈ SIH(cx) : s ∈
SI(cx) ∧ s ∈ SO(cy) ∧ cx ∈ C(px) ∧ cy ∈ C(px)



- a subset of Associations whose target refers to Class
cx such that their source refers to Class cy which are
both aggregated by the same Package px. SIH is short
from ’aSsociation Input package coHesion’.

• SOH(cx) ⊂ SO(cx) | ∀s ∈ SOH(cx) : s ∈
SO(cx) ∧ s ∈ SI(cy) ∧ cx ∈ C(px) ∧ cy ∈ C(px) -
a subset of Associations whose source refers to Class
cx such that their target refers to Class cy which are
both aggregated by the same Package px. SOH is
short from ’aSsociation Output package coHesion’.

The Package cohesion metric for Package p is calculated as
the sum of (i) the number of Associations whose both source
and target refer to a Class aggregated by p and (ii) the Package
cohesion of the Packages aggregated by p, recursively.

PCH(p) =
(|C(p)|∑
i=1

|SIH(ci(p))|+ |SOH(ci(p))|) +
|P (p)|∑
i=1

PCH(pi(p))

The Package cohesion metric for MetaModel m is calcu-
lated as the Package cohesion of the Packages aggregated by
m.

PCH(m) =
|P (m)|∑
i=1

PCH(pi(m))

J. Cohesion ratio

In order to define the Cohesion ratio metric, we first define
the following additional subset:

• CH(c) ⊂ CP (c) | ∀c ∈ CH(c) : c ∈ C(p) ∧ c ∈
C(p) - a subset of Classes coupled to Class c such
that they are aggregated by the same Package p which
aggregates c. CH is short from ’Classes coHered’.

The Cohesion ratio metric for Class c is calculated as
a division of (i) the number of Classes connected to c via
Associations (the source of the Association refers to this Class
and the target refers to c or vice versa) such that they are
aggregated by the same Package p which aggregates c and (ii)
the number of Classes in p.

CR(c) = |CH(c)| / |C(p)| ; c ∈ C(p)

The Cohesion ratio metric for Package p is calculated as
the sum of (i) the Cohesion ratio of the Classes aggregated by
p and (ii) the Cohesion ratio of the Packages aggregated by p,
recursively.

CR(p) =
|C(p)|∑
i=1

CR(ci)(p) +
|P (p)|∑
i=1

CR(pi(p))

The Cohesion ratio metric for MetaModel m is calculated
as the Cohesion ratio of the Packages aggregated by m.

CR(m) =
|P (m)|∑
i=1

CR(pi(m))

VI. CASE STUDY RESULTS

The following section contains the results of the PCA. As
input to the PCA, we used the results of the chosen set of 10
metrics calculated on a set of 22 releases of the AUTOSAR
meta-model. We performed 3 different PCA based on the
results of the metrics calculated on the releases of the (i)
entire AR M2 meta-model., (ii) Software Component Template
package of the M2 only and (iii) System Template package of
the M2 only. The results of these 3 PCA are presented in the
following sub-sections.

A. PCA of the entire AUTOSAR M2 meta-model

This section presents the results of the Principal Compo-
nent Analysis (PCA) for which we used as input the results
of the chosen set of 10 metrics calculated on a set of 22
releases of the entire AR M2 meta-model. Figure 7 shows
the identified principal components together with the values of
their standard deviation, proportion of variance and cumulative
proportion of variance. We consider the principal components
with the largest proportion of variance as the components
which contribute mostly to the results of the metrics, i.e. their
significance is the highest.
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Fig. 7. Principal components - AUTOSAR M2 meta-model

The proportion of variances of the identified principal
components indicates that the first principal component (PC1)
contributes with 93.37% to the variation of the results of the
calculated metrics while all the other principal components
have significantly less influence. Therefore we concluded that
only PC1 is meaningful so we continued with the analysis of
the importance of the results of each metric in this principal
component. As correlation is generally a good sign of redun-
dancy, we started by investigating the correlation between the
results of each two pairs of metrics. Figure 8 shows both the
importance of the results of each metric in the the PC1 (table to
the left) and the correlation between each two pairs of metrics
(table to the right).
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Fig. 8. Metrics correlation - M2 meta-model

By analyzing these results, we concluded that the evolution
of the AUTOSAR M2 meta-model is quite even with respect
to all five considered properties. We came to this conclusion



based on the high correlation between the Number of classes
(size), Depth of inheritance (length), Fan-in / Fan-out / FanIO
(complexity), Package coupling / Coupling between objects
(coupling) and the Package cohesion / Cohesion ratio (cohe-
sion) metrics.

