
Identifying Implicit Architectural Dependencies using
Measures of Source Code Change Waves

Miroslaw Staron1), Wilhelm Meding2), Christoffer Höglund3), Peter Eriksson2), Jimmy Nilsson2),
and Jörgen Hansson1)

1)Software Center/Computer

Science and Engineering
Chalmers | University of

Gothenburg

miroslaw.staron@gu.se
jorgen.hansson@chalmers.se

2)Software Center/Ericsson

wilhelm.meding/
peter.r.eriksson/

jimmy.p.nilsson@ericsson.com

3)Software Center/Saab Electronic
Defense Systems

christoffer.hoglund@saabgroup.com

ABSTRACT
The principles of Agile software development are increasingly
used in large software development projects, e.g. using Scrum of
Scrums or combining Agile and Lean development methods.
When large software products are developed by self-organized,
usually feature-oriented teams, there is a risk that architectural
dependencies between software components become uncontrolled.
In particular there is a risk that the prescriptive architecture
models in form of diagrams are outdated and implicit architectural
dependencies may become more frequent than the explicit ones.
In this paper we present a method for automated discovery of
potential dependencies between software components based on
analyzing revision history of software repositories. The result of
this method is a map of implicit dependencies which is used by
architects in decisions on the evolution of the architecture. The
software architects can assess the validity of the dependencies and
can prevent unwanted component couplings and design erosion
hence minimizing the risk of post-release quality problems. Our
method was evaluated in a case study at one large product at Saab
Electronic Defense Systems (Saab EDS) and one large software
product at Ericsson AB.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Software/Program Measurement
– visualization techniques.

General Terms
Measurement, Documentation, Design.

Keywords
Change impact analysis, change waves, measure, mining software
repositories.

1. INTRODUCTION
The introduction of Agile and Lean software development
principles has changed the practices in software industry in a
number of ways. Agility and the focus on customer led to better
products and ability of products to be delivered constantly (so
called continuous delivery or continuous deployment). For large
software development products these practices introduced new
challenges. The principles led to multiple teams working in
parallel and developing code for the common code base while
working on distinct features. This kind of dynamics led to
challenges in monitoring the evolution of the architecture and in
particular the dependencies/links between components.

The architecture of the software product under development can
erode over time, i.e. the explicit and prescriptive architecture
models, assumptions and constraints might change over time. In
the case of this research we consider the prescriptive architecture
model as a model which is á priori created by architects to
describe how the architecture should be realized. Our focus is on
the fact that this is an explicit model created by architects who á
priori “design” the architecture and we contrast this model with a
descriptive model of the architecture of the same software
product. The descriptive model shows how the architectural
design has been realized, is created á posteriori and can be
extracted from the existing design in a number of ways (e.g. by
extracting component dependencies).

In addition to architecture erosion, the existence of implicit
dependencies may lead to quality problems and delays of software
delivery if unmonitored, uncontrolled and unmanaged. This paper
addresses the problem of monitoring, controlling and explicitly
managing the implicit dependencies between components by
creating a method for identifying and monitoring of change
waves. A change wave is a chain of related changes of
components in source code during a period of time. Based on
analyzing revision histories and identifying related changes we
can find components which change together in a large number of
cases. By chaining these dependency pairs we could identify
waves of changes and predict which components should be
developed/tested/monitored together. We consider the pairs as we
intend to visualize the dependencies between all components of a
change wave, not only the first and the last.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
conference.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

The results of our research are validated at two large industrial
products from two different domains (defense and telecom). The
validation showed that the change wave analyses were efficient
support for architects in identifying dependencies between
modules and predicting changes over time.

The remaining of the paper is structured as follows. Section 2
describes the main related work to our research. Section 3
describes the specific challenges in architecture work in Agile and
Lean software development which is a context of this study.
Section 4 presents the case studied in this paper. Section 5
presents the results and Section 6 presents the conclusions and
further work.

