Is the similarity significant, or could it be due to chance?

Even if two proteins are unrelated, we would expect some similarity simply by chance.

Is the alignment score significantly higher than random?
Align random permutations of the sequences, and find the mean and standard deviation of the resulting distribution.

The z-score reflects the significance of a global similarity score

$$
z \text {-score }=\frac{\text { score }- \text { mean }}{\text { standard deviation }}
$$

Larger values imply greater significance.

Graham Kemp. Chalmers University of Technology

e-values and p-values

The expected number of HSPs with a score of at least S is given by the formula:

$$
E=K m n e^{-\lambda S}
$$

Doubling the length of the query sequence (m) or the size of the database (n) should double the number of HSPs.

To obtain score $2 x$, score x must be obtained twice in a row.
So one expects E to decrease exponentially with score.
The probability of observing a score $\geq S$ is:

$$
1-\exp \left(-K m n e^{-\lambda S}\right)
$$

This is the p-value.
$\overline{\text { Graham Kemp. Chalmers University of Technolo }}$

Extreme value distribution

Optimal local alignment score

FASTA

k -tuples, strings of length k .
$\mathrm{k}=1-2$ for proteins and 4-6 for nucleic acids.
Construct a look-up table with all k -tuples in the database.
Look up all k -tuples from the query string and mark matching database k tuples. Sort matches by the difference in their indices (i-j).

Nearby matches on the same diagonal are joined to form an ungapped local alignment region.

Join nearby high scoring regions on different diagonals.
For the best regions, perform dynamic programming in a window around the region.

Graham Kemp, Chalmers University of Technology

More realistic similarity measures

Not all substitutions are equally likely.

- A transition between two purines (A, G) or between two pyrimidines ($C, T / U$) is more common than a purine-pyrimidine transversion.
- Replacement of one amino acid residue by another with similar size or physiochemical properties is more common than replacement by a dissimilar amino acid residue.
Insertion/deletion of N contiguous amino acid residues or nucleotides is more likely than N independent insertion/deletion events.

Thus, we should have different penalties for opening gap and for extending a gap.

Possible substitution matrices for DNA

	A	C	G	T
A	2	-1	-1	-1
C	-1	2	-1	-1
G	-1	-1	2	-1
T	-1	-1	-1	2

	A	C	G	T
A	2	-2	-1	-2
C	-2	2	-2	-1
G	-1	-2	2	-2
T	-2	-1	-2	2

Relative likelihood and alignment score

Match model (M):
Sequences assumed to be dependent. Residues x_{i} and y_{i} at position
i in the alignment occur together with probability $p_{x_{i} y_{i}}$.
Random model (R):
Sequences assumed to be independent. Residues x_{i} and y_{i} at position i in the alignment occur together with probability $q_{x_{i}} q_{y_{i}}$.

We can score an alignment using the log of the relative likelihood:

$$
\begin{gathered}
S=\log \left(\frac{\operatorname{Pr}(x, y \mid M)}{\operatorname{Pr}(x, y \mid R)}\right)=\log \frac{p_{x_{1} y_{1}} p_{x_{2} y_{2}} \cdots p_{x_{n} y_{n}}}{q_{x_{1}} q_{y_{1}} q_{x_{2}} q_{y_{2}} \cdots q_{x_{n}} q_{y_{n}}} \\
=\sum_{i=1}^{n} \log \left(\frac{p_{x_{i} y_{i}}}{q_{x_{i}} q_{y_{i}}}\right)=\sum_{i=1}^{n} s\left(x_{i, y} y_{i}\right)
\end{gathered}
$$

Percent accepted mutations

Expresses scores as log-odds values.
Score of mutation a-b is

$$
\log \frac{\text { observed } a-b \text { mutation rate }}{\text { mutation rate expected from amino acid frequencies }}
$$

Frequencies of substitutions of each pair of amino acid residues, extracted from alignments of closely related proteins

PAM1 reflects the amount of evolutionary change that yields an average of one mutation per 100 amino acids.

Can assume that no position has changed more than once.
Correct for different amino acid abundances.
$\widehat{\text { Graham Kemp. Chalmers University of Technolog }}$

```
PAM250
    A
    A
    N N
    D [\begin{array}{rrrrr}{0}&{-1}&{2}&{4}\\{C}&{-2}&{-4}&{-4}&{-5}\end{array})
    C
    Q [rrrrrrrrll
    E
    H}\begin{array}{lllllllllll}{1}&{2}&{2}&{1}&{-3}&{3}&{1}&{-2}&{6}
    I -1 -2 -2 -2 -2 -2 -2 -2 -3 -2 5
    L -2 -3 -3 -4 4
    M -1 
    M M -1 rrrrrrerrrrrrrrrrrrl
    P
```



```
    T 11 -1 0
    \
    Y -3 -4 4-2 -4 4
```


$\overline{\text { Graham Kemp. Chalmers Univesity of Technolog }}$

BLOSUM substitution matrices

Based on large collection of multiple alignments of similar ungapped segments.

$$
\text { score }_{a b}=\log \frac{\text { observed relative frequency of aligned pairs } a b}{\text { expected probability of pair } a b}
$$

Pairs are only counted between segments that are more than $x \%$ identical.

Different values of x give different BLOSUM matrices
The BLOSUM62 matrix is commonly used

- some positions change many times, while others don't change at all.
- some positions change one or more times, then revert back to the original amino acid residue.

```
BLOSUM62
    A A R R N N D D C C Q E E G H I I L L K N M F F
    A rr
    R R -1 5r 5
    N -2 -2 1 1 6
    C 0
    Q < -1 1
    E
    G
    I -1 
    lllllllll
    L
    M -1 -1 -2 -3 -1 0
    F -2 -3 -3 -3 -2 -3 -3 -3 -3 -1 0
    P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 
    S
    T }00-
    W -3 -3 -4 -4 -4 -2 -2 - -3 -2 -2 -3 -2 - -3 -1 1
```



```
    \ r 0
Graham Kemp, Chalmers University of Technology
```


