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Abstract

Transforming queries for efficient execution is par-
ticularly important in federated database systems since
a more efficient execution plan can require many fewer
data requests to be sent to the component databases.
Also, it is important to do as much as possible of
the selection and processing close to where the data
are stored, making best use of facilities provided by
the federation’s component database management sys-
tems. In this paper we address the problem of pro-
cessing complex queries including quantifiers, which
have to be executed against different databases in an
expanding heterogeneous federation. This is done
by transforming queries within a mediator for global
query improvement, and within wrappers to make best
use of the query processing capabilities of external
databases. Our approach is based on pattern matching
and query rewriting. We introduce a high level lan-
guage for expressing rewrite rules declaratively, and
demonstrate the use and flexibility of such rules in
improving query performance for existentiolly quan-
tified subqueries. Extensions to this language that al-
low generic rewrite rules to be expressed are also pre-
sented. The value of performing final transformations
within a wrapper for a given remote database is shown
in several examples that use AMOS II — an SQL3-like
system.

1 Introduction

The importance of wide-area querying is increas-
ing, as systems need to bring data together from var-
ious sites distributed over the Internet. Where the
sites concerned hold large amounts of engineering or
scientific data, there is often an underlying database
at the site, with its own storage structure and query
language. We are developing a federated architecture
with a mediator to integrate access to heterogeneous,

distributed biological databases [14, 15]. The role of
the mediator in this architecture is to receive queries
expressed against an integration schema, to rewrite
and split these queries into subqueries that refer to the
external schemas of distributed databases, to coordi-
nate calls to the external databases, and to combine
the results retrieved. Calls to the federation’s compo-
nent database management systems are made through
wrappers that translate subqueries into the query lan-
guage used by the external databases, and process the
data values retrieved.

With distributed queries, it is important to do as
much as possible of the selection and processing close
to where the data are stored, using facilities provided
by the federation’s component database management
systems. To enable this, the subqueries sent to the
remote DBMS should contain as much selection in-
formation as possible so that the remote DBMS can
make best use of its own indexes and optimisation
techniques. Also, it is sometimes possible to rewrite
the original query in a way that significantly reduces
the number of calls that need to be made to remote
database.

In this paper, we are interested in the problem
of processing complex queries including quantifiers
(some, all) which have to be executed against dif-
ferent databases. This is an important issue because
such queries often involve a lot of iteration, result-
ing in inefficient execution plans that require many
“penny packet” data requests to be sent to the com-
ponent databases. Therefore, we are investigating how
to transform these queries for efficient execution in a
growing network of sites accessed through a mediator.
These transformations are done at two levels. First,
the mediator uses rewrite rules to recognise structural
patterns in the entire query that can be replaced with
equivalent expressions that require fewer database ac-
cesses. Second, after global improvement have been
made to the query and it has been split into subqueries
destined for remote sites, the wrappers apply further



rewrite rules that are based on classical equivalences
to convert a subquery into an alternative form. Local
optimisers are often very poor at this for quantified
queries, and just use the structure of the query as
given. Thus, our mediator architecture incorporates
rewrite rules to recognise particular logical structures
in the query and casts them in a form that suits the
strategy of the remote optimiser.

The existing papers on optimising and evaluating
queries with quantified expressions date mostly from
the early 80’s and assume relational storage on a single
processor. A recent paper [2] deals with a semantic
data model like FDM, but again the context is fast
execution on a single processor or high performance
parallel processor. Instead, we focus on adapting the
early techniques for reuse in distributed object-based
systems, which may include a mix of platforms.

In the next section, we give an overview of the steps
involved in processing distributed database queries us-
ing our P/FDM mediator. In section 3 we introduce
a high level language for expressing rewrite rules and
demonstrate the use of such rules in improving queries
with existentially quantified subqueries. In section 4
we describe how further transformations can be per-
formed in wrappers to improve the efficiency of queries
sent to component databases in a federated system.
In section 4.1 we discuss the situation where a com-
ponent database is itself another P/FDM system [8].
In section 4.2 we show how quantified subqueries in
the query fragment destined for execution on a remote
AMOS II system [23] can be transformed by the wrap-
per so that the code generated makes best use of this
SQL3-like system. Finally, we discuss the alternative
ways of transforming quantified subqueries described
in this paper, compare these with other work and dis-
cuss the performance gained by rewriting queries as
proposed.

