
Monitoring Evolution of Code Complexity in
Agile/Lean Software Development

A Case Study at Two Companies

Vard Antynian1), Miroslaw Staron1), Jörgen Hansson2)
Computer Science and Engineering

2) Chalmers | 1)University of Gothenburg
SE 412 96 Gothenburg, Sweden

Wilhelm Meding3), Per Österström3), Henric
Bergenwall3), Johan Wranker4), Anders Henriksson4)

3) Ericsson AB, Sweden
4) AB Volvo, Sweden

Abstract—One of the distinguishing characteristics of Agile
and Lean software development is that software products “grow”
with new functionality with relatively small increments.
Continuous customer demands of new features and the
companies’ abilities to deliver on those demands are the two
driving forces behind this kind of software evolution. Despite the
numerous benefits there are a number of risks associated with
this kind of growth. One of the main risks is the fact that
characteristics of software products like complexity grow slowly,
but over time reach scales which make the product hard to
maintain or evolve. The goal of this paper is to present a
measurement system for monitoring the growth of complexity
and drawing attention when it becomes problematic. The
measurement system was developed during a case study at
Ericsson and Volvo Group Truck Technology. During the case
study we explored the evolution of size, complexity, revisions and
number of designers of two large software products from the
telecom and automotive domains. The results show that two
measures needed to be monitored to keep the complexity
development under control - McCabe’s complexity and number
of revisions. We also identify which trends need to be monitored
to trace uncontrolled growth of complexity.

Keywords—complexity; metrics; risk; Lean and Agile software
development; code; potentially problematic; correlation;
measurement systems;

I. INTRODUCTION
Actively managing software complexity has become an

important aspect of continuous software development in large
software products. It is generally believed that software
products developed in a continuous manner are getting more
and more complex over time and evidence shows that the
rising complexity drives to decreasing quality of software [1-
3]. The continuous increase of code base and incremental
increase of complexity can lead to large, virtually
unmaintainable source code if left unmanaged.

A number of methods have been suggested to measure
various aspects of software complexity, e.g. [4-10]
accompanied with a number of studies indicating how
adequately the proposed methods can relate to software
quality. One of the well-known complexity measures,

McCabe’s cyclomatic complexity has been shown to be a
good quality indicator although it does not quantify all aspects
of complexity [11-14].

Despite the considerable amount of research conducted
on the influence of complexity on software quality, little
results can be found on how complexity influences on a
continuously developed software product and how to
effectively monitor small yet continuous increments of
complexity in growing products. Therefore a question remains
how the previously established methods can be as efficiently
used for software quality evaluation:

How to monitor complexity changes effectively
when delivering feature increments to the main
code branch in the product codebase?

The aim of this research is to develop methods and tool
support for actively monitoring increments of complexity and
drawing the attention of product managers, project leaders,
quality responsible and the teams to the potentially
problematic trends of growing complexity. In this paper we
focus on the level of self-organized software development
teams who often deliver code to the main branch for further
testing, integration with hardware and ultimate deployment to
end customers.

We address this question by conducting a case study at
two companies which develop software using Agile and Lean
principles. In particular the companies use self-organized
Agile teams developing features for large software products.
The studied companies are Ericsson AB in Sweden which
develops telecom products and Volvo Group Truck
Technology which develops trucks under four brands – Volvo,
Renault, Mack and UD Trucks.

Our results show that using a number of complementary
measures of complexity and development velocity –
McCabe’s complexity and number of revisions per week –
support teams in decision making, when delivering potentially
problematic code to the main branch. By saying potentially
problematic we mean that there is a tangible chance that the
delivered code is fault prone or difficult to understand and
maintain. Monitoring trends in these variables effectively
draws attention of the self-organized Agile teams to a handful

of functions and files which are potentially problematic. The
handful of functions are manually assessed and before the
delivery the team formulates the decision whether they indeed
might cause problems. The initial evaluation in two on-going
software development projects shows that using the two
measures indeed draws attention to the most problematic
functions.

II. RELATED WORK

A. Continous software evolution
A set of measures useful in the context of continuous

deployment can be found in the work of Fritz [15] in the
context of market driven software development organization.
The metrics presented by Fritz measure such aspects as
continuous integration pace or the pace of delivery of features
to the customers. These metrics complement the two
indicators presented in this paper with a different perspective
important for product management.