We also concluded that for quantifying the evolution of
the AR M2 meta-model, it is enough to use only one metric,
preferably either the Package cohesion or the Fan-in. We came
to this conclusion based on the high correlation between the
results of all metrics except for the results of the Number of
attributes metric which has lower significance. The choice of
the Package cohesion or the Fan-in metric is based on the
highest significance of their results.

B. Software Component Template

This section presents the results of the PCA for which
we used as input the results of the chosen set of 10 metrics
calculated on a set of 22 releases of the Software Component
Template package of the AR M2 meta-model. The proportion of
variances of the identified principal components is very similar
to the results of the PCA for the entire AR M2 meta-model.
This means that we again identified only one meaningful
principal component (PC1) which this time contributes with
96.84% to the variation of the results of the calculated metrics.
Figure 9 shows both the importance of the results of each
metric in the PC1 (table to the left) and the correlation between
each two pairs of metrics (table to the right).

 PC1 NOA FOUT NOC CBO PCP FIN PCH FIO DIT CR
NOA 0,1988 NOA 1,0000 0,7269 0,7181 0,6440 0,3869 0,3825 0,3825 0,3605 0,3852 0,3154
FOUT 0,3159 FOUT 0,7269 1,0000 0,9321 0,9801 0,8328 0,8174 0,8174 0,7401 0,6555 0,5578
NOC 0,3282 NOC 0,7181 0,9321 1,0000 0,9575 0,8775 0,8783 0,8783 0,7686 0,6692 0,6846
CBO 0,3375 CBO 0,6440 0,9801 0,9575 1,0000 0,9237 0,9135 0,9135 0,8309 0,7321 0,6677
PCP 0,3413 PCP 0,3869 0,8328 0,8775 0,9237 1,0000 0,9957 0,9957 0,9316 0,8276 0,7869
FIN 0,3429 FIN 0,3825 0,8174 0,8783 0,9135 0,9957 1,0000 1,0000 0,9426 0,8432 0,8305
PCH 0,3429 PCH 0,3825 0,8174 0,8783 0,9135 0,9957 1,0000 1,0000 0,9426 0,8432 0,8305
FIO 0,3315 FIO 0,3605 0,7401 0,7686 0,8309 0,9316 0,9426 0,9426 1,0000 0,9501 0,8637
DIT 0,3050 DIT 0,3852 0,6555 0,6692 0,7321 0,8276 0,8432 0,8432 0,9501 1,0000 0,7912
CR 0,2906 CR 0,3154 0,5578 0,6846 0,6677 0,7869 0,8305 0,8305 0,8637 0,7912 1,0000

Fig. 9. Metrics correlation - Software Component Template

By analyzing these results, we came to the same conclu-
sions as when analyzing the PCA results for the entire AR M2
meta-model - relatively even evolution of the Software Com-
ponent Template package with respect to all five considered
properties where only one metric (Package cohesion or Fan-
in) is enough for its successful quantification. In addition to
this, we identified that the Cohesion ratio metric, apart from
the Number of attributes, is also less correlated with the results
of other metrics and has lower significance in the PC1.

C. System template

This section presents the results of the PCA for which
we used as input the results of the chosen set of 10 metrics
calculated on a set of 22 releases of the System Template
package of the AR M2 meta-model. The proportion of vari-
ances of the identified principal components is very similar to
the results of the PCA for the entire AR M2 meta-model and
the Software Component Template package. This means that
we again identified only one meaningful principal component
(PC1) which this time contributes with 97.00% to the variation
of the results of the calculated metrics. Figure 10 shows both
the importance of the results of each metric in the PC1 (table to

the left) and the correlation between each two pairs of metrics
(table to the right).
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Fig. 10. Metrics correlation - System Template

By analyzing these results, we came to the same con-
clusions as when analyzing the PCA results for the entire
AR M2 meta-model and the Software Component Template
package - relatively even evolution of the System Template
package with respect to all five considered properties where
only one metric (Package cohesion or Fan-in) is enough for
its successful quantification. In addition to this, we identified
that the Cohesion ratio metric, together with the Number of
attributes, is not well correlated with the results of other
metrics and has lower significance in the PC1.

