
Computational methods in bioinformatics

Lecture 2

Graham Kemp, Chalmers University of Technology

Measures of sequence similarity

Hamming distance:

Number of positions with mismatching characters.

Defined for two str ings of equal length.

agtc
cgta

Levenshtein distance:

Minimum number of edit operations (delete, inser t, change a single
character) needed to change one sequence into another.

agtcc
cgctca

Graham Kemp, Chalmers University of Technology

Dotplots

A pictor ial representation of the similarity between two sequences.

Compare a sequence with itself:

Repeats

Palindromic sequences

Compare two sequences:

Any path from upper left to lower right represents an alignment.

Hor izontal or ver tical moves correspond to gaps in one of the
sequences.

Path with highest score corresponds to an optimal alignment.

Graham Kemp, Chalmers University of Technology

Dotplots

C

C

C

A

A

T

G

G

GA C T A G G A A G C G CT G A

T

A

G

G

A

A

G

C

A

A

Graham Kemp, Chalmers University of Technology

Each path represents an alignment

C

A

G

T

A T GC

C

A

G

T

A T GC

C

A

G

T

A T GC

A-CGT -ACGT- ACGT
| || |
ATCG- AT--CG ATCG

• Vertical steps add a gap to the horizontal sequence

• Hor izontal steps add a gap to the ver tical sequence

Graham Kemp, Chalmers University of Technology

How many paths?

Start

Graham Kemp, Chalmers University of Technology

Do we have to enumerate all paths?

AStart Finish

Graham Kemp, Chalmers University of Technology

Pairwise global alignment (Needleman-Wunsch algorithm)

Rigorous algorithms use dynamic programming to find an optimal
alignment.

• match score
• mismatch score
• gap penalty

F(i, j) = max







F(i −1, j −1) + s(xi, y j)

F(i −1, j) − d

F(i, j −1) − d

Graham Kemp, Chalmers University of Technology

Dynamic programming

F(i, j)

F(i−1, j−1)

F(i, j−1)

−d

−d+s(xi,yj)

F(i−1, j)

Graham Kemp, Chalmers University of Technology

Score matrix

A C G T A

A

T

C

G

A

Graham Kemp, Chalmers University of Technology

Percent identity

Having obtained an alignment, it is common to quantify the similarity
between a pair of sequences by stating the percent identity.

-ACGATAG-CGAAACCAAAA
||| ||| ||| |
CACG-TAGCCGATGTC----

Count the number of alignment positions with matching characters and
divide by ... what?

• the length of the shortest sequence?

• the length of the alignment?

• the average length of the sequences?

• the number of non-gap positions?

• the number of equivalenced positions excluding overhangs?

Graham Kemp, Chalmers University of Technology

Pairwise local alignment (Smith-Waterman algorithm)

Local similarities may be masked by long unrelated regions.

A minor modification to the global alignment algorithm.

• If the score for a subalignment becomes negative, set the score to
zero.

F(i, j) = max







0

F(i −1, j −1) + s(xi, y j)

F(i −1, j) − d

F(i, j −1) − d

• Tr ace back from the position in the score matrix with the highest
value.

• Stop at cell where score is zero.

Graham Kemp, Chalmers University of Technology

Is the similarity significant, or could it be due to chance?

Even if two proteins are unrelated, we would expect some similarity
simply by chance.

Is the alignment score significantly higher than random?

Align random permutations of the sequences, and find the mean and
standard deviation of the resulting distribution.

The z-score reflects the significance of a global similarity score.

z-score =
score − mean

standard deviation

Larger values imply greater significance.

Graham Kemp, Chalmers University of Technology

BLAST

Basic Local Alignment Search Tool

Less accurate than Smith-Water man, but over 50 time faster.

1. Find ungapped matches of a small fixed length, w, that score at least
T .

2. Extend matches in both directions in an attempt to find an alignment
with a score exceeding S.

Segment pairs whose scores cannot be improved by extending or
tr imming are called high scoring pairs (HSPs).

Typical values for w are 3 when aligning proteins and 11 when aligning
nucleic acids.

Graham Kemp, Chalmers University of Technology

e-values and p-values

The expected number of HSPs with a score of at least S is given by the
formula:

E = Kmne
−λ S

Doubling the length of the query sequence (m) or the size of the database
(n) should double the number of HSPs.

To obtain score 2x, score x must be obtained twice in a row.
So one expects E to decrease exponentially with score.

The probability of observing a score ≥ S is:

1 − exp(−Kmne
−λ S)

This is the p-value.

Graham Kemp, Chalmers University of Technology

FASTA

k-tuples, str ings of length k.

k = 1 - 2 for proteins and 4-6 for nucleic acids.