The delivery strategy which is an extension of the
concept of continuous deployment has been found as one of
the three key aspects important for Agile software
development organizations in a survey of 109 companies by
Chow and Cao [16]. The indicator presented in this paper is a
means of supporting organizations in their transition towards
achieving efficient delivery processes which are in line with
the delivery strategy prioritized by practitioners in this survey.

Ericsson’s realization of the Lean principles combined
with Agile development was not the only one recognized in
literature. Perera and Fernando [17] presented another
approach. In their work, Perera and Fernando, presented the
difference between the traditional and Lean-Agile way of
working. Based on our observations, the measures and their
trends at Ericsson were similar to those observed by Perera
and Fernando.

B. Related Complexity studies
One of the well-known complexity measures, McCabe’s

cyclomatic complexity has been shown to be a good quality
indicator although it does not quantify all aspects of
complexity [11-14]. Gill and Kemerer [8] propose another
kind of cyclomatic complexity metric – cyclomatic complexity
density and they show its usefulness as a software quality
indicator. Zhang and Zhang [18] developed a method based on
lines of code measure, cyclomatic complexity number and
Halstead’s volume to predict the defects of a software
component. Two other studies provided evidence that files
having large number of revisions are defect prone and hard to
maintain [19], [20].

C. Measurement systems
The concept of an early warning measurement system is

not new in engineering. Measurement instruments are one of
the cornerstones of engineering. In this paper we only consider
computerized measurement systems – i.e. software products
used as measurement systems. The reason for this are: the
flexibility of such measurement systems, the fact that we work

in the software field, and similarity of the problems – e.g.
concept of measurement errors, automation, etc. An example
of a similar measurement system is presented by Wisell [21]:
where the concept of using multiple measurement instruments
to define a measurement system is also used. Although
differing in domains of applications these measurement
systems show that concepts which we adopt from the
international standards (like [22]) are successfully used in
other engineering disciplines. We use the existing methods
from the ISO standard to develop the measurement systems
for monitoring complexity evolution.

Lowler and Kitchenham [23] present a generic way of
modeling measures and building more advanced measures
from less complex ones. Their work is linked to the
TychoMetric [24] tool. The tool is a very powerful
measurement system framework, which has many advanced
features not present in our framework (e.g. advanced ways of
combining metrics). A similar approach to the TychoMetric’s
way of using metrics was presented by Garcia et al. [25].
Despite their complexity, both the TychoMetric tool and
Garcia’s approach can be seen as alternatives in the context of
advanced data presentation or advanced statistical analysis
over time.

Meyer [26, pp. 99-122] claims that the need for
customized measurement systems for teams is one of the most
important aspects in the adoption of metrics at the lowest
levels in the organization. Meyer’s claims were also supported
by the requirements that the customization of measurement
systems and development of new ones should be simple and
efficient in order to avoid unnecessary costs in development
projects. In our research we simplify the ways of developing
Key Performance Indicators exemplified by a 12-step model
of Parmenter [27] in the domain of software development
projects. Parmenter’s process tackles a larger problem of
creating indicators for managing organizations and therefore
requires a significant amount of effort to be used in software
projects.

III. DESIGN OF THE CASE STUDY
This case study was conducted using action research

approach [28-30] where the researchers were part of the
company’s operations and worked directly with product
development units of the companies. The role of Ericsson in
the study was the development of the method and its initial
evaluation whereas the role of Volvo Group Truck Technology
was to evaluate the method in a new context.

A. Ericsson
The organization and the project within Ericsson, which

we worked closely with, developed large products for the
mobile telephony network. The size of the organization was
several hundred engineers and the number of the developers in
the projects was up to a few hundreds1. Projects were
increasingly often executed according to the principles of

1 The exact size of the unit cannot be provided due to confidentiality
reasons.

Agile software development and Lean production system,
referred to as Streamline development (SD) within Ericsson
[31]. In this environment, different development teams were
responsible for larger parts of the development process
compared to traditional processes: design teams (cross-
functional teams responsible for complete analysis, design,
implementation, and testing of particular features of the
product), network verification and integration testing, etc.

The needs of the organization had evolved from metric
calculations and presentations (ca. 7 years before the writing
of this paper) to using predictions, simulations, early warning
systems and handling of vast quantities of data to steer
organizations at different levels and providing information
from teams to management. These needs were addressed by
the action research projects conducted in the organization,
since the 2006.

