Polypeptide backbone (or the main chain)

[IUPAC-IUB Commission on Biochemical Nomenclature, Abbreviations and Symbols for the Description of the Conformation of Polypeptide Chains. Eur. J. Biochem., 1969, 17, 193-201]

Dihedral angle

Ramachandran steric map

[Ho, K.H., Thomas, A. and Brasseur, R., Protein Science, 2003, 12:2508-2522]

Protein Data Bank entry (extract)

COMPND	TRIOSE PHOSPHATE ISOMERASE (E.C.5.3.1.1)														
SOURCE	CHICKEN (GALLUS GALLUS) BREAST MUSCLE														
AUTHOR	D.W.BANNER, A.C.BLOOMER, G.A.PETSKO, D.C.PHILLIPS,														
AUTHOR	2 I.A.WILSON														
:															
JRNL	AUTH D.W.BANNER, A.C.BLOOMER, G.A.PETSKO, D.C. PHILLIPS,														
JRNL	AUTH 2 I.A.WILSON														
JRNL	TITL ATOMIC COORDINATES FOR TRIOSE PHOSPHATE ISOMERASE														
JRNL	r	TITL	2 FF	RON	I CH	ICKEI	N MUS	SCLE							
JRNL	REF BIOCHEM.BIOPHYS.RES.COMM. V. 72 146 1976														
JRNL]	REFN	AS	STN	I BBI	RCA9	US	ISSI	000	06-29	91X				146
:															
REMARK	2 RI	ESOL	IOITU	٦.	2.5	ANGS	STRON	۸S.							
:															
SEQRES	1 A	24	7 AI	ΓA	PRO	ARG	LYS	PHE	PHE	VAL	GLY	GLY	ASN TI	RP LYS	MET
SEQRES	2 A	24	7 AS	SN	GLY	LYS	ARG	LYS	SER	LEU	GLY	GLU	LEU II	LE HIS	THR
:															
ATOM	1	Ν	ALA	А	1		43	.240	11	.990	-б.	.915	1.00	0.00	
ATOM	2	CA	ALA	А	1		43	.888	10	.862	-б.	.231	1.00	0.00	
ATOM	3	С	ALA	А	1		44	.791	11	.378	-5.	.094	1.00	0.00	
ATOM	4	0	ALA	А	1		44	.633	10	.992	-3.	.937	1.00	0.00	
ATOM	5	СВ	ALA	А	1		44	.722	10	.051	-7.	.240	1.00	0.00	
ATOM	б	Ν	PRO	А	2		45	.714	12	.244	-5.	.497	1.00	0.00	
ATOM	7	CA	PRO	А	2		46	.689	12	.815	-4.	561	1.00	0.00	
MOTA	8	С	PRO	А	2		46	.042	13	.601	-3.	411	1.00	0.00	
ATOM	9	0	PRO	А	2		46	.030	13	.141	-2.	.267	1.00	0.00	
•															

Hydrogen bonds in β -sheets

DSSP

Hydrogen bond energy

$$E = q_1 q_2 \left(\frac{1}{d(ON)} + \frac{1}{d(CH)} - \frac{1}{d(OH)} - \frac{1}{d(CN)} \right) \times f$$

Antiparallel bridge:

```
[ hbond(i,j) and hbond(j,i) ]
or
[ hbond(i-1,j+1) and hbond(j-1,i+1) ]
```

Parallel bridge:

```
[ hbond(i-1,j) and hbond(j,i+1) ]
or
hbond(j-1,i) and hbond(i,j+1) ]
```

DSSP summary codes

- H 4-helix (α -helix)
- B residue in isolated β -bridge
- E extended strand, participates in β -ladder
- G 3-helix
- l 5-helix
- T H-bonded turn
- S bend

Crambin (1CRN)

TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN EE SSHHHHHHHHHHHHTT HHHHHHHS EE SSS TTS

Protein stability

- good stereochemistry; no steric clashes;
- buried charged atoms must be paired;
- enough hydrophobic surface must be buried, and the interior must be sufficiently densely packed, to provide thermodynamic stability.

Modular proteins

- multi-domain proteins, often with many copies of related domains;
- domains recur in many proteins in different structural contexts.

3D Transformations

Translation

$$T(d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

$$S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) & 0 \\ 0 & \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{z}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0\\ \sin(\theta) & \cos(\theta) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Comparing molecular fragments

- 3-D transformation to map Set A onto Set B
- Root Mean Square (RMS) distance

Domain definitions

"The definition of protein domains varies widely across the discipline of biology. Domains are defined simultaneously as:

(1) regions that display a significant level of sequence homology;
 (2) a minimal part of the gene that is capable of performing a function;
 (3) a region of the protein with an experimentally assigned function;
 (4) parts of structures that have significant structural similarity; and
 (5) compact spatially distinct units of protein structure."

[Veretnik S, Bourne PE, Alexandrov NN, Shindyalov IN. Toward consistent assignment of structural domains in proteins. J Mol Biol. 2004 Jun 4;339(3):647-678.]

DOMAK (DOmain MAKer)

[Siddiqui AS, Barton GJ. Continuous and discontinuous domains: an algorithm for the automatic generation of reliable protein domain definitions. Protein Sci. 1995 May;4(5):872-884.]

Based on the principle that the residues comprising a domain make more contacts between themselves (internal contacts) than they do with the rest of the protein (external contacts).

Two residues make contact if a heavy atom of one is within 5*angstrom* of a heavy atom of the other.

$$\frac{int_A}{ext_{AB}} \times \frac{int_B}{ext_{AB}}$$

Can deal with domains consisting of two segments.

STRUDL (STRUctural Domain Limits)

[Wernisch L, Hunting M, Wodak SJ. Identification of structural domains in proteins by a graph heuristic. Proteins. 1999 May 15;35(3):338-352.]

Algorithm designed to identify domains with any number of noncontiguous chain segments.

Uses the Kernighan-Lin graph heuristic to partition the protein into residue sets which display minimum interactions between them.

Interactions are deduced from contact areas between atoms in the weighted Voronoi diagram.

The radius of the "accessible sphere" around each atom is the van der Waals radius of the atom increased by 1.4*angstrom*.

Conflicting domain assignments

"The major factors responsible for conflicting domain assignments between methods, both experts and automatic, are:

- (1) the definition of very small domains;
- (2) splitting secondary structures between domains;
- (3) the size and number of discontinuous domains;
- (4) closely packed or convoluted domain-domain interfaces;
- (5) structures with large and complex architectures; and
- (6) the level of significance placed upon structural, functional and evolutionary concepts in considering structural domain definitions."

[Veretnik S, Bourne PE, Alexandrov NN, Shindyalov IN. Toward consistent assignment of structural domains in proteins. J Mol Biol. 2004 Jun 4;339(3):647-678.]