How does this sequence fold?

VQAVAVLKGDAGVSGVVKFEQASESEPTTVSYEIAGNSPNAERGFHIHEFGDATNGCVSA
GPHFNPFKKTHGAPTDEVRHVGDMGNVKTDENGVAKGSFKDSLIKLIGPTSVVGRSVVIH
AGQDDLGKGDTEESLKTGNAGPRPACGVIGLTN
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Protein folding: schematic
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Lattice model

» model a protein as a chain of hydrophobic (H) and polar (P)
residues

» a conformation is a self-avoiding walk on a 2D square lattice
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Conformations
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Ab initio structure prediction

Kim T. Simons, Charles Kooperberg, Enoch Huang and David Baker
“Assembly of Protein Tertiary Structures from Fragments with Similar
Local Sequences using Simulated Annealing and Bayesian Scoring
Functions”

J. Mol. Biol., vol. 268, 209-225 (1997).

A simulated annealing procedure needs:
— method for generating structures

— scoring function

Graham Kemp, Chalmers University of Technology



Generating structures

Three-dimensional structures are generated by splicing together
fragments of proteins of known structure with similar local sequences.

Earlier studies showed a strong correlation between local sequence and
local structure of nine residue fragments.

For each segment of length 9 in the sequence being folded, the 25
nearest sequence neighbours in the structure database were identified.

The conformation of each of these segments was adjusted to give ideal
bond lengths and angles.

The percentage of neighbours structurally similar to the true structure is
greater when multiple sequence information is available.
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Estimating P(structure)

In fold recognition, we can assume that each known fold (a finite set) is
equally probable.

However, when considering a vast number of synthesised conformations,
many of which are highly improbable, we need some way of assessing
the feasibility of each conformation.

Simons et al. (1997) suggest a simple approach in which P(structure) is
zero if atoms overlap, and otherwise P(structure) is related to the
compactness of the structure, measured by the “radius of gyration”.

The radius of gyration is defined as the square root of the mass average
of r? for all of the mass elements.
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Estimating P(sequence|structure)

Similar to scoring a sequence-fold match when threading.

Profiles:
|T| P(aa; | E;)

Pairwise potentials:
1 P(ag aa; | ry)
<]

Simons et al. (1997):

1 Plaa | E) x [] 5+ o 120
| i< P(aay | 1y, Ei Ej)P(aa; | rij Ei Ej)
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The CKY algorithm — natural language
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Parsing natural language vs. folding a protein

Parsing natural language:
a) start with one-dimensional string of words;

b) consider all possible topologies representing possible
relationships among words and phrases;

c) chooses the one that conveys the correct single meaning of
the sentence.

Folding a protein:
a) start with one-dimensional string of amino acid residues;

b) consider all possible topologies representing possible
native substructures of a protein;

c) chooses the one that has the global minimum free energy.
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The CKY algorithm — protein structure

1. Initialize the chart 2. Fill the chart 3. Extract the trees
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Zipping and assembly




Zipping and assembly with constraints: information used

Protein amino acid residue sequence

Constraints

» Angle constraints:
> torsion angle ranges predicted from chemical shifts

» Distance constraints:
» main chain N and O involved in hydrogen bonds in secondary
structures
» HN-HN NOEs from 4D NMR experiments
> from predicted secondary structure
» disulphide bridges
> no steric overlaps
> .
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Constraints used in modelling human pSMTCP

< Disulphide bond distance constraints
@ Alpha-helix constraints

< Proline phi angle constraints
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Human (-defensin 6: antiparallel bridges

residue(1,’PHE’).
residue(2,’PHE’).
residue(3,’ASP’).
residue(4,’GLU’).
residue(5,’LYS’). Y% etc.

disulphide_bond(6,33).
disulphide_bond(13,27).
disulphide_bond(17,34).

alpha_helix(4,8).

antiparallel_bridge(12,34).
antiparallel_bridge(14,32).
antiparallel_bridge(22,35).
antiparallel_bridge(25,33).

Prolog facts
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Adjacent residues in a strand

Additional rule:

disulphide(A,B) :- disulphide_bond(A,B).
disulphide(A,B) :- disulphide_bond(B,A).

disulphide_distance_constraints :-

disulphide(4,B),

disulphide(C,D),

1 is C-B,

strand (StrandStart,StrandEnd),

B >= StrandStart,

C =< StrandEnd,

assert (lower_distance_bound(
(A,°CA’),(D,’CA?),13.0)),

assert (upper_distance_bound(
(A,’CA?),(D,’CA?),15.0)),

fail.
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Human (-defensin 6: distance constraints
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Human (-defensin 6: 50 best models

All residues Core residues: 4-35
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Claims made for ZAMDP method

> local-first-global-later explains quick folding, and avoidance of
vast stretches of conformational space

» reflects parallel nature of physical kinetics

» captures relationship between contact order (whether contacts
are mainly local or mainly non-local) and folding rate

> identifies slow- and fast-folding proteins, and slow- and
fast-folding routes

Graham J.L. Kemp