Constr uct a look-up table with all k-tuples in the database.

Look up all k-tuples from the query str ing and mark matching database k-
tuples. Sor t matches by the difference in their indices (i-j).

Nearby matches on the same diagonal are joined to for m an ungapped
local alignment region.

Join nearby high scoring regions on different diagonals.

For the best regions, perfor m dynamic programming in a window around
the region.

Graham Kemp, Chalmers University of Technology

global_alignment.c

#include <stdio.h>

#define MAX_LENGTH 100

#define MATCH_SCORE 2

#define MISMATCH_SCORE -1

#define GAP_PENALTY 2

#define STOP 0

#define UP 1

#define LEFT 2

#define DIAG 3

main()

{

 int i, j;

 int m, n;

 int alignmentLength, score, tmp;

 char X[MAX_LENGTH+1] = "ATCGAT";

 char Y[MAX_LENGTH+1] = "ATACGT";

 int F[MAX_LENGTH+1][MAX_LENGTH+1]; /* score matrix */

 int trace[MAX_LENGTH+1][MAX_LENGTH+1];

 char alignX[MAX_LENGTH*2]; /* aligned X sequence */

 char alignY[MAX_LENGTH*2]; /* aligned Y sequence */

 /*

 * Find lengths of (null-terminated) strings X and Y

 */

 m = 0;

 n = 0;

 while (X[m] != 0) {

 m++;

 }

 while (Y[n] != 0) {

 n++;

 }

 /*

 * Initialise matrices

 */

 F[0][0] = 0;

 trace[0][0] = STOP;

 for (i=1 ; i<=m ; i++) {

 F[i][0] = F[i-1][0] - GAP_PENALTY;

 trace[i][0] = STOP;

 }

 for (j=1 ; j<=n ; j++) {

 F[0][j] = F[0][j-1] - GAP_PENALTY;

 trace[0][j] = STOP;

 }

 /*

 * Fill matrices

 */

 for (i=1 ; i<=m ; i++) {

 for (j=1 ; j<=n ; j++) {

 if (X[i-1]==Y[j-1]) {

 score = F[i-1][j-1] + MATCH_SCORE;

 } else {

 score = F[i-1][j-1] + MISMATCH_SCORE;

 }

 trace[i][j] = DIAG;

 tmp = F[i-1][j] - GAP_PENALTY;

 if (tmp>score) {

 score = tmp;

 trace[i][j] = UP;

 }

 tmp = F[i][j-1] - GAP_PENALTY;

 if(tmp>score) {

 score = tmp;

 trace[i][j] = LEFT;

 }

 F[i][j] = score;

 }

 }

 /*

 * Print score matrix

 */

 printf("Score matrix:\n ");

 for (j=0 ; j<n ; ++j) {

 printf("%5c", Y[j]);

 }

 printf("\n");

 for (i=0 ; i<=m ; i++) {

 if (i==0) {

 printf(" ");

 } else {

 printf("%c", X[i-1]);

 }

 for (j=0 ; j<=n ; j++) {

 printf("%5d", F[i][j]);

 }

 printf("\n");

 }

 printf("\n");

 /*

 * Trace back from the lower-right corner of the matrix

 */

 i = m;

 j = n;

 alignmentLength = 0;

 while (trace[i][j] != STOP) {

 switch (trace[i][j]) {

 case DIAG:

 alignX[alignmentLength] = X[i-1];

 alignY[alignmentLength] = Y[j-1];

 i--;

 j--;

 alignmentLength++;

 break;

 case LEFT:

 alignX[alignmentLength] = ’-’;

 alignY[alignmentLength] = Y[j-1];

 j--;

 alignmentLength++;

 break;

 case UP:

 alignX[alignmentLength] = X[i-1];

 alignY[alignmentLength] = ’-’;

 i--;

 alignmentLength++;

 }

 }

 /*

 * Unaligned beginning

 */

 while (i>0) {

 alignX[alignmentLength] = X[i-1];

 alignY[alignmentLength] = ’-’;

 i--;

 alignmentLength++;

 }

 while (j>0) {

 alignX[alignmentLength] = ’-’;

 alignY[alignmentLength] = Y[j-1];

 j--;

 alignmentLength++;

 }

 /*

 * Print alignment

 */

 for (i=alignmentLength-1 ; i>=0 ; i--) {

 printf("%c",alignX[i]);

 }

 printf("\n");

 for (i=alignmentLength-1 ; i>=0 ; i--) {

 printf("%c",alignY[i]);

 }

 printf("\n");

 return(1);

}