2 Processing distributed database

queries

We have been experimenting with a system based
on Shipman’s original high level functional data model
(FDM) [24], for distributed heterogeneous databases
that are loosely coupled. Queries expressed against
this model in the Daplex language (like OQL, but
more declarative) are translated to use the query lan-
guages on the remote sites. To illustrate the kind of
quantified subqueries that are addressed in this paper,
Figure 1 shows a simple Daplex query that contains a
quantified subquery.

Daplex:

for each u in undergrad such that
some c in takes(u) has level(c) > 3
print (name(u));

ZF-expression:

{ name(u) | u <- undergrad;
Exists { ¢ | c <- takes(u);
level(c) > 3 } }

AMOSQL:

SELECT name (u)
FROM undergrad u
WHERE some(
SELECT c
FROM course c
WHERE c¢ = takes(u)
AND level(c) > 3
);

Figure 1: This Daplex query returns the name of all
undergrads taking at least one course with level above
3. The quantified expression is quantifying the set
of all the courses taken by a certain undergrad. If
at least one of these courses has a level higher than
3 the result of the existentially quantified expression
is true, otherwise it is false, determining whether the
name of the undergrad should be returned or not. The
corresponding ZF-expression and AMOSQL code are
shown.

2.1 ZF-expressions

Daplex queries are normally processed in P/FDM
by first being compiled into an internal Intermediate
Code (“ICode”) [6]. The formal basis for ICode is
ZF-expressions® (also called “list comprehensions”).

A ZF-expression, as shown in Figure 1, consists of
a pattern of variables, a list of one or more genera-
tors that produce values for the variables and a num-
ber of restrictions on those values. The Ezists quanti-
fier succeeds if the following ZF expression returns a
non-empty set. A generator is specified as <var> <-
<set> while a restriction is any boolean expression.
This makes ZF-expressions very suitable for represent-
ing database queries, which are basically descriptions
of sets of values.

1Zermelo-Fraenkel set expressions, a name taken from the
Miranda Functional language [26, 20].



The syntax of the ICode format is very similar to
that of ZF-expressions. ICode provides several differ-
ent generator constructs and a range of possible pred-
icate constructs for the restrictions [3]. These can be
combined arbitrarily and without particular order as
long as each variable has a generator.

In a simple situation where all data are in a single
database, a single code generator is used to transform
the ICode into executable code. If the data are spread
across different databases in the federation then the
P/FDM mediator must split the ICode into fragments,
and each fragment is translated into code that can be
executed by a particular component database.

2.2 Compiling Daplex queries

Before looking in detail at how the P/FDM me-
diator improves queries that contain quantified sub-
queries (sections 3 and 4) we present here an overview
of how queries are processed by the system [15].

The P/FDM mediator has several modular compo-
nents. First, a parser converts the query into ICode.
Then the four modules described below are used to im-
prove the original ICode. Each of these modules takes
ICode as its input and produces ICode as its output.

e The simplifier’s role is to produce shorter, more
elegant, and more consistent ICode, mainly
through removing redundant variables and ex-
pressions (e.g. if the ICode contains an expression
equating two variables, then that expression can
be eliminated, provided that all references to one
variable are replaced by references to the other),
and flattening out nested expressions where this
doesn’t change the meaning of the query.

e The rule-based rewriter matches expressions in
the query with patterns present on the left-hand
side of rewrite rules, and replaces these with the
right-hand side of the rewrite rule, after making
appropriate variable substitutions. Examples of
this are shown in Section 3.

e The optimiser [11, 12] performs generic query op-
timisations.

e The reordering module reorders expressions in the
ICode to ensure that all variable dependencies are
observed.

Typically, queries are improved by first invoking
the simplifier, and then the rewriter to perform se-
mantic optimisations. Simplifying the original ICode
prior to rewriting makes the rewriter’s task easier.

The amount of pattern matching code needed in the
rewriter to detect whether any subset of expressions
indeed matches the left-hand side of a rewrite rule is
much less, and the task of matching is more efficient.
After all user-defined rewrites have been applied to
perform semantic optimisation, the resulting ICode is
passed to the optimiser so that generic optimisations
can be applied, and alternative execution paths can
be costed. The ICode produced by the optimiser is
passed once more to the simplifier to streamline the
ICode before this is passed to the reordering module.

