A Visual Interface and Navigator for the P/FDM Object Database

Ignacio Gil, Peter M.D. Gray and Graham J.L.. Kemp

Department of Computing Science, University of Aberdeen,
King’s College, Aberdeen, Scotland, UK, AB24 3UE
E-mail: {pgray|gjlk}@csd.abdn.ac.uk

Abstract

We have implemented a Java-based visual interface
for P/FDM which has at its centre a graphical rep-
resentation of the database schema. Users construct
queries by clicking on entity classes and relationships
in the schema diagram and constraining the values of
attributes selected from menus. As this is done, the
Daplex text of the query under construction is built up
in a subwindow (the query editor window).

Queries are submitted to the database via a CORBA
interface. Results satisfying the selection criteria are
displayed in a table in a separate result window, to-
gether with the Daplex text of the query.

A particularly novel feature of the interface is a
“copy-and-drop” facility which enables the user to se-
lect and copy data values in the result window and then
“drop” these into the query editor window. When this
is done, the selected values are merged into the origi-
nal query automatically, in the appropriate place in the
query text, to produce a more specialised query. This
query can then be extended by the user, if required,
and submitted to the database for execution. Thus,
complex queries can be built up in stages by inspect-
ing intermediate results and modifying the follow-on
queries to have stronger selection criteria and addi-
tional navigation links.

1 Introduction

P/FDM [8] is a database management system
which implements the functional data model (FDM)
[18]. The basic concepts in the FDM are entities,
which are used to represent real world objects, and
functions, which are used to represent entity proper-
ties including scalar attributes and relationships be-
tween entities. The P/FDM database can be interro-
gated using the programming language Prolog or the
query language Daplex. This paper is about the design

of a graphical interface which can be used to formulate
queries without the user having to learn to program
in either Prolog or Daplex.

Queries are submitted to the P/FDM database via
a coarse grain CORBA interface [12] . This inter-
face handles queries expressed in a high level language,
thus giving efficient bulk execution. Results satisfying
the selection criteria are displayed in a table in a sep-
arate response window, together with the Daplex text
of the query which gave the results. This is valuable
to scientists as it reveals precisely what selection con-
ditions and what relationships were used to derive the
results. Otherwise, with exploratory browsing, it is all
too easy to use quite complex conditions but be unsure
what they were, which could upset one’s conclusions.

In this paper we discuss previous work that has
shaped the design of the current interface and relate
its functionality to that of other systems. We then de-
scribe each of the interface’s main features: the query
window, the expression editor, the response window
and the copy-and-drop facility. These are illustrated
with screenshots showing the interface in use with our
antibody database [11]. Finally, we summarise the
novel features of the interface and discuss its use as a
front-end to other remote database systems.

2 Background and related work

Visual query systems for databases are surveyed in
[3]. However, query systems for object databases using
OQL are relatively new [5, 13] and still developing.

In a previous project AMAZE [2] for our P/FDM
object database we tried using a 3-D schema repre-
sentation, with a graphic annotation for query restric-
tions represented as small boxes dangling off entity
types in the schema [1]. This also explored 3-D repre-
sentations of results in a novel way. While the result
presentations were promising, and are being followed
up, the form of query input felt over-complex, and ran

into the classic problems of positioning text labels on
a rotating 3-D image.

Therefore we decided to revert to a 2-D schema, rep-
resentation for input in a kind of ER style with sub-
types, as a variant of that used by many other groups.
We also decided not to devise elaborate graphic rep-
resentations for the query operations specifying quan-
tified selection conditions, disjunctions or computed
results. Instead, we decided to make use of the un-
derlying query language Daplex, and express these in
a textual representation with layout. In the previous
design we had basically hidden the generated query
language from the user, only displaying it in a win-
dow for a quick “sanity check” before sending it off to
the database server. We now feel that this was a mis-
take, since the user then only saw the query during
formation as a series of annotation boxes of various
kinds, each of which had to be unpacked in order to
see the query as a whole. By contrast, the query text
has a concise uniform presentation.