B. Volvo Group Truck Technology (GTT)
The organization which we worked with at Volvo Group

developed Electronic Control Unit (ECU) software for trucks
for such brands like Volvo, Renault, UD Trucks and Mack.
The collaborating unit developed software for two ECUs and
consisted of over 40 designers, business analysts and testers at
different levels. The process was iterative, agile and involved
cross functional teams.

The company used measures to control the progress of its
projects, to monitor quality of the products and to collect data
semi-automatically, i.e. automatically gathering of data from
tools with the manual analysis of the data. The metrics
collected at the studied unit fall into the categories of contract
management, quality monitoring and control, predictions and
project planning. The intention of the unit was to build a
dashboard to provide stakeholders (like project leaders,
product and line managers or the team) with the information
about the current and predicted status of their products.

C. Process
According to the principles of action research we

adjusted the process of our research with the operations of the
company. We worked closely with project teams with
dedicated designers, architects and managers being part of the
research team. We conducted the study according to the
following pre-defined process:

1. Obtaining access to the source code of the products and
their different releases

2. Calculate complexity of all functions in the code
3. Identify functions which changed complexity through 4

main releases
4. Identify functions which changed complexity in 5 service

releases between the two main releases
5. Identify drivers for complexity changes in a subset of

these functions (top 10 most increased complexity)
6. Add new measures to the study:

a. Calculate complexity per file
b. # revisions – to explore files which changed often,
c. # designers – to explore files which were changed by

many designers in parallel

d. # Number of lines of code (size) – to explore large
files and function

7. Correlate measures to explore their dependencies
8. Develop a measurement system (according to ISO

15939) to monitor the potentially problematic files.
9. Monitor and evaluate the product during one release

(either historical or newly developed).
The above process was used during the development of the
method at Ericsson and replicated at Volvo Group Truck
Technology.

D. Units of analysis
During our study we analyzed two different products –

software for a telecom product at Ericsson and software for
one electronic control unit from Volvo Group Truck
Technology from the automotive domain.

Ericsson: The product was a large telecommunication
product composed by over one million lines of code with
several tens of thousands C/C++ functions. Most of the source
code was developed using C. The product had two releases per
year with a number of service releases in-between the two
releases. All versions of the source code of the product
including the main and service releases were stored in version
control system – IBM/Rational ClearCase. The product was a
mature telecommunication product with a stable customer
base. The product has been in development for a number of
years and the size of the development team was several tens of
designers.

The measures specified in the previous section were
collected from different baseline revisions of the source code
in ClearCase. In order to increase the internal validity of data
collection and the quality of data we communicated closely
with a reference group during bi-weekly meetings over a
period of 8 months. The reference group consisted of 2 senior
designers, one operational architect, one research engineer
from the company, one manager and one metric team leader.
The discussions considered the suitability of measures,
measurement methods and functions (according to ISO/IEC
15939), validity of results, effectiveness of our measurement
system.

Volvo Group Truck Technology: The product was an
embedded software system serving as one of the main
computer nodes for a product line of trucks. It consisted of a
few hundred thousand lines of code and several thousand C
functions. The version control system is ClearCase. The
software product had tight releases every 6-8 weeks. The
analyses that were conducted were replications of the case
study at Ericsson under the same conditions and using the same
tools. The results were communicated with designers of the
software product after the data was collected.

At both companies we developed measurement systems for
monitoring the files and functions that can increase risk of
integration problems when merging into the main branch. We
defined the risk of merging a newly developed or a maintained
function to main code base as a chance that the merged code
would introduce new faults or would be noticeably more
difficult to understand and maintain.

E. Measures in the study
Table 1 presents the measures which we used in our study

and their definitions:

Table 1. Metrics and their definitions
Name of
measure

Abbreviation Definition

Number of
non-
commented
lines of code

NCLOC The lines of non-blank, non-
comment source code in a
function

McCabe’s
cyclomatic
complexity of
a function

M The number of linearly
independent paths in the control
flow graph of a function,
measured by calculating the
number of 'if', 'while', 'for',
'switch', 'break', '&&', '||' tokens

McCabe’s
cyclomatic
complexity of
a file

File M The sum of all functions’ M in a
file

McCabe’s
cyclomatic
complexity
delta of a
function

ΔM The increase or decrease of M of a
function during a specified time
interval. We register the file name,
class name (if available) and
function name in order to identify
the same function and calculate its
complexity change in different
releases.