3 Rewrite rules for transforming quan-
tified subqueries

3.1 Rewrite rule syntax in P/FDM

Our rewrite rules are expressed in a syntax which
is designed to be easier to read and maintain than the
Prolog that underpins it. We have also used this sys-
tem to rewrite constraints, which have a very similar
syntax [6]. To introduce this syntax, we shall first
consider a transformation that is described by Jiao
[11, 12]. Jiao did some optimisation work regarding
existentially quantified expressions in P/FDM. That
work focussed on semantic query optimisation and on
rewrites using key values of entity classes.

Example 1

for each u in undergrad such that
some cl in takes(u) has code(cl) = ’C_331’
print (forename (u) , surname(u));

Based on a schema declaration that code(X) is the
uniquely valued key used to identify courses and thus that
there can be at most one such course that is taken, we can
rewrite this to work more efficiently as:

for the u in takes_inv(the c2 in course such that
code(c2) = °C_331°)
print (forename (u), surname(u));

The improved speed comes from re-ordering the query
so that it can use an index on code for direct access fol-
lowed by a system-maintained inverse of the takes func-
tion, instead of by iteration. This example shows how we
are able to use the principle of referential transparency to
replace one expression by an equivalent one.

This particular transformation can be expressed di-
rectly as a rewrite rule:

with common
s in string
rewrite
u in undergrad such that



some cl in takes(u) has code(cl) = s
into
takes_inv(the c2 in course such that
code(c2) = s);

This rule is compiled into two ICode expressions
with certain parameters in common:

u <- undergrad;
Exists{cl | cl1 <- takes(u); code(cl) = s}

u <- takes_inv({c2 | c2 <- course;
code(c2) = s})

There may be one or more common variables which
stand for common expressions denoting atomic values
(strings, integers, reals, booleans(predicate values)) or
entity values (object identifiers). Note that variable
names chosen (u, c1, etc.) have no significance.

Rewrite rules are stored internally in P/FDM as
Prolog term structures. Rewriting is done by pattern
matching to find whether the left hand side of any
rewrite rule is present as a sub-expression. If a match
is found, the sub-expression is replaced by the right
hand side of the rewrite rule with appropriate variable
substitutions. This process is repeated until no more
rewrites can be done, and assumes stratified rules as
in most such systems.

Note that the rules are Horn-Clause rules based on
unification and substitution, working top-down, rather
than the bottom-up rules, as used for example in [22]
which have right-hand side actions that change the
state of various flags. The Horn Clause rules are
thus much easier to maintain because they depend on
equivalences rather than on side-effects.

The Prolog implementation of this rewrite [12]
matches a wider variety of expressions. However, our
rule syntax is easier to read and, as we show in sec-
tion 3.3, recent extensions to the Daplex compiler en-
able generic rewrites to be expressed declaratively us-
ing this syntax.

3.2 Rewrites for distributed queries

Another important consideration is to adapt the
rewrite rules for the case of distributed databases
when the queries are split and sent to several data
sources. Thus, we wish to transform quantified queries
so that we can split the work up sensibly between two
sites and not send many penny packet queries that at-
tract a relatively large communications overhead.

Consider the following example, where pred(c1) is
a boolean function involving only c1:

for each u in undergrad such that
some cl in course such that
pred(cl) has level(cl) = year(u)
print (forename(u) , surname(u));

Suppose that the information on course is main-
tained on the remote database at site 2, while infor-
mation on undergrad is held at site 1. The straight-
forward way to execute it is to iterate over undergrads
on one site and send across one at a time to be used
to execute the inner loop (possibly with recompilation
as for AMOS II, see section 4.2). However we can
rewrite it to generate an inner query whose results are
calculated once only and then sent back to the first
site thus:

Example 2

with common u in undergrad
rewrite
some cl in course such that pred(cl)
has level(cl) = year(u)
into
year(u) in level(c2 in course such that
pred(c2));

Note that the rewritten expression denotes a predi-
cate value and that the common expression denotes an
undergrad entity. Effectively this produces a query exe-
cuted once only on site 2:

print (level(cl in course such that pred(cl)))

with result e.g. {1,4} this result is then incorporated into
the follow-on query on site 1:

for each ul in undergrad such that
year(ul) in {1,4}
print (forename(u), surname(u));

This follow-on query does not have the overheads of
executing an inner loop on another machine across the
network. Further, this technique extends recursively
to more than two sites.

