Polypeptide backbone (or the main chain)

[IUPAC-IUB Commission on Biochemical Nomenclature, Abbreviations and Symbols for the Description of the Conformation of Polypeptide Chains. Eur. J. Biochem., 1969, 17, 193-201]
Graham Kemp, Chalmers Univesisity of Technolog

Dihedral angle

Graham Kemp, Chalmers University of Technology

Ramachandran steric map

[Ho, K.H., Thomas, A. and Brasseur, R., Protein Science, 2003, 12:2508-2522]
$\overline{\text { Graham Kemp. Chalmers University of Technology }}$

Protein Data Bank entry (extract)

COMPND	TRIOSE PHOSPHATE ISOMERASE (E.C.5.3.1.1) CHICKEN (GALLUS GALLUS) BREAST MUSCLE											
source												
AUTHOR	D.W.BANNER,A.C.BLOOMER, G.A.PETSKO,D.C.PHILLIPS, 2 I. A.WILSON											
AUTHOR												
\pm												
JRNL	AUTH D.W.BANNER,A.C.BLOOMER,G.A.PETSKO,D.C.PHILLIPS, AUTH 2 I.A.WILSON											
JRNL												
JRNL	tITL A			I.A.WILSON ${ }_{\text {ATOMIC Coordinates for triose phosphate isomerase }}$								
JRNL	titl 2 F			from Chicken muscle					Phosphate I			
JRNL	$\begin{array}{ll}\text { REF } \\ \text { ReFn } & \text { B } \\ \text { A }\end{array}$			biochem. Biophys .Res.comm.					v. 72	14	1976	
JRNL					M B	BRCA9	US ISSN	N 0006-2				146
	2 Resolution. 2.5 Angstroms.											
REMARK												
SEQRES	1	2	47	ALA	PRO	Arg	LYS PHE	Phe VAL	gly gly	ASN TR	LYS	
SEQRES	2 A	24	47	ASN	GLY	LYS	ARG LYS	SER LEU	gly glu	LeU I	H	
:												
Atom	1	N		LA A			43.240	11.990	-6.915	1.00	0.00	
Atom	2	CA		LA A		1	43.888	10.862	-6.231	1.00	0.00	
атом	3	c		LA A			44.791	11.378	-5.094	1.00	0.00	
atom	4	-		LA A			44.633	10.992	-3.937	1.00	0.00	
Атом		CB		LA A			44.722	10.051	-7.240	1.00	0.00	
Atom	6	N		RO A		2	45.714	12.244	-5.497	1.00	0.00	
ATOM		CA		RO A		2	46.689	12.815	-4.561	1.00	0.00	
Atom	8	c		RO A			46.042	13.601	-3.411	1.00	0.00	
Атом		\bigcirc		RO A			46.030	13.141	-2.267	1.00		

Graham Kemp, Chalmers University of Technology

Hydrogen bonds in β-sheets

Graham Kemp. Chalmers University of Technology

DSSP summary codes

H 4-helix (α-helix)
B residue in isolated β-bridge
E extended strand, participates in β-ladder
G 3-helix
I 5-helix
T H-bonded turn
S bend

Crambin (1CRN)

TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN EE SSHHHHHHHHHHHHTT HHHHHHHHS EE SSS TTS

Graham Kemp, Chalmers University of Technolog

Protein stability

- good stereochemistry; no steric clashes;
- buried charged atoms must be paired;
- enough hydrophobic surface must be buried, and the interior must be sufficiently densely packed, to provide thermodynamic stability.

Modular proteins

- multi-domain proteins, often with many copies of related domains;
- domains recur in many proteins in different structural contexts.

Is the similarity significant, or could it be due to chance?
Graham Kemp, Chalmers University of Technology

Even if two proteins are unrelated, we would expect some similarity simply by chance.

Is the alignment score significantly higher than random?
Align random permutations of the sequences, and find the mean and standard deviation of the resulting distribution.

The z-score reflects the significance of a global similarity score.

$$
z \text {-score }=\frac{\text { score }- \text { mean }}{\text { standard deviation }}
$$

Larger values imply greater significance.

FASTA

k-tuples, strings of length k.
$k=1-2$ for proteins and 4-6 for nucleic acids.
Construct a look-up table with all k-tuples in the database.
Look up all k-tuples from the query string and mark matching database k tuples. Sort matches by the difference in their indices (i-j).

Nearby matches on the same diagonal are joined to form an ungapped local alignment region.

Join nearby high scoring regions on different diagonals.
For the best regions, perform dynamic programming in a window around the region.
$\overline{\text { Graham Kemp, Chalmers University of Technology }}$

Comparing molecular fragments

Set A
Set B

Fit Set A onto Set B

-3-D transformation to map Set A onto Set B

- Root Mean Square (RMS) distance

