Introduction to Structural Bioinformatics

Lecture 1 — Aims

• To introduce the basic principles of protein conformation.

Lecture 1 — Objectives

After this lecture you will:

- be familiar with the basic features of protein conformation, and the abbreviations and symbols used in describing these;
- be aware of the twenty amino acid residues that are commonly found in proteins, and some of their properties;
- know about different levels of protein structure;
- understand how distances and angles can be calculated;
- be able to recognise common protein secondary structure elements and understand how these can be recognised automatically.

Graham Kemp, Chalmers University of Technology

Some challenges in structural bioinformatics

The protein folding problem

• given the sequence, what is the structure?

The docking problem

- given two structures, will they associate?
- what is the docking orientation?

Predicting function from structure

Designing new functionalities

Graham Kemp, Chalmers University of Technology

Levels of protein structure

Primary structure

amino acid sequence

Secondary structure

· assignment of helices and strands

Tertiary structure

- the 3D structure
- · assembly and interaction of helices and sheets

Quaternary structure

· assembly of subunits

Graham Kemp, Chalmers University of Technology

Protein Data Bank entry (extract)

```
COMPND TRIOSE PHOSPHATE ISOMERASE (E.C.5.3.1.1)
SOURCE
            CHICKEN (GALLUS GALLUS) BREAST MUSCLE
AUTHOR D.W.BANNER, A.C.BLOOMER, G.A.PETSKO, D.C.PHILLIPS,
AUTHOR 2 I.A.WILSON
JRNL
               AUTH D.W.BANNER, A.C.BLOOMER, G.A.PETSKO, D.C.PHILLIPS,
JRNL AUTH 2 I.A.WILSON
TRNI.
              TITL ATOMIC COORDINATES FOR TRIOSE PHOSPHATE ISOMERASE
       TITL 2 FROM CHICKEN MUSCLE
REF BIOCHEM.BIOPHYS.RES.COMM.
JRNL
                                                          V. 72 146 1976
          REFN ASTM BBRCA9 US ISSN 0006-291X
JRNL
REMARK 2 RESOLUTION, 2.5 ANGSTROMS.
SEQRES 1 A 247 ALA PRO ARG LYS PHE PHE VAL GLY GLY ASN TRP LYS MET
SEQRES 2 A 247 ASN GLY LYS ARG LYS SER LEU GLY GLU LEU ILE HIS THR
ATOM
           1 N ALA A 1
                                        43.240 11.990 -6.915 1.00 0.00
        2 CA ALA A 1 43.888 10.862 -6.231 1.00 0.00
3 C ALA A 1 44.791 11.378 -5.094 1.00 0.00
ATOM
ATOM
        3 C ALBA A 1 44.791 11.378 -5.094 1.00 0.00
4 O ALBA A 1 44.633 10.992 -3.937 1.00 0.00
5 CB ALBA A 1 44.722 10.051 -7.240 1.00 0.00
6 N PRO A 2 45.714 12.244 -5.497 1.00 0.00
7 CA PRO A 2 46.689 12.815 -4.561 1.00 0.00
8 C PRO A 2 46.030 13.141 -2.257 1.00 0.00
9 O PRO A 2 46.030 13.141 -2.257 1.00 0.00
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
```

Graham Kemp, Chalmers University of Technology

DSSP bridges

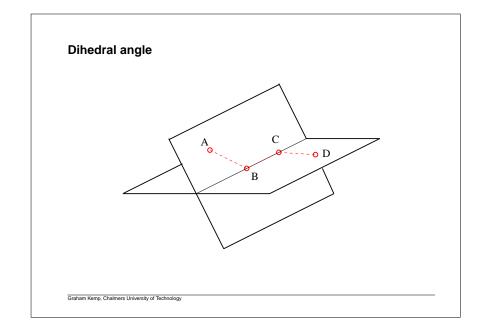
Antiparallel bridge:

```
[ hbond(i,j) and hbond(j,i) ]
or
[ hbond(i-1,j+1) and hbond(j-1,i+1) ]
```

Parallel bridge:

```
[ hbond(i-1,j) and hbond(j,i+1) ] or hbond(j-1,i) and hbond(i,j+1) ]
```

Graham Kemp, Chalmers University of Technology


DSSP summary codes

- H 4-helix (α-helix)
- B residue in isolated β -bridge
- E extended strand, participates in β-ladder
- G 3-helix
- I 5-helix
- T H-bonded turn
- S bend

Crambin (1CRN)

TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN EE SSHHHHHHHHHHHTT HHHHHHHHS EE SSS TTS

Graham Kemp, Chalmers University of Technology

