Protein design

[Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L. and Baker, D. (2003) Design of a novel globular protein fold with atomiclevel accuracy. Science, 302, 1364-1368]

What about folds that are not seen in SCOP or CATH?

Some are:

- physically impossible;
- not yet sampled by evolution;
- not observed by a structural biologist.

Goal was to achieve a highly stable protein with a new fold.

Graham Kemp. Chalmers University of Technology

Approach to designing Top7 sequence

```
for i = 1 to 172 {
    generate starting structure;
    for j = 1 to 5 {
        for k=1 to 15 {
            optimise sequence for fixed backbone;
            optimise backbone coordinates for fixed sequence;
        }
    }
}
```

Starting models are generated using a de novo approach ("Rosetta").
Assemble fragments taken from known structures.
Scoring function includes distance constraints from 2-D diagram.
$\overline{\text { Graham Kemp. Chamers Univerity of Technology }}$

Optimise sequence

polar amino acid at the 22 surface β-sheet positions (=> 75 rotamers per position)
any amino acid (except Cys) at the other 71 positions (=> 110 rotamers per position)

Find combination of rotamers (and hence the sequence) with the lowest energy, using Monte Carlo search.

Optimise structure (1)

Measure energy
(i) Perturb backbone
a) choose between 1 and 5 residues at random and make smal random adjustments to their main-chain torsion angles ($\phi, \psi)$, or
b) replace the backbone of 1,2 or 3 consecutive residues with a randomly selected fragment from the PDB, and adjust torsions of neighbouring residues to minimise the displacement of the downstream part of the chain.

Graham Kemp, Chalmers University of Technology

Optimise structure (2)

(ii) Optimise side-chain structure
for those positions with higher energy after (i), replace current side-chain conformation with lowest energy rotamer.
(iii) Optimise backbone structure
optimise ϕ and ψ again in a 10-residue window around the perturbation site

Measure energy again, and use Metropolis criterion to decide whether to accept or reject.

Steps (i), (ii) and (iii) are repeated several thousand times.
After every 20 such moves, a full combinatorial optimisation of side-chain rotamer conformations was carried out.

Graham Kemp, Chamers University of Technology

3D protein shape density representation in Hex
Protein shape complementarity

Favourable:
Unfavourable: $\int \tau_{A}\left(\underline{r}_{A}\right) \tau_{B}\left(\underline{r}_{B}\right) \mathrm{d} V$
Score: $\quad S_{A B}=\int\left(\sigma_{A} \tau_{B}+\tau_{A} \sigma_{B}-Q \tau_{A} \tau_{B}\right) d V$
Penalty Factor: $\quad Q=11$

Atomic group in proteins

Classifcation proposed by Tsai et al. (J. Mol. Biol., 1999, 290:253-266), based on:

- heavy-atom types,
- the number of covalently attached hydrogen atoms, and
- the number of all covalently attached atoms.

C3H0 C3H1 C4H1 C4H2 CHH^{2}

O1HO O2H1 S2HO S2H1

Mehio, W., Kemp, G.J.L., Taylor P. and Walkinshaw, M.D. (2010) Identification of Protein Binding Surfaces using Surface Triplet Propensities. Bioinformatics

Surface Triplet Propensities

B Average Propensity: Entire Surface vs Binding Sites
—Entire Surface \times Binding Sites

Surface Triplet Propensities

A Distribution of Average Propensities in the Protein - Ligand Interaction Dataset
—Entire Surface - - Binding Sites

Graham J.L. Kemp
副

Performance of Triangle Propensity Scores vs Cleft Size in Predicting Ligand Binding Sites

Graham J.L. Kemp

Surface Triplet Propensities
Surface Triplet Propensities

- Q-SiteFinder \square STP \square Morita et al. (2008)

CombDock

(Inbar, Y., Benyamini H., Nussinov R. and Wolfson H.J. (2005) "Prediction of multimolecular assemblies by multiple docking". J. Mol. Biol., 349, 435-447]

- All pairs docking
- $N(N-1) / 2$ pairs
- keep best K transformations for each pair
- Combinatorial assembly
- find best spanning tree representing a valid complex
- keep best D trees of size s starting at i
- Rescoring
- cluster (to avoid redundancy in solution set)
- geometric component
- large interface area and small steric overlap
- physico-chemical component
- count number of buried non-polar atoms

How many spanning trees?

(i) If we have N vertices and 1 edge between each pair there are N^{N-2} spanning trees.
(ii) If we have K edges between each pair of vertices, then there are K^{N-1} graphs of type (i).

So there are $N^{N-2} K^{N-1}$ spanning trees

Can't search the whole space!
So use a heuristic solution.

CombDock results (1)

Yeast RNA polymerase II elongation complex
10 protein chains
$K=100,15$ pairwise interactions predicted
10^{26} possible complexes
50188 complexes generated by combinatorial assembly
1113 complexes left after clustering
2nd ranked complex had RMSD of 1.37.sp 2 Human subunits modelled by homology
6th ranked complex had RMSD of 1.9
$\overline{\text { Graham Kemp. Chalmers University of Technology }}$

CombDock results (2)

Bovine arp2/3 complex
7 protein chains
$K=100$

1. 68×10^{17} possible complexes

5488 complexes generated by combinatorial assembly
145 complexes left after clustering
3nd ranked complex had RMSD of 1.2.sp 2 Drosophila melanogaster subunits modelled by homology
10th ranked complex had RMSD of 1.9.