We further concluded that really complex queries
have to be formulated in Daplex anyway, since no
graphic representation can easily cope with a complex
combination of conjunction, disjunctions and quanti-
fiers across a variety of entity types. However, there
is a different problem in Daplex, since the end user
usually has only a modest reading ability for simple
Daplex queries, but no writing ability.

We decided to make this into a virtue by making
the system function as a scribe to compose parts of
the query, in response to mouse actions by the user
highlighting parts of the schema and choosing options
from generated menus. In this way the user can build
up a query incrementally, knowing at each stage that
the Daplex query on the screen is valid, and can be
sent to the database server, if desired.

This mode of working has the advantage that it
models the way users often work in Information Re-
trieval searches, by formulating a simple query, discov-
ering there are too many answers, and then refining it.
It also bears out the historical experience of the de-
velopers of SQL, who initially thought that all queries
that users actually wished to ask could be expressed
in a few lines with SELECT...FROM...WHERE, and
then were surprised when users wished to modify their
queries in ever more complex ways, which broke the
original simplicity of the language.

An early Smalltalk prototype fulfilling these de-
sign aims was presented by Cole and Gray [6]. We
have now completely re-implemented that early proto-
type in Java, with a number of detailed improvements.
While the incremental generation of object queries is

no longer novel, a significant contribution is the inte-
gration of a highlighting point and click editor with
the displayed query text, so that a user can click on
parts of a query and have relevant entities and rela-
tionships in the schema highlighted, as a prelude to
menu selection. This helps the user to understand the
text version of the query, by relating it to the dia-
gram; it also leads on naturally to query refinement
by menu selection. This has been further enhanced by
the copy-and-drop facility which is described in Sec-
tion 6.

We have thus adopted a very different approach
from Papantonakis and King [17], who have developed
a graphic query interface to a functional data model
database, but who use a mix of elaborate graphic con-
structs to generate a query in their functional query
language (FDL). Their problem is that the generated
FDL is hard to read, for anyone but a mathematician,
and it has an algebraic rather than a clausal syntax.
We are able, by contrast, to capitalise on various fea-
tures of Daplex. Firstly, it gives a natural sequence
or spine to the query built up from nested loops. Sec-
ondly there are natural points in the query, which we
can colour and highlight for selection, where the query
can be extended by adding extra such that clauses, or
conjoining or disjoining selections, or adding quanti-
fiers.

We believe that by providing these visual cues we
make it easy for the user to learn the language, and
improve their reading ability. It also provides visual
cues for legal modifications. Thus we believe we have
“closed the control loop” in query formulation, by pro-
viding two representations, each of which is mouse ac-
tive, with pointers into the other.

Daplex fits particularly well with extended entity-
relationship models and semantic data models, since
it was designed for them. There is a direct correspon-
dence between entity names in the query and boxes
representing entity types (or subtypes) in the schema.

The same goes for function names and relation-
ships. Thus, although we can in fact generate SQL
for tables with in-built object identifiers [10], we be-
lieve that if we were to try and teach the user to build
up a complex SQL query by this technique, it would
be much harder, particularly since SQL does not have
the clean syntactic structure of Daplex. However,
we can translate the Daplex queries we generate into
the ODMG language OQL [4], so that the interface
has more general applicability as a front end to other
databases.

A closely related project is the Kaleidoquery vi-
sual interface [16] which has been developed to gen-

erate OQL. That interface is based around a 3D rep-
resentation of the entity classes in the database. The
classes are shown as icons but are not connected as
in an Entity-Relationship diagram. Instead the rela-
tionships are shown on demand, as part of a list of
attributes of a selected class. Also the user does not
see the source version of the query developing. It is
not clear how they could represent self-joins where
two different variables independently range over the
same entity class, which is a very useful feature of our
system.