2. RELATED WORK
Ball and Nagappan [1] studied the impact or relative code churn
measures on software quality at Microsoft. Their work, based on
the source code of MS Vista and MS Windows Server showed
that these simple measures can predict defect-prone modules with
high likelihood. A follow-up similar study was conducted by Bell
et al. [2] at AT&T on a product with 18 releases. Bell et al.
checked whether there are other metrics which could improve the
results of predictions and came to conclusion that the churn
measures were indeed the strongest predictors. The metrics to
collect were based on the results of the above studies.

Zimmermann et al [3] introduced the methods for mining software
repositories in order to guide how software should evolve. Their
results were applied on a number of open source projects with
good validation based on historical data. In our study we extend
their concept of pairwise couplings to change waves and validate
the results on a set of ongoing projects, i.e. not on historical
analyses. Our initial visualization was based on their visualization.

Discovery of architectural dependencies based on runtime
analyses was an important input to our work [4]. Arias et al.
presented a method for visualizing this kind of dependencies. In
our work we were inspired by their approach and complement
their work with another way of eliciting dependencies.

An example of a metric of non-conformance of architectural
design to the system can be found in [5] where the execution
profiles are used to create component dependency maps. Our
method complements such an analysis with the analysis of the
development of the system. In our future work we plan to use both
methods on the same system and compare the results.

Project telemetry using tools like Hackystat [6] usually
complement tools used for visual analytics [7] with continuous
measurement. The results of this research resulted in a simple tool
used at one collaborating company which combines the strengths
of both tools – an early warning system. Together with recent
studies of Buse and Zimmermann [8] these results provided a
solid ground for establishing online measurements in our method.
Buse and Zimmermann [8] reported on a survey conducted at
Microsoft where information needs were collected from 110
Microsoft designers, project managers and architects. Defect- and
code stability related information was among the top information
needs – what the managers would like to know. Not only were
these aspects important for the historical analyses, they were
important for the future insights of the company. The survey from
Microsoft shows that the indicators presented in our paper fill an
important need in software industry.

IBM has also identified metrics related to technical product
development as important for Agile software development [9]. In

the category of technical progress, the indicators should show that
there is a growth of the product. Our dependency indicators take it
one step further and show how “controlled” this growth is in
terms of architectural and design dependencies.

Complementary measures to code stability should show the
business aspects of software development, e.g. business value,
which is one of important measures which should be used by
Agile teams and companies [10]. The awareness of how the team
contributes to the value is an important driver for the success of
Agile projects. What the authors of the cited article postulate is
similar to what we intend to achieve – provide key information
without introducing manual work overhead. The complementary
focus of the cited article is on the customer value, whereas the
focus of this article is on quality risk.

Another important measure which is claimed to stimulate agility
in software development teams, and thus complement the
technical aspects of code stability, is the RTF (Running Tested
Features) measure, popular in XP [11]. The metric combines three
important concepts – the feature (i.e. a piece of code useful for the
end-user, not a small increment that is not visible to the end user),
execution (i.e. adding the value to the product through shipping
the features to the customer), and the testing process (i.e. the
quality of the feature – not only should it be execute, but also be
of sufficient quality). This measure needs to be combined with
measures on how solid the design is and this is the goal of our
indicator.

A set of other metrics useful in the context of continuous
deployment can be found in the work of Fritz [12] in the context
of market driven software development organization. The metrics
presented by Fritz measure such aspects as continuous integration
pace or the pace of delivery of features to the customers. These
metrics complement the two indicators presented in this paper
with a different perspective important for product management.

The delivery strategy which is an extension of the concept of
continuous deployment has been found as one of the three key
aspects important for Agile software development organizations
in a survey of 109 companies by Chow and Cao [13]. The
indicator presented in this paper is a means of supporting
organizations in their transition towards achieving efficient
delivery processes which are in line with the delivery strategy
prioritized by practitioners in this survey.

3. ARCHITECTURE IN AGILE
DEVELOPMENT
Architecture development in software development is usually
conducted by experienced architects and the larger the product,
the more experience is required. As each type of system has its
specific requirements the architectural design requires attention to
specific aspects like real time properties or extensibility. For
example in the telecom domain the extensibility and performance
are the main aspects whereas in the automotive domain it is the
safety and performance that is of the outmost priority. The
architecture development efforts are dependent to some extent on
the software development process adopted by the company – e.g.
the architecture development methods differ in the V-model and
in the Agile methodologies. In the V-model the architecture work
is mostly prescriptive and centralized around the architects
whereas in the Agile methods the work can be more descriptive
and distributed into multiple self-organized teams.

