3D protein shape density representation in Hex

Surface representation

5 9 Q C

Protein shape complementarity

	Graham J.L. Kemp
Penalty Factor:	Q=11
Score:	$S_{AB} = \int (\sigma_A au_B + au_A \sigma_B - Q au_A au_B) \mathrm{d}V$
Unfavourable:	$\int \tau_A(\underline{r}_A) \tau_B(\underline{r}_B) \mathrm{d}V$
Favourable:	$\int (\sigma_A(\underline{r}_A) \tau_B(\underline{r}_B) + \tau_A(\underline{r}_A) \sigma_B(\underline{r}_B)) \mathrm{d}V$

Atomic group in proteins

Classifcation proposed by Tsai et al. (J. Mol. Biol., 1999, 290:253-266), based on:

- ▶ heavy-atom types,
- the number of covalently attached hydrogen atoms, and
- ► the number of all covalently attached atoms.

Graham J.L. Kemp

Surface Triplet Propensities

Mehio, W., Kemp, G.J.L., Taylor P. and Walkinshaw, M.D. (2010) Identification of Protein Binding Surfaces using Surface Triplet Propensities. **Bioinformatics**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Graham J.L. Kemp

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Surface Triplet Propensities

Surface Triplet Propensities

Surface Triplet Propensities

Surface Triplet Propensities

Surface Triplet Propensities

Surface Triplet Propensities

CombDock

[Inbar, Y., Benyamini H., Nussinov R. and Wolfson H.J. (2005) "Prediction of multimolecular assemblies by multiple docking". J. Mol. Biol., **349**, 435-447]

- All pairs docking
 - N(N-1)/2 pairs
 - keep best K transformations for each pair
- Combinatorial assembly
 - find best spanning tree representing a valid complex
 - keep best D trees of size s starting at i
- Rescoring
 - cluster (to avoid redundancy in solution set)
 - geometric component
 large interface area and small steric overlap
 physico-chemical component
 - count number of buried non-polar atoms

How many spanning trees?

- (i) If we have N vertices and 1 edge between each pair there are N^{N-2} spanning trees.
- (ii) If we have K edges between each pair of vertices, then there are K^{N-1} graphs of type (i).

So there are $N^{N-2}K^{N-1}$ spanning trees.

Can't search the whole space! So use a heuristic solution.

Graham Kemp, Chalmers University of Technology

CombDock results (1)

Yeast RNA polymerase II elongation complex

10 protein chains

K = 100, 15 pairwise interactions predicted

10²⁶ possible complexes

50188 complexes generated by combinatorial assembly

1113 complexes left after clustering

2nd ranked complex had RMSD of 1.37.sp 2 Human subunits modelled by homology 6th ranked complex had RMSD of 1.9.

Graham Kemp, Chalmers University of Technology

CombDock results (2)

Bovine arp2/3 complex

7 protein chains

K = 100

 1.68×10^{17} possible complexes

5488 complexes generated by combinatorial assembly

145 complexes left after clustering

3nd ranked complex had RMSD of 1.2.sp 2 *Drosophila melanogaster* subunits modelled by homology 10th ranked complex had RMSD of 1.9.

Graham Kemp, Chalmers University of Technology

Structural biology, genomics and proteomics

Structural biology

 gives an understanding of biological function at the molecular level through determination of individual macromolecular structures and complexes.

Structural genomics

aims to obtain 3D structures for all protein products of the genome.

Structural proteomics

 aims obtain structures of all macromolecular assemblies in the "complexome".

Graham Kemp, Chalmers University of Technology

Computational challenges

- to predict atomic models of macromolecules (usually proteins) where experimentally determined structures are not available;
- to predict the structures of pairs of interacting macromolecules;
- to predict assemblies of many macromolecules by multiple docking;
- to fit high-resolution atomic models of macromolecules inside lowresolution envelopes obtained from cryo-EM experiments;
- to build a 3D atlas of a cell at atomic resolution.

Protein-protein docking

- · find sets of candidate docking orientations
- use a scoring function to evaluate these

"Although considerable improvement has been achieved, the scoring functions are still the weakest components of most docking algorithms."

[Inbar Y, Benyamini H, Nussinov R, Wolfson HJ. Prediction of multimolecular assemblies by multiple docking. J Mol Biol. 2005 Jun 3;349(2):435-447]

Graham Kemp, Chalmers University of Technology

High-resolution — X-ray, NMR atomic detail — atomic coordinates (x,y,z) — Low-resolution	
 X-ray, NMR atomic detail atomic coordinates (x,y,z) Low-resolution 	High-resolution
atomic detail — atomic coordinates (x,y,z) — Low-resolution	— X-ray, NMR
 atomic coordinates (x,y,z) Low-resolution 	atomic detail
- Low-resolution	— atomic coordinates (x,y,z)
	Low-resolution
— (cryo)electron microscopy	— (cryo)electron microscopy
— voxels with density values	— voxels with density values

Graham Kemp, Chalmers University of Technology