3.3 Generic rewrites on quantified ex-
pressions

The rewrite rules shown in earlier sections have the
limitation that their applicability is restricted to the
specific classes and functions mentioned in the rule.
Many optimisations are more generic, and it would
be tedious to have to define a new rewrite rule for
all appropriate combinations of classes and functions.
Therefore, we have extended the Daplex compiler to
accept rewrite rules that are effectively higher order,
allowing variables to denote function or class names



(these variables are recognised by a capital initial let-
ter, or an underscore at the start of the variable name).
Using this extension, we can express generic rewrite
rules, e.g.

rewrite
Ul in ClassU such that
some C in Rel(U1) has Prop(C) > Val
and ( some U2 in Rel2(C) has
Prop2(U2) < Val2 )
into
Ul in ClassU such that
some C in Rel(U1) has Prop(C) > Val
and Prop2(Rel2(C)) < Val2;

This rule can be compiled into an ICode pattern
containing Prolog variables, and this pattern will unify
with the ICode representation of queries to which the
rewrite rule can be applied. It is important to note
that the queries that will be pattern matched are
themselves well-formed and have been type checked
before any rewrite rules are applied.

We are able to express instances of rewrite rules
originally noted by Jarke and Koch [10], who used
them in an efficient algorithm to process sets of rela-
tional tuples, by evaluating nested quantified expres-
sions a block at a time on one processor.

One of these rules uses an inequality comparison,
which means that the inner query need only return a
single value. In P/FDM form this becomes:

rewrite
El1 in Classl such that
all E2 in Class2 such that
Pred(E2) have Funl1(E1) > Fun2(E2)
into
El1 in Classl such that
Funl1(E1) > maximum(Fun2(E2 in Class2
such that Pred(E2)));

Similar rules can be written either by using >= ev-
erywhere in place of >, or else by using < everywhere
in place of > and replacing maximum by minimum, and
similarly for =<.

We have also introduced a where-clause to state
conditions that must hold before the rule can be ap-
plied, e.g.

where
function KeyFn is the key function
of class Class and
function Rellnv is the inverse
of function Rel
rewrite

Instance in Class such that
some X in Rel(Instance)
has KeyFn(X) = KeyValue
into
RelInv( the X in RelClass such that
KeyFn(X) = KeyValue )

This is a generic version of the rewrite rule pre-
sented in section 3.1. We do not use a “with common”
clause to introduce KeyValue since we do not want to
put a restriction on its type. The statements in the
where-clause are translated into Prolog goals that ex-
amine the mediator’s metadata before the rewrite rule
is applied.

Currently, generic rewrites can include variables
representing class names, function names, instance
variables, and values. We aim to extend this so that
rewrite rules can include variables that represent ar-
bitrary ICode expressions and predicates. At present,
such arbitrary rewrites must be coded directly in Pro-
log, as described in section 4.3.

3.4 Combination of rewrites

We can use the generic rules that flatten nested
quantifiers in combination with other domain spe-
cific rules, such as those that use indexes. For ex-
ample, in our database of antibody proteins [13] we
model the sequence of amino-acid residues forming
a protein chain in several ways. Thus we can find
a residue at a given position in any chain either (i)
by iterating over residues in each chain and check-
ing pos(zr) = N, or (ii) by looking for a residue by
name via a function acting as a secondary index r =
res_by name(chain, ’CYS’),or (iii) by a function giv-
ing direct access to any residue in position N of a chain
by r=absolutepos(chain,N). Rewrite rules are used
to replace iteration over residues by direct access thus:
Example 3

with common i in integer
7 in residue such that pos(r) =1
into absolutepos(chain,i);

rewrite

We can then transform the following nested query:

for each ¢ in structural_cdr such that
name (c) = "L1"
and some 7 in residue has
name(r) = "CYS"
and c in structural_cdr_domain_inv(
ig_domain_chain_inv(
residue_chain(r)))
and pos(r) = start(c)
print (protein_code(domain_structure(
structural_cdr_domain(c))));



as if it was written:

for each ¢ in structural_cdr such that
name (c) = "L1"
and some 7 in absolutepos(chain,start(c)) has
name(r) = "CYS"
and ¢ in structural_cdr_domain_inv(
ig_domain_chain_inv(
residue_chain(r)))
print (protein_code(domain_structure(
structural_cdr_domain(c))));