As the introduction of Agile software development principles
spread in industry, the architecture development evolved. As
Agile development teams became self-organized the architecture
work became more distributed and harder to control centrally
[14]. The difficulties stem from the fact that Agile teams value
independence and creativity [15] whereas architecture
development requires stability, control, transparency and
proactivity [16].

Figure 1 presents an overview on how the functional requiremnets
(FR) and non-functional requirements (NFR) are packaged into
work packages and developed as features by the teams. Each team
delivers their code into the main branch. Each team has the
possibility to deliver the code to any component of the product.

Figure 1. Feature development in Lean/Agile methods.

The requirements come from the customers and are prioritized
and packaged into features by product management (PM) who
communicates with the system management (SM) on the technical
aspects of how the features affect the architecture of the product.
The system management communicates with the teams (DM,
Test) who design, implement and test (functional testing) the
feature before delivering to the main branch. The code in the main
branch in tested thoroughly by dedicated test units before being
able to release [17].

The method proposed and evaluated in this paper is based on
mining software repositories to find situations where groups of
components are updated within an arbitrary number of days. The
working assumption is that the components which are often
updated together (in this case within the same week) are usually
dependent upon each other. The method uses basic statistics
combined with simple visualizations to present the results to
architects who can verify the results of the statistics.

Examples of dependencies in the studies products are:

 Dependencies by-design – explicit in the architectural design

 Dependencies by-implicit – e.g. dependencies by-protocol –
when two components implement protocols that are
somehow dependent, but the components are not explicitly
connected in the diagrams

The implicit dependencies are naturally more interesting than the
explicit ones since they constitute risks for the overall internal and
external quality of the product. The implicit dependencies have
the tendency to become tacit knowledge over time and hard to
maintain. They could lead to “forgetting” to update dependent
components and thus defects detected late in the integration
phases or system test phases. Therefore it is important to use
automated measurement systems to identify, monitor and alert
about these dependencies. The alerts give the teams the possibility
to react and to prevent architecture erosion (through refactoring)
or quality deterioration (through smarter testing).

4. CASE STUDY DESIGN
This case study was designed based on mixed flexible-fixed
research design [18]. The design of the pilot study and the

validation of the results were fixed, although we intended to
adjust the method after the pilot study – thus making it mixed
design. The sampling of the companies was done based on the
size of their products and development methods used. Since the
study was designed to be quantitative there was a need for large
quantities of data, which dictated working with large companies
developing large products. In this study we had the unique
opportunity to work with 2 large companies – Saab EDS
(development of software for defense systems) and Ericsson AB
(development of telecom network equipment). The criteria for
choosing the projects in these companies were:

 Use of source code for product development – although
almost all companies execute projects in model-driven
manner, we chose the projects where source code was the
main artifacts, i.e. designers used programming languages
like Java, C, C++ or Erlang for development.

 Initiated changes towards continuous deployment – the
projects started changing their ways-of-working towards
continuously deploying functionality to their customers.

 Size of the product – the products developed should be of
significant size (more than 100.000 LOC) and should be
developed during a period of time longer than 1 year (with
multiple releases since the beginning of the product
lifecycle).

Saab EDS developed embedded software and graphical user
interfaces for ground based radar systems. The specific product
we worked on was part of a larger product developed by several
hundred developers, designers, testers, analysts etc. The historic
project developing the product was driven in increments and did
not utilize cross functional teams. The project management did
some manual metrics on trouble reports.

The organization has since this project evolved into using more
agile processes and cross functional teams. A lot of improvements
and optimizations have also been done regarding software build
and delivery times. Also to improve customer value, market
competitiveness and profit, Saab AB Electronic Defense Systems
in Gothenburg is going through a Lean transformation.