McCabe’s
cyclomatic
complexity
delta of a file

File ΔM The increase or decrease of File M
during a specified time interval

Number of
revisions of a
file

NR The number of check-ins of files
in a specified ClearCase branch
and its all sub-branches in a
specified time interval

Number of
designers of a
file

ND The number of developers that do
check-in of a file on a specified
ClearCase branch and all of its
sub-branches during a specified
time interval

Complexity
of the most
complex
function in a
file

Max M f The complexity number M of the
most complex function in a file

In this study we used the measures as an initial set and

performed correlation analyses to identify non-correlated
measures. The non-correlated measures were used as input to
cluster analysis which resulted in grouping files.

F. Focus group
During this study we had the opportunity to work with a

reference group at Ericsson and a designer at Volvo GTT. The
aim of the reference group was to support the research team
with expertise in the product domain and to validate the
intermediate findings as prescribed by the principles of Action

research. The group interacted with researchers on a bi-weekly
meeting basis for over 8 months. At Ericsson the reference
group consisted of:
• One product manager with over 10 years of experience

and over 5 years of experience with Agile/Lean software
development

• One measurement program/team leader with over 10
years of experience with software development and over 5
years of experience with Agile/Lean at Ericsson

• Two designers with over 5 years of experience in telecom
product development.

• One operational architect with over 6 years of experience
• One research engineer with over 20 years of experience in

telecom product development
At Volvo GTT we worked with one designer who had the

knowledge about the product and over 10 years of experience
with software development at the company.

IV. RESULTS AND ANALYSIS

A. Evolution of the studied measures over time
We measured M for 4 main and 5 service releases at

Ericsson and for 4 releases for the product at Volvo GTT. The
results showed there are many new complex functions
introduced as part of service releases. However the majority of
the functions that has been included as “new” in the statistics
were actually old functions, which have changed argument’s
list. The designers agreed that these functions can introduce
risks but with considerably less exposure than if these
functions were indeed newly developed. Hence we
disregarded the argument’s list of functions in our
measurement. Figure 1 shows the complexity evolution of
functions in 5 service releases of the telecom product.

Rel_5Rel_4Rel_3Rel_2Rel_1

0

Releases

M

complexity evolution over time

Figure 1. Evolution of complexity for functions with large

complexity delta for one release and subsequent service releases
in Telecom product

Measuring the evolution of McCabe’s complexity M
through releases in this manner resulted in:
• Identifying a large number of functions that change the

argument list during development. Many functions
having long list of arguments which meant that the
designers need to add or remove an argument or change
the argument name to resolve a specific task.

• Identifying the fact that functions which already have
been complex, rarely increase complexity considerably
during development.

• Observation that it is the newly developed functions
which drive complexity increase between two major
releases, as shows in Table 2.

• Observation that the majority of functions that are
created complex keep the complexity at the same level
over many releases – e.g. see Figure 1.

The above points influenced the way in which data was
collected in the measurement system.

Figure 2 shows the complexity development of ECU of
trucks for 4 releases.

rel_4rel_3rel_2rel_1

0

Releases

M

complexity evolution over time

Figure 2. Evolution of complexity for functions with large

complexity delta for four releases in product ECU of trucks

The trends presented in Figure 2 are similar to the trends

in Figure 1 and the number of functions in the diagram reflects
the difference in size of the products.

Table 2 presents the results of complexity change
between two service releases. The dashes in the table indicate
that the functions did not exist in the previous measurement
point. The table shows that there are few functions that are
new and already complex. There is also a small number (< 10)
of functions that were removed from the release (not shown in
the diagram). The results were consistent for all service
releases for the telecom product, irrespective if there was a
new functionality development or correction caused by
customer’s feedback. As opposed to the telecom product the
number of newly introduced complex functions was dependent
on whether a new end-to-end feature is implemented for truck.

In both products new and complex functions appeared over
time. This was explained that for example Ericsson relies on
streamline development which (according to the designers)
entails that there is always a new feature developed even if the
foreseen release is a service release.

We investigated the reasons for high complexity of newly
introduced functions in each release (both service and main)
and unchanged complexity of existing functions. We observed
that both companies assure that the most complex functions
are maintained by the most skilled engineers to reduce the
risks of low quality. Table 2 shows an example of such a

function, which between two releases increased the
complexity significantly from an already high level.

