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The objective of shape comparison in DALI is to assign a one-to-one
equivalence between the residues, where non-matching residues can be
skipped in either chain.

This is done by finding similar patterns in distance matrices.

Constr ucting distance matrices (or ‘‘contact maps’’) is easy;
finding maximal matching sub-matrices is hard.
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Shape comparison in DALI

(i) a suitable representation:
list of Cα atoms described by their x, y and z coordinates.

(ii) an objective function to be optimised:
accommodate the largest possible number of equivalent points within
small deviations in position (typically less than 2 to 3 angstrom).

(iii) a comparison algorithm:
find matching sub-matrices and merge these into larger consistent
blocks of agreement by removing intervening rows and columns.

(iv) appropriate decision rules:
statistical significance of comparison score (Z-score);
equivalent sets of residues (structural alignment);
3D view of the matched parts superimposed.
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Tw o algorithms in DALI

Scan for obvious similarities using a fast (but, in general, less accurate)
algor ithm, then rescan for more subtle similarities using more
sophisticated (but slower) algorithms.

A) Fast heuristic 3D lookup (‘‘hashing’’)
Catches easy-to-find structural similarities.
Represent secondary str ucture elements by 3D line segments;
match vector relationships from the query protein with a stored list;
when enough matches are found with a database protein, sample a
limited set of superpositions.

B) Branch-and-bound algorithm
Guaranteed to find the global optimum, but slower
(worst case: exponential number of steps).
Find the best matching sub-matrices for proteins A and B;
then recursively split the solution sub-space.
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Problems when searching a protein structure database

(Want to perfor m all-against-all comparison)

Unequal representation of protein families.

Some redundancy can be eliminated by removing proteins with mutual
sequence identity greater than 25%.
But many str ucturally similar proteins remain.

The problem of domains.

Similar sub-structures recur between several proteins.

Today we can identify sets of domains with distinct folds from resources
like CATH and SCOP.
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Each path represents an alignment
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• Vertical steps add a gap to the horizontal sequence
• Hor izontal steps add a gap to the ver tical sequence
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How many paths?

Start
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Pairwise global alignment (Needleman-Wunsch algorithm)

Rigorous algorithms use dynamic programming to find an optimal
alignment.

• match score
• mismatch score
• gap penalty

F(i , j ) = max







F(i −1, j −1) + s(xi ,y j)

F(i −1, j ) − d

F(i , j −1) − d
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Dynamic programming

F(i, j)

F(i−1, j−1)

F(i, j−1)
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Score matrix
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BLOSUM62
A R N D C Q E G H I L K M F P S T W Y V

A 4
R -1 5
N -2 0 6
D -2 -2 1 6
C 0 -3 -3 -3 9
Q -1 1 0 0 -3 5
E -1 0 0 2 -4 2 5
G 0 -2 0 -1 -3 -2 -2 6
H -2 0 1 -1 -3 0 0 -2 8
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4
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Axes of secondary structure elements

[Singh A.P. and Brutlag, D.L. (1997) ‘‘Hierarchical protein structure
super position using both secondary str ucture and atomic
representations’’, Proc. Int Conf. Intell. Syst. Mol. Biol., 5, 284-293]

Strand:

Xstart = (Xi + Xi+1)/2

Xend = (X j + X j−1)/2

Helix:
Xstart = (0. 74 * Xi + Xi+1 + Xi+2 + 0. 74 * Xi+3)/3. 48

Xend = (0. 74 * X j + X j−1 + X j−2 + 0. 74 * X j−3)/3. 48
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