Ericsson AB developed large products for the mobile telephony
network. The size of the organization was several hundred
engineers and the size of the projects was up to a few hundreds1.
Projects were increasingly often executed according to the
principles of Agile software development and Lean production
system referred to as Streamline development (SD) within
Ericsson [19]. In this environment various disciplines were
responsible for larger parts of the process compared to traditional
processes: design teams (cross-functional teams responsible for
complete analysis, design, implementation, and testing of
particular features of the product), network verification and
integration testing, etc.

The organization used a number of measurement systems for
controlling the software development project (per project)
described above, a number of measurement systems to control the
quality of products in field (per product) and a measurement
system for monitoring the status of the organization at the top
level. All measurement systems were developed using the in-

1 The exact size of the unit cannot be provided due to

confidentiality reasons.

house methods described in [20, 21], with the particular emphasis
on models for design and deployment of measurement systems
presented in [22, 23].

The needs of the organization had evolved from metric
calculations and presentations (ca. 7 years before the writing of
this paper) to using predictions, simulations, early warning
systems and handling of vast quantities of data to steer
organizations at different levels and providing information from
project and line. These needs have been addressed by the action
research projects conducted in the organization, since the 2006.

4.1 Metrics used in the study
The base for calculating the strength of potential dependency
between two components was the measure of number of common
change burst (NoCB), which was defined as the number of bursts
which contain both components. The measure is non-transitive
and non-reflective.

This measure can be illustrated based on change patterns in Figure
2 and Figure 3, where the dots with different fill show changes in
different components. The dot with the solid black fill shows the
change in component A, which is chosen as the starting point for
the first burst (the upper timeline), the skew-lined fill of the dots
indicate the change event in another component (component B)
which is included in the change burst of component A, but also
can be seen as a starting point for the next change burst – as
illustrated in the lower timeline.

The time interval for the change burst is set arbitrary to one week
in this example and could be adjusted. Choosing the interval of
one week allows capturing check-in patterns of daily check-ins of
some designers and once per week by others and anything in-
between.

Figure 2 shows two change bursts originating in component A of
a length of one week each.

Figure 2. Component change patterns with bursts originating

in Component A, based on [1]

The NoCB (Number of Common Change Bursts) measure for
pairs originating in Component A are:

 NoCBA-B = 2: Component B changes in both change
bursts originating at component A.

 NoCBA-C = 2: Component C changes in both bursts
originating at component A.

These change bursts need to be complemented with the change
bursts originating at component B, which is illustrated in Figure 3.
In the figure there are three bursts of size of one week which
originate in component B.

Figure 3. Component change patterns with bursts originating
in Component B, based on [1]

The common change burst measures for the example in Figure 3
are:

 NoCBB-A = 2: Component A changes in two bursts
originating at component B.

 NoCBB-C = 2: Component C changes in two bursts
originating at component B.

The numbers above show that the measure of common burst
provide only a basis for calculating the strength of dependency
(SoD) which has to take into the account also the total number of
bursts for the originating component. In order to calculate that
strength of dependency we defined the total number of bursts
(NoB). The definition of the strength of dependency is defined as:

ܦ݋ܵ ൌ 	
ܤܥ݋ܰ
ܤ݋ܰ

∗ 100%

In the example the formula provides the following results for the
dependency between component A and B:

஺ି஻ܦ݋ܵ ൌ 	
஺ି஻ܤܥ݋ܰ
஺ܤ݋ܰ

∗ 100% ൌ
2
2
∗ 100% ൌ 100%

The results for the entire example are:

 SoDA-B: 100%
 SoDA-C: 100%
 SoDB-A: 67%
 SoDB-C: 100%
 SoDC-A: 50%
 SoDC-B: 50%

The data shows that changes in component A can potentially
initiate changes in components B and C, while changes in
component C do not cause changes in components A and B
equally often. It could be visualized in a table to provide an
overview – Table 1, the colors indicate the strength of dependency
for attracting the attention of the stakeholders to pairs of
components which should be considered first (the most intensive
colors) as prescribed by [24].