The Kalei-
doquery interface uses a pipeline metaphor to show
conjunctions and disjunctions. Disjunctive selections
are shown by parallel sections of pipe, while conjunc-
tive selections are shown as successive sections. It is
well known that users find considerable difficulty in
using these boolean connectives [15, 9], and this is an
important practical issue. We explain our approach
below, and we recognise the need to do systematic
comparisons to establish the cases where the Kaleido-
scope approach would be preferred to ours, and where
not. However, as often happens, it would be difficult
to isolate the handling of boolean connectives from
other features of the interface when evaluating users’
experiences.

Earlier work [7] allowed a user to choose between
three different visual interfaces to the same object
database: graph-based; forms-based and a textual in-
terface (similar to Daplex). However, these were used
singly and not in combination. It was possible to
switch to a different interface partway through query
formulation, and thus to see the Daplex-like text for
a query that had been developed graphically. How-
ever, one was then faced with using a different editor
if one continued in that mode. The results of this work
showed that different users preferred different editors,
depending on their experience and the complexity of
the query. In fact, we believe that a web forms-based
editor is best for simple queries, and we have devel-
oped such an editor, while using the Visual Navigator
for more ambitious exploratory queries.

3 The query window

The basic concepts in the functional data model
(FDM) are entities, which are used to represent real
world objects, and functions, which are used to repre-
sent, entity properties including scalar attributes and
relationships between entities. The database schema
is presented graphically as an entity-relationship (ER)
diagram (Figure 1).

Entity classes are shown as ellipses in the main
panel of the query window. The Daplex text of the
query being constructed is shown in a panel below
the schema diagram. The user starts constructing a
query by clicking on an entity class (e.g. ig-domain).
The border of the ellipse is highlighted and the user
can either press the right mouse button or the accept
button below the schema window to confirm the selec-
tion. Confirming creates a for each loop in the Daplex
query to iterate over instances of that class, and this
line is added to the Daplex query in the lower panel.

Arcs between entity classes represent relationships.
“Crow’s feet” at the end of a relationship arc indicate
a multi-valued relationship. A clickable circle is drawn
on each relationship arc. When an entity class is se-
lected, its ellipse is filled with colour, the border of the
relationship circle and the relationship name of all re-
lationships involving that entity class are highlighted,
and again either the right mouse button or the accept
button is used to confirm the selection.

The user selects the attributes to be printed by
double-clicking on entity class ellipses in the main
schema diagram. For example, double-clicking on
the ig_domain ellipse will bring up a listbox with the
names of the attributes defined on that class. At-
tributes selected from this list are added to the print
line of the query. If the query involves two or more
instances of the same class (“self join”), a menu listing
the applicable instance variables is displayed when the
user first double clicks. This enables the user to specify
which instance’s attribute values should be printed.

4 The expression editor

To place a condition on an instance variable, the
user must first press the add Modifier button in the
main query window (see Figure 1). This causes a small
box icon to be drawn at the appropriate point in the
Daplex code in the lower panel of the query window
(Figure 1 actually shows box icons which are replace-
able by integer expressions, because of the context).
To instantiate the test, the user clicks on the box in
the query to bring up the expression editor (Figure 2).
This window allows the user to create and edit boolean
expressions.

A function can be constrained to have a constant
value by clicking on Select Function to bring up the
Function Chooser window, selecting the function to
be constrained and then typing a value into the entry
box. A selection box is used to specify the comparison
operator to be used.

for each i0 in ig_domain
for each el in chain such that el=ig_domain_chain{ i0)
for @ach 12 in { 1 to [11t
for each r3 in residue such that r3=absolutepos(cl,
Print(source(i0), name(i0), start(i0), domain_type(il), compon _idiel), num_residuesicl)