D. Summary and validation of the metrics results

By analyzing the results of the PCA for the metrics
calculated on the entire AR M2 meta-model and its two biggest
packages, Software Component Template and the System Tem-
plate, we observed that they are very similar. This is expected
as they are based on the same design principles (e.g. logical
structuring of Classes into Packages, low coupling between
Packages, etc.). Therefore we concluded the following:

1) The evolution of the AUTOSAR meta-model is quite
even with respect to all 5 analyzed properties (size,
length, complexity, coupling and cohesion).

2) The correlation between the results of the Number
of classes, Depth of inheritance, Fan-in, Fan-out,
FanIO, Package coupling, Coupling between objects
and the Package cohesion metrics is high while the
results of the Number of attributes and the Cohesion
ratio (in case of the Software Component Template
and the System Template packages) metrics are not
very correlated to the results of the other metrics.

3) The results of the Fan-in and the Package cohesion
metrics are the most significant for monitoring the
evolution of the AUTOSAR meta-model while the
results of the Number of attributes and the Cohesion
ratio (in case of the Software Component Template
and the System Template packages of the AUTOSAR
M2 meta-model) metrics are the least significant.

These conclusions can be explained by the strict design
principles of AUTOSAR. Namely, Classes represent the main
modeling units of semantics in the AUTOSAR meta-model and
the goal is to keep their complexity, coupling and cohesion
as low as possible. That is why Classes usually do not have
many Associations. This assures high correlation between their
growth in size and complexity, cohesion and coupling as there
are not many highly coupled areas with only a few Classes and
vice versa. The correlation between the growth in size and the
growth in length of Classes is implied by the existence of



TABLE II. SUMMARY OF THE RELEASE NOTES

Release Factors

R1.0 First release

R2.0 Bug-fixes only

R2.1 Bug-fixes, new features in the Software Component Template and
the System Template packages, e.g. Measurement and calibration

R3.0.1 Meta-model cleanup, bug-fixes, new template BswModuleTem-
plate, FIBEX standard harmonization

R3.0.2 - R3.1.5 Bug-fixes, new concept On-Board Diagnostics in R3.1.1 (af-
fected mostly the AR M1 meta-model, not the analyzed AR M2)

R3.2.1 Bug-fixes, new concepts Partial networking, Production and
development errors, End2End protection, extended Complex
Device Driver

R3.2.2 Bug-fixes only

R4.0.1 Meta-model cleanup, bug-fixes, many new concepts such as
Ethernet, Variant handling, Timing model, etc.

R4.0.2 Bug-fixes, new AR M2 templates StandardizationTemplate and
AutosarTopLevelStructure

R4.0.3 Bug-fixes, new concept Partial networking
R4.1.1 Bug-fixes, many new concepts such as Partial networking on

Ethernet, continued FIBEX harmonization and Timing model,
J1939 for heavy duty vehicles, etc.

R4.1.2 Bug-fixes only

a well established hierarchy of Classes (e.g. Referrable and
Identifiable Classes in the example in Figure 1) so each newly
introduced Class is already a child of several other Classes.

The difference in the results of the Number of attributes
metric in comparison to other metrics can be explained with the
fact that Classes, as the main modeling units of semantics in
the AUTOSAR meta-model, may or may not contain additional
descriptions in the form of Attributes (there are many Classes
without Attributes, e.g. SwcToEcuMapping from Figure 1).
This depends on the logic of Classes, not their number, so the
high increase in the Number of classes does not necessarily
mean the high increase in the Number of attributes.

In order to validate the accuracy of the Fan-in and the
Package cohesion metrics, we studied the release notes of
the considered AUTOSAR meta-model releases in order to
compare them to the results of these two metrics. A brief
summary of the release notes is shown in Table II and the
trend in the results of the Fan-in metric calculated on the AR
M2 meta-model releases is shown in Figure 11. The trend in
the results of the Package cohesion metric is very similar due
to high correlation between the results of these two metrics.
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Fig. 11. Fan-in trend - M2 meta-model

We can see relatively stable results of the Fan-in metric
in releases 3.0.2 - 3.1.5 and also between releases 3.2.1 and
3.2.2 and between releases 4.1.1 and 4.1.2. This is expected
as these releases contain bug-fixes only, i.e. no new features
are introduced. On the other hand we can see an increase in
the Fan-in metric results between releases 2.0 and 2.1, 4.0.2
and 4.0.3 and between releases 4.0.3 and 4.1.1 due to the
introduction of new concepts. This is also expected as concepts
are used to incorporate new features into the AUTOSAR meta-

model. Finally we concluded that a decrease in the results of
the Fan-in metric between releases 2.1 and 3.0.1 is related to
the meta-model cleanup activity which removed the unused
/ obsolete elements from the meta-model. Similar cleanup
activity occurred in release 4.0.1 but due to many new concepts
incorporated into this release, the results of the Fan-in metric
are still increased.