Table 1. Strength of dependency visualized in a table

In general, some of the dependencies which are found in this
method could be explicit, i.e. exist in the architecture diagrams,
whereas some were implicit, i.e. not present in the diagrams. The
latter are naturally more interesting for the architects and in the
case study at Saab EDS and Ericsson we found that many of these
dependencies were not explicit, which showed the value of the
presented method.

This tabular visualization can show interesting patterns of
component dependencies as analyzed by Zimmermann et al. [3],
but it does not show the real change wave, i.e. the pattern how
changes in the components spread over the system. For this we
used a simple visualization of how the change flows presented in
Figure 4.

Figure 4. Visualization of change waves as a flow

The bold lines in the diagram show the strongest dependencies
while the dotted ones show the weakest ones. The dependencies
correspond to the ones in Table 1. Focusing only on the strongest
dependencies the diagram shows that component A usually is the
component where changes originate and that they propagate to the
other two components. Changes “back” to component A are not
that often, which indicate lower dependency.

In this study we used flows to identify change waves and when
discussing them with the architects.

4.2 Data collection and analysis
The process of data collection was as follows:

1. Pilot at Saab EDS: Initially we evaluated the measures in a
pilot study at Saab EDS where we calibrated the way in
which the NoCB metric is collected, we defined the
information model for this measure according to ISO 15939
[25] and measuring the dependency for one large product.
The results showed that the method identified a number of
implicit dependencies.

2. Study at Ericsson: Based on the pilot study we decided to
collect the dependencies from another large product from a
different company – Ericsson. We also decided to use a
different visualization technique to show the dependencies
and we had the possibility to validate whether the
dependencies are implicit or by-design with two main
architects for the product. The results showed that there is a
set of implicit dependencies and a pattern of change waves.

3. Study at Saab EDS: Finally we used the method to make a
map of dependencies for another product from the same
product line at Saab EDS. The patterns of change waves
were different, i.e. longer, than the change waves at
Ericsson.

We collected the data using scripts in Ruby and Perl and
visualized the data using MS Powerpoint and MS Excel. The
analysis of data was done through interviews, i.e. discussions with
architects.

5. RESULTS AND IMPACT
The results from the pilot study at Saab EDS significantly
influenced the method in terms of how the measures are
calculated. In particular we experimented with different ways of
calculating NoCB measure.

5.1 Pilot study at Saab EDS
Before the case study was executed at both companies we
conducted a pilot study at Saab EDS where we validated the
approach and the empirical validity of the measures used in the
study. In particular we validated the NoCB measure by
investigating change wave from one component and interviewing
the architect of the product.

The setup of the pilot study was to investigate a number of
components (identified á priori by architects) and their
dependencies to other components. The data was visualized using

a bar chart as presented in Figure 5 where the size of the bar
represents the strength of dependency (SoD) of component on the
x-axis to the arbitrary architect-chosen component (let us refer to
it as Component 0). For confidentiality reasons the scales and
names of components have been removed.

Figure 5. Bar chart illustrating the strength of potential

dependency of other components on Component 0

Using the bar chart in Figure 5 we managed to attract the attention
of the architects to Component 0 (not in the diagram) and
Component 22 in the diagram. The largest bar represented a
dependency which was not defined á priori, but appeared as a
result of the dependency of these two components on a common
protocol. This dependency showed that in practice the design of
those two dependent components needed to be synchronized
otherwise a risk of integration defects (hard and costly to find) can
be significant.

The next step in our analysis was to investigate dependencies
originating from Component 22, which are depicted in Figure 6.

Figure 6. Bar chart illustrating the strength of potential

dependency of other components on Component 22

The chart shows that it is Component 0 which is the most
dependent one on Component 22. That dependency was not
explicit in the architecture diagram, but was confirmed by the
architect – the architect was able to explain why these two
components changed “together” and that there was indeed an
implicit relationship between these component via a
communication protocol.

The results from the pilot study showed that this type of analysis
has a potential to find dependencies that were not explicit for the
architects. This analysis was named as “change wave analysis”
since it showed dependency between components based on the
propagation of changes. It was also decided that we should extend
this analysis to visualize dependencies between all components in
one diagram to avoid the need for the first manual step – arbitrary
choice of the initial component (Component 0).