Table 2. Top functions of telecom product with highest

complexity change between two service releases

file name function name old M new M Δ Μ
file 1 function 1 25 - -25
file 2 function 2 83 - -83
file 2 function 3 26 - -26
file 3 function 4 57 90 33
file 4 function 5 27 - -27
file 5 function 6 22 - -22
file 5 function 7 - 25 25
file 6 function 8 - 30 30
file 6 function 9 - 51 51
file 7 function 10 - 23 23
file 8 function 11 - 26 26
file 9 function 12 - 26 26
file 10 function 13 - 22 22
file 11 function 14 - 27 27

We observed the change of complexity for both long time

intervals (between main releases) and for short time intervals
(one week). Table 3 shows how the complexity of functions
changes over weeks. We can see the week numbers on the top
of the columns. The fact that the complexity of these functions
fluctuates irregularly was interesting for the designers as the
fluctuations indicate that the functions are not developed
steadily or represent defect removals with multiple test-
modify-test cycles - for instance functions 4 and 6 in Table 3.

Table 3. Visualizing complexity evolution of functions over weeks

file name function name M Δ M w1306 w1307 w1308 w1309 w1310 w1311 w1312
file 1 function 1 M1 0 0 0 0 0 0 0 0
file 2 function 2 M2 15 0 0 0 0 0 15 0
file 2 function 3 M3 0 0 0 0 0 0 0 0
file 3 function 4 M4 5 4 -9 11 -11 10 0 0
file 4 function 5 M5 3 0 0 0 0 3 0 0
file 5 function 6 M6 13 17 0 11 -11 0 0 -4
file 5 function 7 M7 22 0 0 0 0 0 0 22
file 6 function 8 M8 20 0 0 0 18 2 0 0
file 6 function 9 M9 17 0 0 0 17 0 0 0
file 7 function 10 M10 11 0 0 0 11 0 0 0
file 8 function 11 M11 13 0 0 0 0 13 0 0
file 9 function 12 M12 28 0 28 0 0 0 0 0
file 10 function 13 M13 12 0 0 0 12 0 0 0

B. Correlation Analyses
When adding new measures to our analyses we needed to

evaluate how the measures relate to each other by performing
correlation analyses. However, in order to correlate the
measures we need to define all the measures for the same
entity (e.g. for a file or for a function, see Table 1). The
correlation analysis for the telecom product is presented in
Table 4.

Table 4. Correlation of measures for telecom product
 File M File Δ Μ Max ΔΜ NR ND
NCLOC 0.9 0.27 0.33 0.56 0.47
File M 0.28 0.32 0.48 0.41
File Δ Μ 0.77 0.24 0.25
Μax Δ Μ f 0.35 0.37

NR 0.92

The correlations which are over 0.7 are in boldface, since

it means that the correlated variables characterize the same
aspect of the code. Table 5 presents the Pearson correlation
coefficients between measures for the ECU for a truck.

Table 5. Correlation of measures for ECU of truck

 File M File Δ Μ Max ΔΜ NR ND
NCLOC 0.9 0.43 0.48 0.61 0.38
File M 0.48 0.5 0.68 0.4
File Δ Μ 0.84 0.13 0.19
Μax ΔΜ f 0.3 0.23
NR 0.46

The correlations are visualized using correlograms in

Figure 3 and Figure 4. The tables show that the M change is
weakly correlated with NRs for both products. This was
expected by the designers – the files with the most complex
functions are usually well-engineered and do not need many
changes, the files with smaller complexity are not risky since
they are easy to be modified. The designers noted that the
really risky files are those which contain multiple complex
functions that change often.

 Figure 3. Correlogram of measures for telecom software

The strong correlation visible in the tables and diagrams
above of NCLOC and M has been manifested by a number of
other researchers previously [32], [33], [8].

Figure 4. Correlogram of measures for ECU software

The original complexity definition is for a function as a
measurement unit, thus we did correlation analyses on
function’s level. The results were:
• Correl. (M; NCLOC) = 0.76 telecom product
• Correl. (M; NCLOC) = 0.77 truck’s software product

The correlation coeficcient was weaker compared to
correlation between the complexity of a file, which was
caused by the fact that we measure the complexity of each file
as a sum of complexities of all of its functions. This means
that larger files with functions of small complexity will result
in higher correlation. Designers claimed that there are many
files having moderately complex functions that are solving
independent tasks, which did not mean that the file is risky.
That resulted in that we used the measure of complexity of
functions rather than files in our measurement system as a
complementary base measure.

