How does this sequence fold?

VQAVAVLKGDAGVSGVVKFEQASESEPTTVSYEIAGNSPNAERGFHIHEFGDATNGCVSA GPHFNPFKKTHGAPTDEVRHVGDMGNVKTDENGVAKGSFKDSLIKLIGPTSVVGRSVVIH AGQDDLGKGDTEESLKTGNAGPRPACGVIGLTN

Lattice model

- model a protein as a chain of hydrophobic (H) and polar (P) residues

- a conformation is a self-avoiding walk on a 2D square lattice

Protein folding: schematic

Conformations

The HP model: H• PO

Ab initio structure prediction

Kim T. Simons, Charles Kooperberg, Enoch Huang and David Baker
"Assembly of Protein Tertiary Structures from Fragments with Similar Local Sequences using Simulated Annealing and Bayesian Scoring

Functions

J. Mol. Biol., vol. 268, 209-225 (1997).

A simulated annealing procedure needs:
— method for generating structures

- scoring function

Graham Kemp, Chalmers University of Technolog

Estimating P(sequence|structure)

Similar to scoring a sequence-fold match when threading
Profiles:

$$
\prod_{i} P\left(a a_{i} \mid E_{i}\right)
$$

Pairwise potentials:

$$
\prod_{i<j} P\left(a a_{i,}, a a_{j} \mid r_{i j}\right)
$$

Simons et al. (1997):

$$
\prod_{i} P\left(a a_{i} \mid E_{i}\right) \times \prod_{i<j} \frac{P\left(a a_{i,} a a_{j} \mid r_{i j}, E_{i,} E_{j}\right)}{P\left(a a_{i} \mid r_{i j}, E_{i,} E_{j}\right) P\left(a a_{j} \mid r_{i j} E_{i,} E_{j}\right)}
$$

The CKY algorithm — natural language

Parsing natural language vs. folding a protein

Parsing natural language:
a) start with one-dimensional string of words;
b) consider all possible topologies representing possible relationships among words and phrases;
c) chooses the one that conveys the correct single meaning of the sentence.

Folding a protein:

a) start with one-dimensional string of amino acid residues;
b) consider all possible topologies representing possible native substructures of a protein;
c) chooses the one that has the global minimum free energy.

```
Zipping and assembly
```

3. Extract the trees

Zipping and assembly with constraints: information used
Constraints used in modelling human p8MTCP

Protein amino acid residue sequence

Constraints

- Angle constraints:
- torsion angle ranges predicted from chemical shifts
- Distance constraints:
- main chain N and O involved in hydrogen bonds in secondary structures
- HN-HN NOEs from 4D NMR experiments
- from predicted secondary structure
- disulphide bridges
- no steric overlaps
-

Actual cells used in constructing one model

residue(1,'PHE'). esidue(2,'PHE') residue(3,'ASP') residue($($, 'ASP') residue(4,'GLU').
residue(5,'LYS'). \% etc
disulphide_bond $(6,33)$ disulphide_bond $(13,27)$ disulphide_bond $(17,34)$.
alpha_helix(4,8).
antiparallel_bridge $(12,34)$ antiparallel_bridge $(14,32)$ antiparallel_bridge $(22,35)$ antiparallel_bridge $(25,33)$

Additional rule:

disulphide (A, B) :- disulphide_bond (A, B). disulphide (A, B) :- disulphide_bond (B, A).
disulphide_distance_constraints :-
disulphide(A,B),
disulphide (C,D),
1 is C-B,
strand (StrandStart, StrandEnd),
B >= StrandStart,
C $=<$ StrandEnd,
assert (lower_distance_bound (
($\left.\left.A,{ }^{\prime} \mathrm{CA} \mathrm{A}^{\prime}\right),\left(\mathrm{D}, \mathrm{C}^{\prime} \mathrm{CA}{ }^{\prime}\right), 13.0\right)$),
assert (upper_distance_bound (
($A,{ }^{\prime}$ 'CA'), (D, 'CA'), 15.0)),
fail.

Human β-defensin 6: 50 best models
Claims made for ZAMDP method

All residues

Core residues: 4-35

- local-first-global-later explains quick folding, and avoidance of vast stretches of conformational space
- reflects parallel nature of physical kinetics
- captures relationship between contact order (whether contacts are mainly local or mainly non-local) and folding rate
- identifies slow- and fast-folding proteins, and slow- and fast-folding routes