Figure 1: The query window

ggg:?gr L eft Expression Operator Right Expression

Figure 2: The expression editor

Commection terminated. mria-r...| Stap |l out |

source(i0) name(i0) | subgrowp(i0) | protein name(sl)
mouse Ve IfA) AND2 FAE FRAGHENT
v | kappa-VvI | ANO2 FAB FRAGMENT
o N | R19.9 [IG*GIP-K-, /CRIS-...
¥ - kappa-¥ | R19.9 (1G*G2B-K=, /CRIS=...
| | IEr | ESWOGLOBULIN FAR
 Iambda-I | ISOVOGLOBYLIN FAB
| ITI¢B) | If*A FAB FRAGMENT {J539). .. |
. kappa-VI | IG*A FAB FRAGNENT (J539)...
| IfB) | If*61 FAB FRAGMENT {ANTT. .. |
. kappa-¥ | I6*G1 FAB FRAGHMENT (ANTI...
| ITI{D) | IGGl FAR® FRAGHENT {B13I2) |
' | 1661 FAB® FRAGMENT (B13I2)

for each i0 in ig_domain

for each 81 in structure such that sl=domain_structure(1i0)
for each ¢2 in chain such that sl=component_proteinic?)

Print{ source(il), name(il), subgroupiil), protein nameisl),

Figure 3: Response window

‘ Abst ract Tabl eModel ‘

Y
‘ Vect or Tabl eMbdel ‘

I '

‘ Socket Model ‘ ‘ CORBAMb e

Figure 4: Vector table model inheritance

Additional selection criteria can be added to the
query. A selection box at the left of the expression
editor specifies whether a conjunction or disjuncion
will be made. When the 0K button is pressed, the
query in the main window is updated with the test
replacing the box icon in the query text.

5 The response window

Query results are tabulated in a separate window
(Figure 3). The upper part of this window contains the
query results. The heading for each column shows the
attribute name and the variable used in the originating
query to refer to an object identifier. The text of the
originating query is shown in a panel at the bottom of
the results window. This is useful since it enables the
user to check the query that generated that response,
and because the response windows for several queries
may be present on the screen at the same time.

The results are presented in a table which is imple-
mented using the swing class JTable. This provides
a table with cells that can be selected, resized and
moved. The Java library swing uses the full MVC ar-
chitecture (as in Smalltalk). The JTable class acts as
view-controller of an instance of the class TableModel.
In order to override the behaviour of the default table,
the TableModel class has to be inherited and some
methods redefined. The class VectorTableModel is
an abstract class, the method submit has to be rede-
fined to access the database and get the result. Fig-
ure 4 shows the object hierarchy of the model. New
lines are added to the model with the method addRow
which has as parameter a vector of strings (one entry
per column). It sends the MVC event to the JTable
view.

An early version of the Virual Navigator used a
socket connection to access the database, but this has

now been replaced by a CORBA connection.
Communication with the server is done in the back-
ground, and the user can browse the data once the
first row has been retrieved. This is convenient for
large queries since the user can begin inspecting the
results before the query has run to completion.

6 Copy-and-drop facility

An important aim in designing the interface was
to enable the user to use the results on one query in
refining a follow-on query. The copy-and-drop facility
enables the user to select and copy values from the
results window and then drop these into the query
editor window. When this is done, the selected values
are merged automatically into the right place in the
original query to produce a more specialised query.

6.1 Operational description

Cells are selected by clicking on them with the left
mouse button. When a single cell is pasted, the pro-
gram simply adds a modifier to the query line that
has the function of the selected value. Figure 5 shows
original query, the selection of a single cell containing
human, and the modified query after pasting.

When the user selects multiple cells, the selection
must form a rectangular pattern. If a cell is selected
and the user drags the mouse, then a block of adja-
cent cells will be highlighted. Non-adjacent cells can
be selected by holding down the control key while se-
lecting cells with the mouse. The program will select
automatically any additional cells required to form a
rectangular pattern (Figure 6). The satisfying result
is that cells from the same row are connected with an
AND operator, and different rows are connected with
OR operators. Figure 7 shows the result of pasting
values from two columns into a query.