Another important observation was the strong correlation
between the number of designers and the number of revisions
for telecom product Figure 3. Although at the beginning of
this study the designers in the reference group believed that a
developer of a file might check-in and check-out the file
several times which probably is not a problem. They assumed
that large number of revisions itself is not as large problem as
when many different designers change the file in parallel. This
parallel development most likely increase the risk of being
uninformed of one another’s activities between different
developers.

C. Design of the Early Warning Measurement System
Based on the results that we obtained from investigation of

complexity evolution and correlation analyses, we designed
two indicators based on M and NR measures. These indicators
capture the evolution of complexity and highlight potentially
problematic files over time. These indicators were designed
according to ISO/IEC 15959 and an example definition of one
indicator is presented in Table 6.

Table 6. ISO/IEC 15939 definition of the complexity growth

indicator
Information
Need

Monitor cyclomatic complexity evolution over
development time

Measurable
Concept

Complexity development of delivered source code

Relevant
Entities

Source code

Attributes McCabe’s cyclomatic complexity of C/C++ functions

Base Measures Cyclomatic complexity number of C/C++ functions – M

Measurement
Method

Count cyclomatic number per C/C++ function according
to the algorithm in CCCC tool

Type of
measurement
method

Objective

Scale Positive integers

Unit of
measurement

Execution paths over the C/C++ function

Derived
Measure

The difference of cyclomatic number of a C/C++ function
in one week development time period

Measurement
Function

Subtract old cyclomatic number of a function from new
one:
ΔM = M(week) – M(week-1)

Indicator Complexity growth: The number of functions that
exceeded McCabe complexity of 20 during the last week

Model Calculate the number of functions that exceeded
cyclomatic number 20 during last week development
period

Decision
Criteria

If the number of functions that have exceeded cyclomatic
number 20 is different than 0 then it indicates that there
are functions that have exceeded established complexity
threshold. This suggests the need of reviewing those
functions, finding out the reasons of complexity increase
and refactoring if necessary

The other indicator is defined in the same way: the number

of files that had NR > 20 during last week development time
period.

Our measurement system relied on two other studies that
were carried out at Ericsson AB [34, 35]. The measurement
system was provided as a gadget with the necessary
information updated on a weekly basis (Figure 5).

Figure 5. Information product for monitoring ΔM and NR

metrics over time
For instance the total number of files with more than 20

revisions since last week is 5 (Figure 5). The gadget provides
the link to the source file where the designers can find the list
of files or functions and the color-coded tables with details.

We visualized the NR and ΔM measures using tables as
depicted in Table 3. Presenting the ΔM and NR measures in
this manner enabled the designers to monitor those few most
relevant files and functions at a time out of several thousands.
As in Streamline development the development team merged
builds to the main code branch in every week it was important
for the team to be notified about functions with drastically
increased complexity (over 20). This table drawn the attention
of designers to the most potentially problematic functions on a
weekly basis – e.g. together with a team meeting.

V. THREATS TO VALIDITY
In this paper we evaluate the validity of our results based

on the framework described by Wohlin et al. [36]. The
framework is recommended for empirical studies in software
engineering.

The main external validity threat is the fact that our
results come for a case study. However, since two companies
from different domains (telecom and automotive) were
involved, we believe that the results can be generalized to
more contexts than just one company.

The main internal validity threat is related to the construct
of the case study and the products. In order to minimize the
risk of making mistakes in data collection we communicated

with reference groups at both companies to validate the
results.

The main construct validity threats are related to how we
match the names of functions for comparison over time. The
measurement has been in the following way: We measured the
M complexity number of all functions for two consequent
releases, registering in a table function name and file name
that the function belongs to. We register the class name of the
functions also if it is a C++ function. Then we compare the
function’s, file’s and class’ names of registered functions for
two releases. If there is a function that has the same registered
names in both releases we consider that they are the same
functions and calculate the complexity number variance for
them.

Finally the main threat to conclusion validity is the fact
that we do not use inferential statistics to monitor relation
between the code characteristics and project properties, e.g.
number of defects. This was attempted during the study but
the data in defect reports could not be mapped to individual
files, this jeopardizing the reliability of such an analysis. We
chose to use correlation analysis and visualization of data
using correlograms to draw conclusions as a way to address
this threat.

