

Ramachandran steric map▲↓↓<

COMPND	TRIOSE PHOSPHATE ISOMERASE (E.C.5.3.1.1)													
SOURCE	CH	TCKE	N (GAT	LUS	301.1.142	S) BRE	AST MU	SCLE	2.11/					
AUTHOR	D.	W.BA	NNER . A	.C.B	LOOME	R,G.A.	PETSKO	.D.C	- C.PHILI	LIP	s.			
AUTHOR	2 I.A.WILSON													
:														
JRNL	AUTH D.W.BANNER, A.C.BLOOMER, G.A.PETSKO, D.C.PHILLIPS,													
JRNL	AUTH 2 I.A.WILSON													
JRNL	TITL ATOMIC COORDINATES FOR TRIOSE PHOSPHATE ISOMERASE													
JRNL	TITL 2 FROM CHICKEN MUSCLE													
JRNL		REF BIOCHEM.BIOPHYS.RES.COMM. V. 72 146 1976												
JRNL		REFN	AST	M BB	RCA9	US IS	SN 000	6-29)1X				146	
: DEMADY	2 12	FROT	UTTON	2 6	ANCO	TROME								
:	2 1	E301	UIION.	2.5	ANGS	IROMS.								
SEORES	1 A	24	7 ALA	PRO	ARG	LYS PH	E PHE	VAL	GLY GI	LY	ASN TR	P LYS	MET	
SEORES	2 A	24	7 ASN	GLY	LYS .	ARG LY	S SER	LEU	GLY GI	LU	LEU IL	E HIS	THR	
:														
ATOM	1	N	ALA A	. 1		43.24	0 11.	990	-6.91	15	1.00	0.00		
ATOM	2	CA	ALA A	. 1		43.88	8 10.	862	-6.23	31	1.00	0.00		
ATOM	3	С	ALA A	. 1		44.79	1 11.	378	-5.09	94	1.00	0.00		
ATOM	4	0	ALA A	. 1		44.63	3 10.	992	-3.93	37	1.00	0.00		
ATOM	5	CB	ALA A	. 1		44.72	2 10.	051	-7.24	40	1.00	0.00		
ATOM	6	Ν	PRO A	. 2		45.71	4 12.	244	-5.49	97	1.00	0.00		
ATOM	7	CA	PRO A	. 2		46.68	9 12.	815	-4.56	61	1.00	0.00		
ATOM	8	С	PRO A	. 2		46.04	2 13.	601	-3.41	11	1.00	0.00		
	a	0	PRO Z	2		46.03	0 13.	141	-2.26	67	1.00	0.00		

DSSP

Hydrogen bond energy

$$E = q_1 q_2 \left(\frac{1}{d(ON)} + \frac{1}{d(CH)} - \frac{1}{d(OH)} - \frac{1}{d(CN)}\right) \times f$$

Antiparallel bridge:

```
[ hbond(i,j) and hbond(j,i) ]
or
[ hbond(i-1,j+1) and hbond(j-1,i+1) ]
```

Parallel bridge:

```
[ hbond(i-1,j) and hbond(j,i+1) ]
or
hbond(j-1,i) and hbond(i,j+1) ]
```

Graham Kemp, Chalmers University of Technology

Protein stability

- good stereochemistry; no steric clashes;
- buried charged atoms must be paired;
- enough hydrophobic surface must be buried, and the interior must be sufficiently densely packed, to provide thermodynamic stability.

Modular proteins

- multi-domain proteins, often with many copies of related domains;
- domains recur in many proteins in different structural contexts.

Is the similarity significant, or could it be due to chance?

Graham Kemp, Chalmers University of Technology

Even if two proteins are unrelated, we would expect some similarity simply by chance.

Is the alignment score significantly higher than random?

Align random permutations of the sequences, and find the mean and standard deviation of the resulting distribution.

The z-score reflects the significance of a global similarity score.

z-score = $\frac{score - mean}{standard deviation}$

Larger values imply greater significance.

Graham Kemp, Chalmers University of Technology

BLAST

Basic Local Alignment Search Tool

Less accurate than Smith-Waterman, but over 50 time faster.

- 1. Find ungapped matches of a small fixed length, w, that score at least T.
- 2. Extend matches in both directions in an attempt to find an alignment with a score exceeding *S*.

Segment pairs whose scores cannot be improved by extending or trimming are called high scoring pairs (HSPs).

Typical values for w are 3 when aligning proteins and 11 when aligning nucleic acids.

Graham Kemp, Chalmers University of Technology

e-values and p-values

The expected number of HSPs with a score of at least *S* is given by the formula:

 $E = Kmne^{-\lambda S}$

Doubling the length of the query sequence (m) or the size of the database (n) should double the number of HSPs.

To obtain score 2x, score x must be obtained twice in a row. So one expects E to decrease exponentially with score.

The probability of observing a score $\geq S$ is:

 $1 - \exp(-Kmne^{-\lambda S})$

This is the p-value.

Graham Kemp, Chalmers University of Technology

FASTA

k-tuples, strings of length k.

k = 1 - 2 for proteins and 4-6 for nucleic acids.

Construct a look-up table with all k-tuples in the database.

Look up all k-tuples from the query string and mark matching database ktuples. Sort matches by the difference in their indices (i-j).

Nearby matches on the same diagonal are joined to form an ungapped local alignment region.

Join nearby high scoring regions on different diagonals.

For the best regions, perform dynamic programming in a window around the region.

Graham Kemp, Chalmers University of Technology