5.2 Results from Ericsson and Saab EDS
As defined in our research process the change wave analysis
method was applied at two large products at two different
companies. The results show that these two products have
different architectural dependencies and that some of these
dependencies were not explicitly known to the architects.

Figure 7 presents the change waves identified in the study with
different types of lines encoding strengths of the dependency –
bold (50-100%), normal (30-50%) and dotted (10-30%).

Figure 7. Change waves for the product at Saab

The waves starting from components A and B in Figure 7 are
rather long and complex. For example, if component B changes,
there is a significant chance that component R will change and a
chance that components K and P might change.

Disregarding the weakest dependencies, i.e. the dotted lines, the
figure shows that there are still dependencies between
components, for example, A-R, B-R and K-P-C. These
dependencies should be used to plan testing of the system.

In Figure 7 one component is different from the others –
component J – as it is not dependent on other components. The
component was developed separately from others and no change
waves originate from this component of lead to this component.

Figure 8 presents the results of applying the change wave analysis
for the product at Ericsson where we use different names for the
components (C1-C26), emphasize the change waves and disregard
the weakest dependencies (below 30%) since with these
dependencies nearly all components were inter-connected.

Figure 8. Change waves for the product at Ericsson

The change waves presented in Figure 8 are shorter than in case of
the product in Saab, but there are more “intra-component” waves
– components C10 – C26 in the right-hand side of the figure. This
means that changes are usually contained within a single
component, which might lead to a number of conclusions about
the quality of the architecture and the ways-of-working at the
company. One of the conclusions was that the architectural
components are rather independent from each other, which is
caused by the fact that they are developed by geographically
distributed teams.

5.3 Evaluation
We identified a number of parameters which are worthy
evaluation and discussion with the architects:

 Length of the burst, for example one day, one week, one
release.

 Branch filtering, for example ignoring branch name, strict
branch name (only changes in the same branch are
calculated) or similarity of branches (using Levenshtein
distance of one-5 characters).

 Time period for collecting the data, for example complete
product revision history, one release, one month.

The first evaluation of the method was done during the pilot study
with a focus group of two architects at Saab EDS. The evaluation
was positive and the research team decided to continue to develop
the method completely and apply it to other products. A number
of implicit dependencies were found and discussed with the
architects.

The second evaluation was done through focus group interviews
with two architects at Ericsson where the method has shown itself
useful when:

1. An explicit dependency on a common library was found.
The dependency shown a pattern of all components which
were affected by a library update – it was confirmed by the
architects that this was indeed the case. This explicit
dependency was found when running the method on a
period of time of one release.

2. A number of implicit dependencies of components were
found when analyzing the flow diagrams. The diagrams
were plotted based on the dependency data collected from
the whole product lifecycle. An example of an implicit
dependency was dependencies between state machines
implementing similar/related protocols.

3. By creating the dependency chart for each release (i.e. using
source code revisions only for the period of the release) we
found how the development of product features affected the
architecture of the product – the method pinpointed which
components were changed as a result of implementing a
number of features in the release.

Capturing the explicit dependencies as in (1) showed that the
method presented in this paper indeed identifies dependencies
which exist in the product. Their analysis á priori indicated that
the change in the library would spread throughout the system and
affect numerous components.

Discussing the implicit dependencies as in (2) showed that the
method is a good support for the architects when evaluating their
design decisions and understanding the structure of the system
from a new perspective.

Identifying dependency between component and features as in (3)
showed that the method is an effective tool for the architects to
evaluate the risks when implementing new features in the product
and supporting the test planning. Understanding how the features
affect components is a crucial element in managing the evolution
of architectures and prevents design erosion. Since the method
presented in this paper is automated, these analyses require minor
effort for data collection and presentation, but require the attention
of architects for analyzing the results and acting upon them.