VI. CONCLUSIONS
In Agile and Lean software development quick feedbacks

on developed code and its size and complexity is crucial. With
small software increments there is a risk that the complexity of
units of code or their size can grow to unmanageable
extensions through small increments.

In this paper we explored how complexity changes by
studying two software products – one telecom product at
Ericsson and one software for electronic control unit at Volvo
Group Truck Technology. We identified that in short periods
of time a few out of tens of thousands functions have
significant complexity increase. In large products software
development teams need automated tools to identify these
potentially problematic functions. We also identified that the
self-organized teams should be able to make the final
assessment whether the “potentially” problematic is indeed
problematic.

By analyzing correlations we found that it is enough to use
two measures – McCabe complexity and number of revisions
– to draw attention of the teams and to designate files as
“potentially” problematic.

The automated support for the teams was provided in form
of a MS Sidebar gadget with the indicators and links to
statistics and trends with detailed complexity development.
The method was validated on a set of historical releases.

In our further work we intend to extend our validation to
products under development and evaluate which decisions are
triggered by the early warning systems. We also intend to
study how the teams formulate the decisions and monitor their
implementation.

ACKNOWLEDGMENT
The authors thank the companies for their support in the

study. This research has been carried out in the Software
Centre, Chalmers, University of Gothenburg and Ericsson AB,
Volvo Group Truck Technology.

REFERENCES
[1] B. Boehm, "A view of 20th and 21st century software engineering," in

Proceedings of the 28th international conference on Software
engineering, 2006, pp. 12-29.

[2] T. Little, "Context-adaptive agility: managing complexity and
uncertainty," Software, IEEE, vol. 22, pp. 28-35, 2005.

[3] J. Bosch and P. Bosch-Sijtsema, "From integration to composition: On
the impact of software product lines, global development and
ecosystems," Journal of Systems and Software, vol. 83, pp. 67-76, 1//
2010.

[4] S. Henry and D. Kafura, "Software structure metrics based on
information flow," Software Engineering, IEEE Transactions on, pp.
510-518, 1981.

[5] T. J. McCabe, "A complexity measure," Software Engineering, IEEE
Transactions on, pp. 308-320, 1976.

[6] B. Curtis, "Measuring the psychological complexity of software
maintenance tasks with the Halstead and McCabe metrics," IEEE
Transactions on Software Engineering, vol. SE-5, p. 96.

[7] M. H. Halstead, Elements of software science vol. 19: Elsevier New
York, 1977.

[8] G. K. Gill and C. F. Kemerer, "Cyclomatic complexity density and
software maintenance productivity," Software Engineering, IEEE
Transactions on, vol. 17, pp. 1284-1288, 1991.

[9] R. P. L. Buse and W. R. Weimer, "A metric for software readability," in
Proceedings of the 2008 international symposium on Software testing
and analysis, 2008, pp. 121-130.

[10] Y. Wang, "On the Cognitive Complexity of Software and its
Quantification and Formal Measurement," International Journal of
Software Science and Computational Intelligence (IJSSCI), vol. 1, pp.
31-53, 2009.

[11] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to predict
component failures," in Proceedings of the 28th international
conference on Software engineering, 2006, pp. 452-461.

[12] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel,
"Early quality prediction: A case study in telecommunications,"
Software, IEEE, vol. 13, pp. 65-71, 1996.

[13] B. Ramamurthy and A. Melton, "A synthesis of software science
measures and the cyclomatic number," Software Engineering, IEEE
Transactions on, vol. 14, pp. 1116-1121, 1988.

[14] M. Shepperd and D. C. Ince, "A critique of three metrics," Journal of
Systems and Software, vol. 26, pp. 197-210, 9// 1994.

[15] T. Fitz. (2009). Continuous Deployment at IMVU: Doing the impossible
fifty times a day. Available:
http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-
imvu-doing-the-impossible-fifty-times-a-day/

[16] T. Chow and D.-B. Cao, "A survey study of critical success factors in
agile software projects," Journal of Systems and Software, vol. 81, pp.
961-971, 2008.

[17] G. I. U. S. Perera and M. S. D. Fernando, "Enhanced agile software
development - hybrid paradigm with LEAN practice," in International
Conference on Industrial and Information Systems (ICIIS), 2007, pp.
239-244.