If attribute values for several different object in-
stances are selected from the response window, then
the corresponding tests are placed in the innermost
relevant loop of the query. While an experienced
Daplex programmer might normally place each closer
to the for each loop introducing its instance variable,
placing these in the innermost loop works just as well
and the database’s query optimiser will move the tests
automatically when the query is submitted, if this will
improve performance.

If the existing query contains a test, e.g.
sl=domain structure(i0), then the pasting the se-
lection shown in Figure 6 produces a query that is
interpreted as follows:

- i0 in ig_domain
Print{ subgroup(i0), source(il), endi{i0));

subgron. , .| source(i0) endfi0) |

kappa-VI mouse 109
IfA) RS E 115
kappa-V mouse 108
¥ mouse 125
lambda-T Memwan 113
IIr e 126
kappa-VI mouse 107

for each i0 in ig_domain such that source(il)="human"
Print({ 1

Figure 5: Copy-and-drop a single cell

- i0 in ig_domain
Print(subgroupi(i0), source(il), end(i0));

subgrou. . |l-t-(10ﬂ -E1Q1|

kappa-¥I

IfA) RsE 115
kappa-V RORSEe 108
¥ mouse 125
lawhda-I taman | 113
Irr fronan 126
Eappa-VI = mouse 197
IIEI(B) mouse | 118

kappa-¥ HOUSE 108

for =ach 10 in ig_domain such that source(id)="human" and end{i0)=113
or source{il)="mouse" and end{i0)=118

Print 1;

Figure 7: Copy-and-drop multiple cells

| name{10) subgrowp{il) rescioiion{sl)
FL kappa-V 2.8
L/ Irr 1.9
FL Tambda-T 19
174 ITI(B) 26
FL kappa-FI 2.6

Figure 6: Selecting non-adjacent cells. If the user se-
lects the cell containing VH and the cell containing 2.6
then the cells containing VL and 1.9 are selected au-
tomatically to complete a rectangular pattern.

for each i0 in ig_domain
for each sl in structure such that
sl=domain_structure(i0) and
(name (i0)="VH" AND resolution(s1)=1.9
or
name (i0)="VL" and resolution(s1)=2.6)

While pasting result values from the response win-
dow into the main query window is the principal use
for the copy-and-drop facility, it is also possible to
paste a single value into the expression editor. Thus
there is a button named paste for each expression
entry box (left part and right part of the expression,
Figure 2). When the user clicks on the paste button,
the value of the selection is copied to the entry box in
the expression editor.

6.2 Formal definition

In general, the generation of extra selection clauses
works as follows:

e If the selected items wvaluey,values,... are all in
one column referring to attribute a of the entity
instance e, then, on the line in the query iterating
over that entity instance we add a selection:
and (a(e) = value; or a(e) = values or ...).

o If the selected items are all in one row, referring
to attributes al(el), a2(el), a3(e2),... then, on
the most deeply nested line in the query iterating
over one of the listed entities el,e2, ..., we add a
selection:
and (al(el) = valuel and a2(el) = value2 and
a3(e2) = value3 and etc.)

e Otherwise the selected items may be in repeated
rows each referring to the same combination of
columns al(el), a2(e2), a3(e3), etc.. Here we add
a selection, again on the most deeply nested en-
tity instance:

and ((al(el) = waluel; and a2(e2) = wvalue2;
and a3(e3) = valued; and etc.)

or (al(el) = valuels and a2(e2) = value2s and
a3(e3) = value3s and etc.)

e Where the selection is the first on a given line,
the leading and is replaced by such that.

e Note that two attributes may refer to the same
instance of an entity type (e.g. al(el),a2(el)).
Also, two different entity variables (el,e3) may
refer to different instances of the same entity type,
as in a self-join.