5.3.1 Recommendations for other companies
Based on the experiences from using this method at two
companies we identified a number of recommendations for
companies willing to adopt this approach:

a) Implicit dependencies identified using this method should
be used as input for test planning and execution at the
feature level and at the system level (at least). This input can
result in smarter testing and thus identifying defects early.

b) Change wave measures and analyses should be used by
architects and designers to monitor the dependencies
between components in the system. The dependencies can
be formalized/documented in the diagrams in order to assure
future maintainability of the system.

c) The analysis of dependencies between components should
be complemented with the analysis of dependencies
between modules/files in the components. The inter-module
dependencies are more useful for the designers who need to
be alerted about which components should be updated based
on the change wave.

d) The analysis should be done on historical releases, but it
should be used to predict how changes in components might
spread in the new releases. Identifying the origin of the
change wave should be communicated to designers who
should take active decision whether the next component in
the change wave should be updated – this decreases the risk
of omitting important code updates that could result in
defects later in the development process.

In addition to the recommendations for the use of the method,
together with the architects we found the following calibration
parameters to be useful for a number of analyses:

a) Length of change burst (one week in the example in section
4.1) is the same as the length of the release – the analysis
shows how features spread over components in reality,
which might be different from the design.

b) Length of change burst is 1 day – only the dependencies
which are identified by small number of designer and can
support efficient set-up of the cross-functional self-
organized team.

c) Length of change burst > iteration cycle (including testing)
– the results will include dependencies which are not known
by the designers and are found during testing (when a test
case failed because a component is not changed or changed
incorrectly).

d) Filtering by branch name – if the bursts are filtered per
branch as presented in Figure 2 in section 4.1 then the
method identifies implicit although direct dependencies (e.g.
correcting one defect or a single release). If the filtering is
not done, then the method identifies more false-positives
like dependencies between features developed for two
distinct products in a product line.

e) Using sliding time intervals – using the analysis month-by-
month or release-by-release provides the architects with the
possibility of monitoring the evolution of architecture and
identifying new implicit dependencies as they appear. If the
analysis is done on the whole revision history, then the
“new” dependencies are usually less visible as the “old”
dependencies were present in the system for a longer time
and are more strongly visible in the statistics.

In our further work we plan to extend the set of recommendations
useful for other companies based on the experiences which we
collect over time.

6. CONCLUSIONS
In this paper we presented a method for identifying implicit
architectural dependencies using revision history of source code
change waves. The results from the evaluation of this method at
two companies – Saab Electronic Defence Systems and Ericsson
AB – showed that the method identifies both the explicit and
implicit dependencies. The results showed that manipulating with
three parameters of the method (time period, length of change
bursts and branch filtering) results in identifying distinct types of
dependencies like feature-component dependencies or
dependencies of components through common libraries or
protocols.

The method is based on calculations which are relatively simple to
replicate, but provide support for taking preventive measures from
design corrosion or quality problems, not uncommon in large and
long-live software products. The recommendations for other
companies, which are based on the observations of how architects
used the method, provide a starting point for using the method and
initial guidelines on how to analyze the results.

In our future work we plan to identify more analysis patterns and
expand the scope of data mining to static code analysis methods,
to filter out explicit dependencies and only include the implicit
ones.

ACKNOWLEDGMENTS
This research has been carried out in the Software Centre,
Chalmers, Göteborgs Universitet and Ericsson AB, Saab
Aktiebolag.

REFERENCES
[1] T. Ball and N. Nagappan, "Use of relative code churn

measures to predict system defect density," in 27th

International Conference on Software Engineering, St.
Louis, MO, USA, 2005, pp. 284-292.

[2] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, "Does
measuring code change improve fault prediction?," presented
at the Proceedings of the 7th International Conference on
Predictive Models in Software Engineering, Banff, Alberta,
Canada, 2011.

[3] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl,
"Mining version histories to guide software changes,"
Software Engineering, IEEE Transactions on, vol. 31, pp.
429-445, 2005.

[4] T. Arias, P. Avgeriou, and P. America, "Analyzing the
Actual Execution of a Large Software-Intensive System for
Determining Dependencies," in Reverse Engineering, 2008.
WCRE '08. 15th Working Conference on, 2008, pp. 49-58.