[18] H. Zhang, X. Zhang, and M. Gu, "Predicting defective software
components from code complexity measures," in Dependable
Computing, 2007. PRDC 2007. 13th Pacific Rim International
Symposium on, 2007, pp. 93-96.

[19] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto,
"Software quality analysis by code clones in industrial legacy software,"
in Software Metrics, 2002. Proceedings. Eighth IEEE Symposium on,
2002, pp. 87-94.

[20] R. Moser, W. Pedrycz, and G. Succi, "A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction," in Software Engineering, 2008. ICSE'08. ACM/IEEE 30th
International Conference on, 2008, pp. 181-190.

[21] D. Wisell, P. Stenvard, A. Hansebacke, and N. Keskitalo,
"Considerations when Designing and Using Virtual Instruments as
Building Blocks in Flexible Measurement System Solutions," in IEEE
Instrumentation and Measurement Technology Conference, 2007, pp. 1-
5.

[22] International Bureau of Weights and Measures., International
vocabulary of basic and general terms in metrology = Vocabulaire
international des termes fondamentaux et généraux de métrologie, 2nd
ed. Genève, Switzerland: International Organization for Standardization,
1993.

[23] J. Lawler and B. Kitchenham, "Measurement modeling technology,"
IEEE Software, vol. 20, pp. 68-75, 2003.

[24] Predicate Logic. (2007, 2008-06-30). TychoMetrics. Available:
http://www.predicatelogic.com

[25] F. Garcia, M. Serrano, J. Cruz-Lemus, F. Ruiz, M. Pattini, and
ALARACOS Research Group, "Managing Software Process
Measurement: A Meta-model Based Approach," Information Sciences,
vol. 177, pp. 2570-2586, 2007.

[26] Harvard Business School, Harvard business review on measuring
corporate performance. Boston, MA: Harvard Business School Press,
1998.

[27] D. Parmenter, Key performance indicators : developing, implementing,
and using winning KPIs. Hoboken, N.J.: John Wiley & Sons, 2007.

[28] A. Sandberg, L. Pareto, and T. Arts, "Agile Collaborative Research:
Action Principles for Industry-Academia Collaboration," IEEE Software,
vol. 28, pp. 74-83, Jun-Aug 2011 2011.

[29] R. L. Baskerville and A. T. Wood-Harper, "A Critical Perspective on
Action Research as a Method for Information Systems Research,"
Journal of Information Technology, vol. 1996, pp. 235-246, 1996.

[30] G. I. Susman and R. D. Evered, "An Assessment of the Scientific Merits
of Action Research," Administrative Science Quarterly, vol. 1978, pp.
582-603, 1978.

[31] P. Tomaszewski, P. Berander, and L.-O. Damm, "From Traditional to
Streamline Development - Opportunities and Challenges," Software
Process Improvement and Practice, vol. 2007, pp. 1-20, 2007.

[32] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft, and C. Ward,
"Cyclomatic complexity and lines of code: empirical evidence of a
stable linear relationship," Journal of Software Engineering and
Applications (JSEA), 2009.

http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://timothyfitz.wordpress.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://www.predicatelogic.com/

[33] M. Shepperd, "A critique of cyclomatic complexity as a software
metric," Software Engineering Journal, vol. 3, pp. 30-36, 1988.

[34] M. Staron and W. Meding, "Ensuring reliability of information provided
by measurement systems," in Software Process and Product
Measurement, ed: Springer, 2009, pp. 1-16.

[35] M. Staron, W. Meding, and C. Nilsson, "A framework for developing
measurement systems and its industrial evaluation," Information and
Software Technology, vol. 51, pp. 721-737, 4// 2009.

[36] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslèn, Experimentation in Software Engineering: An Introduction.
Boston MA: Kluwer Academic Publisher, 2000.

	I. Introduction
	II. Related work
	A. Continous software evolution
	B. Related Complexity studies
	C. Measurement systems

	III. Design of the case study
	A. Ericsson
	B. Volvo Group Truck Technology (GTT)
	C. Process
	D. Units of analysis
	E. Measures in the study
	F. Focus group

	IV. Results and analysis
	A. Evolution of the studied measures over time
	B. Correlation Analyses
	C. Design of the Early Warning Measurement System

	V. Threats to validity
	VI. Conclusions
	Acknowledgment
	References