If instead of the test pos(r) = start(c) we have
pos(r) in {start(c) to end(c)}

then we could use the following rule to eliminate the exis-
tential quantifier:

with common

r in residue, st in integer, fin in integer
rewrite

some i in {st to fin} has pos(r) = i
into

pos(r) >= st and pos(r) =< fin

4 Transforming quantified subqueries
in wrappers

We have been testing our strategy in a fed-
erated database system, coupling P/FDM [§] to
other databases as external data sources, including
AMOS 1II [23]. This enables us to gain experience
with SQL3 for an object-relational database. Here
our middleware component rewrites the queries to se-
mantically equivalent forms that suit the strategy of
the remote optimiser. This is done in various ways,
including flattening and reordering.

4.1 Quantified expressions in P/FDM

Where a ZF expression resulting from the dis-
tributed execution strategy is to be sent to a remote
P/FDM database, it can be sent either as ICode, or
else as generated Daplex, which is exactly equivalent.
The runtime system of a P/FDM database is imple-
mented mainly in compiled Prolog, with call-outs to
C to access local storage modules. The ICode is also
compiled directly to Prolog. This is mainly for ease
and generality of combining different pieces of gener-
ated code with stored procedures, and the convenience
of the well-known pattern matching and unification
features of Prolog [9, 20].

Unlike the compiler of AMOS II described be-
low, the P/FDM compiler recurses through subqueries
making a complete Prolog program of the Daplex
query, and does not recall the compiler at runtime.
Thus it commits itself to an execution plan based on
estimates of class sizes and other statistics known at
compile time. It evaluates the Exists construct in the
ZF expression by means of a Prolog predicate atleast
that simply keeps track of how many times the sub-
program has succeeded and exits as soon as possible
from lazy evaluation of a list of values. Thus flatten-
ing a number of nested atleast constructs will have
very little effect on execution times.

4.2 Rewrite rules for AMOS II genera-
tion

When AMOS 1II is an external data source in
the federation, ZF-expressions will be translated to
AMOSQL, the language of AMOS II. The semantics
of quantified expressions are equivalent in the two
systems and the translation from ZF-expressions to
AMOSQL is largely very straightforward. The main
difference [25] lies in that AMOS II supports multi-
ple inheritance, which can only be approximated in
Daplex. A similar difference, of course, exists be-
tween C++ and Java. Daplex does allow an object
to be an instance of more than one supertype, but re-
quires the choice of supertype in a specific query to
be made in the query by means of a cast operation
(thus the required method definition can be bound
at compile time). Daplex also supports a number of
arithmetic functions, and a constructor for lists of con-
stants. If these rather unusual constructs are avoided,
then queries are easily translated, as our implementa-
tion shows.

When AMOS II executes a generated query it starts
by compiling it, producing a query plan in a form of
set expressions similar to ZF-expressions. However,
the compiler does not traverse subqueries during this
compilation phase.

This means that after the compilation phase, dur-
ing the evaluation of the global query, the compiler
will be called to compile the inner quantified query
for each member retrieved from iteration over outer
sets. This means a large overhead in execution time,
making it very important to minimise the nesting of
quantified expressions so as to reduce calls on the com-
piler during execution. We can do this conveniently
by incorporating a final phase of rewriting that is tar-
get specific, as part of the mediator. This architecture
conveniently accommodates known restrictions on re-
mote DBMS optimisers, which may be given expres-



sions they are not used to! Such expressions are a
common side-effect of query transformation and map-
ping between heterogeneous systems. Thus the extra
rewriting phase is very important in practical applica-
tions.

4.3 Unnesting nested quantified expres-
sions

Fortunately, nested existentially quantified expres-
sions can be unnested without altering the semantics.
Thus we start with a ZF expression containing nested
quantifiers such as:

Example 4 This returns the name of all the undergrads
taking at least one course with level above 3 having at least
one enrolled undergrad of age below 19.

