TMS145: Introduction to (Mathematical Statistics and) Bioinformatics

Graham Kemp

http://www.cse.chalmers.se/~kemp/teaching/TMS145/

- Structural Bioinformatics (3 lectures) Topics include: protein conformation, geometry calculations, secondary structure assignment, structural classification, stereochemical quality assessment, comparative modelling, fold recognition, secondary structure prediction.
- Sequence Alignment (2 lectures) Topics include: pairwise global alignment, pairwise local alignment, dynamic programming, heuristic methods for finding local alignments, derivation and use of substitution matrices, multiple sequence alignment.

Graham Kemp, Chalmers University of Technology

Introduction to Structural Bioinformatics

Lecture 1 — Aims

• To introduce the basic principles of protein conformation.

Lecture 1 — Objectives

After this lecture you will:

- be familiar with the basic features of protein conformation, and the abbreviations and symbols used in describing these;
- be aware of the twenty amino acid residues that are commonly found in proteins, and some of their properties;
- know about different levels of protein structure;
- understand how distances and angles can be calculated;
- be able to recognise common protein secondary structure elements and understand how these can be recognised automatically.

Some challenges in structural bioinformatics

The protein folding problem

• given the sequence, what is the structure?

The docking problem

- given two structures, will they associate?
- what is the docking orientation?

Predicting function from structure

Designing new functionalities

Graham Kemp, Chalmers University of Technology

Levels of protein structure

Primary structure

• amino acid sequence

Secondary structure

· assignment of helices and strands

Tertiary structure

- the 3D structure
- assembly and interaction of helices and sheets

Quaternary structure

assembly of subunits

Graham Kemp, Chalmers University of Technology

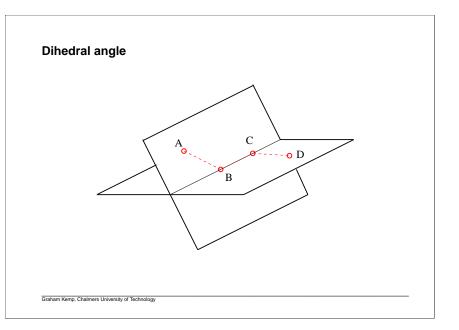
Graham Kemp, Chalmers University of Technology

COMPND	
	CHICKEN (GALLUS GALLUS) BREAST MUSCLE
	D.W.BANNER, A.C.BLOOMER, G.A.PETSKO, D.C.PHILLIPS,
	2 I.A.WILSON
: JRNL	NUMBER D M RANNER & G RECOMER G & REMOVO R G RUTLETRO
JRNL	AUTH D.W.BANNER, A.C.BLOOMER, G.A.PETSKO, D.C.PHILLIPS, AUTH 2 I.A.WILSON
TRNL	TITL ATOMIC COORDINATES FOR TRIOSE PHOSPHATE ISOMERASE
JRNL	
	REF BIOCHEM.BIOPHYS.RES.COMM. V. 72 146 1976
TRNL	REFN ASTM BBRCA9 US ISSN 0006-291X 146
:	
REMARK	2 RESOLUTION, 2.5 ANGSTROMS.
:	
SEQRES	1 A 247 ALA PRO ARG LYS PHE PHE VAL GLY GLY ASN TRP LYS MET
SEQRES	2 A 247 ASN GLY LYS ARG LYS SER LEU GLY GLU LEU ILE HIS THR
:	
ATOM	1 N ALA A 1 43.240 11.990 -6.915 1.00 0.00
ATOM	
ATOM	
ATOM	
ATOM	5 CB ALA A 1 44.722 10.051 -7.240 1.00 0.00
ATOM	6 N PRO A 2 45.714 12.244 -5.497 1.00 0.00
ATOM	7 CA PRO A 2 46.689 12.815 -4.561 1.00 0.00
A TOM	9 O PROA 2 46.030 13.141 -2.267 1.00 0.00
:	
ATOM ATOM	8 C PRO A 2 46.042 13.601 -3.411 1.00 0.00 9 O PRO A 2 46.030 13.141 -2.267 1.00 0.00

DSSP bridges

Antiparallel bridge:

```
[ hbond(i,j) and hbond(j,i) ]
or
[ hbond(i-1,j+1) and hbond(j-1,i+1) ]
```


Parallel bridge:

```
[ hbond(i-1,j) and hbond(j,i+1) ]
or
[ hbond(j-1,i) and hbond(i,j+1) ]
```

Graham Kemp, Chalmers University of Technology

DSSP summary codes H 4-helix (α-helix) B residue in isolated β-bridge E extended strand, participates in β-ladder G 3-helix I 5-helix T H-bonded turn S bend Crambin (1CRN) TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN EE SSHHHHHHHHHHHHT HHHHHHHS EE SSS TTS

Graham Kemp, Chalmers University of Technology