E. Recommendations

Due to the logical organization of the AUTOSAR meta-
model structured into different packages where each package
may be used to define the properties of the models developed
by separate teams, monitoring the evolution of the AUTOSAR
meta-model shall be done per package bases. We present
here the analysis of the top level packages of the AR M2
- Software Component Template and System Template - but
similar analysis can be done on the packages situated lower
in the hierarchy. Therefore, we recommend to the software
designers of one team who plan to adopt a newer release of the
AUTOSAR meta-model to analyze the changes in the relevant
packages between the current and the new release according
to the following steps:

1) Measure the complexity growth using the Fan-in
metric. These results shall be used to indicate the
complexity increase of the software models and tools
working with the models after the adoption of the
new AUTOSAR meta-model release.

2) Together with measuring the complexity, we propose
to measure the increase in the Package cohesion of
the relevant packages in order to estimate the work
needed to be done internally in one team.

3) In order to estimate possible integration issues be-
tween different teams and their tools, we propose
to measure the increase in the Package coupling
of the relevant packages as it shows the growth
in communication between different packages which
may be developed by separate teams.

4) Finally we propose to complement the results of these
metrics (Fan-in, Package cohesion and Package cou-
pling) by measuring the size increase of the relevant
packages using the Number of classes metric. The
reason for this is to assure that the metrics are in
proportion (as the PCA show) as otherwise disruptive
changes may have occurred in the meta-model which
may require dedicated task force to implement.

Despite the fact that we defined and analyzed the results
of the assessed metrics in a case study of AUTOSAR meta-
model, we believe they are applicable for quantifying the
evolution of a larger set of meta-models based on MOF, e.g. the
UML meta-model. This is especially the case with the domain
specific meta-models which are used to define the models ex-
changed between different parties in the development process
where the distinction between the cohesion (e.g. attributes and
connectors connecting the classes inside one package) and
coupling properties (e.g. connectors connecting the classes in
different packages) is very important. However depending on
the logical structure of the analyzed meta-model, different
metrics may have different significance in quantifying the
meta-model evolution and also not all meta-model properties
(e.g. size and complexity) may be equally affected.



VII. CONCLUSION

In this paper, we assessed the applicability of 10 different
metrics for quantifying the evolution of meta-models with
respect to 5 properties - size, length, complexity coupling and
cohesion. We assessed the metrics in a case of AUTOSAR
meta-model evolution at Volvo Car Corporation. The goal was
to identify which of these properties are mostly affected by
the evolution of the AUTOSAR meta-model and which of the
assessed metrics are able to monitor them most accurately.
In order to do this, we performed the Principal Component
Analysis (PCA) of the results of the metrics calculated on a
set of 22 releases of the AUTOSAR meta-model. We validated
the chosen metrics by comparing their results with the release
notes of the considered AUTOSAR meta-model releases.

We concluded that the Fan-in and the Package cohesion
metrics provide the most accurate results and that the Number
of attributes and the Cohesion ratio metrics provide the least
accurate results. We also concluded that the majority of the
metrics, except for the Number of attributes and the Cohesion
ratio, are very correlated which indicates that the evolution
of the AUTOSAR meta-model is quite even for all 5 analyzed
properties. Based on this, we concluded that it is enough to use
only one metric for quantifying the evolution of the AUTOSAR
meta-model. Due to the highest accuracy of their results, we
propose to use either the Fan-in or the Package cohesion
metric. Finally, we made recommendations on how to combine
the results of the assessed metrics to analyze the potential
impact of adopting new AUTOSAR meta-model releases.

In our future work, we plan to use the metrics described
in this paper to analyze the evolution of the UML 2.0 meta-
model. We also plan to develop a method for estimating the
effort needed to adopt a newer AUTOSAR meta-model release
based on the results of the proposed metrics.
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