[5] S. Sarkar, G. M. Rama, and R. Shubha, "A Method for
Detecting and Measuring Architectural Layering Violations
in Source Code," in Software Engineering Conference, 2006.
APSEC 2006. 13th Asia Pacific, 2006, pp. 165-172.

[6] P. M. Johnson, "Requirement and Design Trade-offs in
Hackystat: An In-Process Software Engineering
Measurement and Analysis System," presented at the
Proceedings of the First International Symposium on
Empirical Software Engineering and Measurement, 2007.

[7] R. P. L. Buse and T. Zimmermann, "Information Needs for
Software Development Analytic," presented at the ICSE,
International Conference on Software Engineering, Zurich,
Switzeland, 2012.

[8] R. P. L. Buse and T. Zimmermann, "Information Needs for
Software Development Analytics," presented at the 34th
International Conference on Software Engineering (ICSE
2012 SEIP Track), Zurich, Switzerland, 2012.

[9] N. Ward-Dutton. (2011, Software Econometrics:
Challenging assumptions about software delivery. IBM.com
podcast companion report.

[10] D. Hartmann and R. Dymond, "Appropriate agile
measurement: using metrics and diagnostics to deliver
business value," in Agile Conference, 2006, 2006, pp. 6 pp.-
134.

[11] R. Jeffries. (2004). A Metric Leading to Agility. Available:
http://xprogramming.com/xpmag/jatRtsMetric

[12] T. Fitz. (2009). Continuous Deployment at IMVU: Doing the
impossible fifty times a day. Available:
http://timothyfitz.wordpress.com/2009/02/10/continuous-
deployment-at-imvu-doing-the-impossible-fifty-times-a-day/

[13] T. Chow and D.-B. Cao, "A survey study of critical success
factors in agile software projects," Journal of Systems and
Software, vol. 81, pp. 961-971, 2008.

[14] E. Richardson, "What an Agile Architect Can Learn from a
Hurricane Meteorologist," Software, IEEE, vol. 28, pp. 9-12,
2011.

[15] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and H. Robinson,
"Models of motivation in software engineering," Information
and Software Technology, vol. 51, pp. 219-233, 2009.

[16] D. E. Perry and A. L. Wolf, "Foundations for the study of
software architecture," ACM SIGSOFT Software
Engineering Notes, vol. 17, pp. 40-52, 1992.

[17] M. Staron and W. Meding, "Monitoring Bottlenecks in Agile
and Lean Software Development Projects – A Method and
Its Industrial Use," in Product-Focused Software Process
Improvement, Tore Cane, Italy, 2011, pp. 3-16.

[18] C. Robson, Real World Research, 2 ed. Oxford: Blackwell
Publishing, 2002.

[19] P. Tomaszewski, P. Berander, and L.-O. Damm, "From
Traditional to Streamline Development - Opportunities and
Challenges," Software Process Improvement and Practice,
vol. 2007, pp. 1-20, 2007.

[20] M. Staron, W. Meding, G. Karlsson, and C. Nilsson,
"Developing measurement systems: an industrial case
study," Journal of Software Maintenance and Evolution:
Research and Practice, pp. n/a-n/a, 2010.

[21] M. Staron, W. Meding, and C. Nilsson, "A Framework for
Developing Measurement Systems and Its Industrial
Evaluation," Information and Software Technology, vol. 51,
pp. 721-737, 2008.

[22] M. Staron and W. Meding, "Using Models to Develop
Measurement Systems: A Method and Its Industrial Use,"
presented at the Software Process and Product Measurement,
Amsterdam, NL, 2009.

[23] W. Meding and M. Staron, "The Role of Design and
Implementation Models in Establishing Mature
Measurement Programs," presented at the Nordic Workshop
on Model Driven Engineering, Tampere, Finland, 2009.

[24] X. Lai and J. K. Gershenson, "Representation of similarity
and dependency for assembly modularity," The International
Journal of Advanced Manufacturing Technology, vol. 37, pp.
803-827, 2008/06/01 2008.

[25] International Standard Organization and International
Electrotechnical Commission, "ISO/IEC 15939 Software
engineering – Software measurement process," International
Standard Organization / International Electrotechnical
Commission,, Geneva2007.