Once the selections are in place they may be indi-
vidually highlighted and then edited by the expression
editor, or else deleted. One may of course repeat the
exercise after generating a new results window, and
thus add extra selections. However, one must beware
of over-complicating the query to a degree which the
user would find difficult to understand! Thus we only
generate a limited combination of conjunctions and
disjunctions, but we think these are the ones that are
most useful. If an experienced user wishes a more com-
plicated disjunction than is provided by the copy-and-
drop facility, then they could formulate this directly
by using the expression editor.

7 Conclusions

The graphical interface described in this paper en-
ables the user to construct queries against a functional
data model database. Complex queries are built incre-
mentally; the user does not have to foresee the final
query before starting to construct it. The user can
refine the query using intermediate values from the
results window. The Daplex query is generated auto-
matically, so the user does not have to remember the
query language syntax. The user can also undo choices
selectively, by deleting parts of the query. A full and
exact description of the query is displayed with the
results.

The Daplex language was developed in the 1970’s
for use with the Functional Data Model in the MULTI-
BASE project [14], and is being used in our cur-
rent work with the P/FDM database. The Object
Database Management Group (ODMG) are promot-
ing OQL as a standard query language for object-
oriented databases. We have implemented an OQL
code generator so that the P/FDM mediator can pro-
duce OQL code to be run against remote ODMG-
compliant databases. We have found it straight-

forward to map an existing schema, for a database on
protein-protein interactions onto the FDM, and have
then used the graphical interface described in this pa-
per to generate queries against that database.

This interface is a complete re-implementation in
Java 1.1 (with Swing classes) of an earlier Smalltalk
prototype [6]. In the process a lot of detailed improve-
mements were made, based on the experience of using
the earlier prototype with a class of students, and on
Ignacio Gil’'s own experience with it. In doing so, we
kept the basic concept of using a schema diagram and
the textual form of the query in combination. The
query is always syntactically well formed, and can only
be edited and revised in conjunction with the schema
diagram. Well formed sub-expressions involving com-
parisons can be edited using an expression editor with
menus. Whole expressions can be added or deleted.
Highlighting variables in the query causes correspond-
ing entities in the schema diagram to be highlighted,
together with paths to immediately related entities in
order to help with the choice of navigation path.

The important step forward has been to integrate
the results window with the query and schema. This
supports a natural process of alternately making the
queries more selective, based on displayed results, and
then extending the query to pick up related informa-
tion by navigation. In the course of doing this we
have found a very easily remembered way of express-
ing conjunctions and disjunctions, which is a novel
alternative to “pipe-flow”. The resultant query text
then serves to document the results. Thus we believe
that scientist end users can read the queries (includ-
ing “and” and “or” operations) as text but need help
with writing, which the interactive system provides.
Seeing the queries built up in stages with displayed
results strongly promotes understanding of the query
language.

We are working on further improvements before
making an end-user evaluation, but informal feed-
back from users has been encouraging. We also need
to tackle the problem of quantified sub-queries (e.g.
“some x such that ...”) and computation of aggre-
gates over sets specified by sub-queries. The challenge
is how to do this without presenting a naive user with
too many complex options before they need this func-
tionality.

We are currently using this interface to provide ac-
cess to data on antibody structures and sequences, and
we intend using it to express multi-database queries
against distributed biological databases through our
mediator, which is being developed with support from
the BBSRC/EPSRC Bioinformatics Programme.

Acknowledgements

This work is supported in part by a grant from the
BBSRC/EPSRC Joint Programme in Bioinformatics
(Grant Ref. 1/BIF06716). It builds on an earlier
Smalltalk Browser by Nicholas Cole [6] and an exten-
sion to this by Christian Bruder.

References

[1] J. Boyle, J. Fothergill, and P. Gray. Design of a
3D Interface to a Database. In J. Lee and G. Grin-
stein, editors, Database Issues for Data Visualiza-
tion, pages 173-183. Springer Verlag, 1993.

[2] J. Boyle, S. Leishman, and P. M. D. Gray. From
WIMP to 3D: the development of AMAZE. Jour-
nal of Visual Languages and Computing, 7:291—
319, 1996.

[3] T. Catarci, M. F. Costabile, S. Levialdi, and
C. Batini. Visual Query Systems for Databases:
A Survey. Journal of Visual Languages and Com-
puting, 8:215-260, 1997.

[4] R.G.G. Cattell, editor. The Object Database
Standard: ODMG 2.0. Morgan Kaufmann Pub-
lishers, 1997.

[5] M. Chavda and P. Wood. Towards an ODMG-
Compliant Visual Object Query Language. In
M. Jarke, K. R. Dittrich, F. H. Lochovsky,
P. Loucopoulos, and M. A. Jeusfeld, editors, Pro-
ceedings of the 238rd International Conferences on
Very Large databases, pages 456—465, 1997.

[6] N. Cole and P. M. D. Gray. Smalltalk Graph-
ics as a Visual Aid to acquiring Query Language
Skills over a Semantic Data Model. In Proceed-
ings 3rd International Workshop on Interfaces to
Databases, 1996.

[7] D. K. Doan, N. W. Paton, A. C. Kilgour, and
G. al Qaimari. Multi-paradigm query interface
to an object-oriented database. Interacting with
Computers, 7:25-47, 1995.

[8] P. M. D. Gray, K. G. Kulkarni, and N. W. Pa-
ton. Object-Oriented Databases: a Semantic Data
Model Approach. Prentice Hall Series in Com-
puter Science. Prentice Hall International Ltd.,
1992.

[9]

[11]

[13]

[16]

[18]

S. Greene, S. Devlin, P. Cannata, and L. Gomez.
Mo IFs, ANDs, or ORs: A Study of Database
Querying. International Journal of Man-Machine
Studies, 33:303-326, 1990.

G. J. L. Kemp, J. J. Iriarte, and P. M. D. Gray.
Efficient Access to FDM Objects Stored in a Re-
lational Database. In D.S. Bowers, editor, Di-
rections in Databases: Proceedings of the Twelfth
British National Conference on Databases (BN-
COD 12), pages 170-186. Springer-Verlag, 1994.

G. J. L. Kemp, Z. Jiao, P.M.D. Gray, and
J.E. Fothergill. Combining Computation with
Database Access in Biomolecular Computing. In
W. Litwin and T. Risch, editors, Applications
of Databases: Proceedings of the First Inter-
national Conference, pages 317-335. Springer-
Verlag, 1994.

G. J. L. Kemp, C. J. Robertson, and P. M. D.
Gray. Efficient access to biological databases
using CORBA. CCP11 Newsletter, 3(1), 1999.

http://www.hgmp.mrc.ac.uk/CCP11/newsletter/vol3_1/.

E. Keramopoulos, P. Pouyioutas, and C. Sadler.
GOQL, a Graphical Query Language for Object-
Oriented Database Systems. In Basque Inter-
national Workshop on Information Technology,
pages 35—45, 1997.

T. Landers and R. L. Rosenberg. An Overview of
MULTIBASE. In H.-J. Schneider, editor, Dis-
tributed Data Bases. North-Holland Publishing
Company, 1982.

A. Michard. Graphical Presentation of Boolean
Expressions in a Database Query Language: De-
sign Notes and an Ergonomic Evaluation. Be-
haviour and Information Technology, 1:279-288,
1982.

N. Murray, N. Paton, and C. Goble. Kalei-
doquery: A Visual Query Language for Object
Databases. In Proceedings of Advanced Visual In-
terfaces, pages 25-27, I’ Aquila, Ttaly, May 1998.

A. Papantonakis and P. J. H. King. Syntax and
Semantics of Gql, a Graphical Query Language.
Journal of Visual Languages and Computing, 6:3—
25, 1995.

D. W. Shipman. The Functional Data Model and
the Data Language DAPLEX. ACM Transac-
tions on Database Systems, 6(1):140-173, 1981.