{name (ul) | ul <- undergrad;
Exists {c | ¢ <- takes(ul); level(c) > 3;
Exists {u2 | u2 <- enrolled(c);
age(u2) < 19} } }

The expression translates straightforwardly into nested
AMOSQL thus:

SELECT name (ul)
FROM  undergrad ul
WHERE some(
SELECT c
FROM course c
WHERE c = takes(ul)
AND level(c) > 3
AND some (
SELECT u2
FROM  undergrad u2
WHERE u2 = enrolled(c)
AND age(u2) < 19
)
);

However, the ZF expression form makes it easy to spot
and remove a level of nesting thus:

{name (ul) | ul <- undergrad;
Exists {c | c <- takes(ul);
level(c) > 3;
u2 <- enrolled(c);
age(u2) < 19} }

Here we make use of the fact that extra variables in-
troduced by a generator in the body of a ZF expression
are effectively existentially quantified, since if the genera-
tor produces no values or they are all filtered out by the
following predicate, then the whole expression evaluates to
an empty set. We can formalise this by a rewrite rule as
follows:

Exists{x | x <- generator; P(x);
Exists{y | y <- h(x); Q(x,p}} =
Exists{x | x <- generator; P(x);

y <- h(x); Q(x,y)}

Here P and Q) represent any boolean expression which
involve x (or y). These rules are currently implemented
directly in Prolog [25], since this has an ability to pattern-
match such expressions in ICode, which is more general
than that provided in our rewrite rule language described
earlier.

The rewritten, semantically equivalent, AMOSQL
query is:

SELECT name (ul)
FROM undergrad ul
WHERE some(
SELECT ¢
FROM course c, undergrad u2
WHERE c¢ = takes(ul)
AND level(c) > 3
AND u2 = enrolled(c)
AND age(u2) < 19
);

The real gain in execution time is due to the fact
that the number of subqueries that must be evalu-
ated is reduced. In the nested original query there
will be O(card(undergrad) - card(course)) subquery
evaluations. Applying the same kind of reasoning on
the rewritten query yields card(undergrad) subquery
evaluations, which means a reduction from quadratic
to linear time.

Note that we depend on the AMOSQL optimiser to
use the join predicates and selections concealed within
P and @ to avoid a simplistic iteration over the Carte-
sian product of x(course) and y(undergrad), otherwise
the rule could actually worsen performance for a very
selective P. This shows the importance of knowledge
about the remote query evaluation.

5 Related work

Related work in the bioinformatics field includes the
TAMBIS system [21], which writes query plans in CPL
(the Collection Programming Language) [1]. CPL is
a comprehension based language in which the gener-
ators are calls to library functions that request data
from specific databases according to specific criteria.
Plans in TAMBIS are based on following a classifica-
tion hierarchy, whereas our plans are oriented towerds
ad hoc SQL3-like queries. However, the overall ap-
proach is similar in using a high level intermediate
code translated through wrappers.



The Kleisli system [27] is a sophisticated system
for querying and data integration over heterogeneous
databases, with impressive applications in bioinfor-
matics. It also uses the CPL comprehension language.
It has recently been rewritten in standard ML, a func-
tional language, and so uses functions to implement
rewrite rules in the optimiser. These functions are
currently built into the optimiser but are extensible
by the implementors. They work directly on their in-
ternal monad composition form of queries, which plays
a similar role to our ICode. By contrast our rule syn-
tax endeavours to make rules both writeable and read-
able by end users (domain specialists), hiding the com-
plexity of ICode. Our rules work within a unification
paradigm, whereas theirs can be executed under var-
ious alternative control regimes. Their rules do have
the advantage of being more generic than ours, but
pay a price in readability, as discussed later.

They also use rewrite rules to generate SQL code,
including joins and selections to be executed remotely,
by successive transformations on a null SQL query.
However, they do not give any rules for improving ex-
istential queries. Currently we generate a rewritten
ICode query which is then translated directly into the
target language inside a wrapper. Since some of our
rules are specific to particular wrappers, correspond-
ing to their ones customised to SQL, the approaches
are effectively similar; only a closer comparison can
tell which is more easily maintainable.

Methods to optimise the query processing of nested
queries in relational databases, including queries with
an existentially quantified subquery, have been thor-
oughly investigated. Kim suggested an unnesting
method in 1982 [16]. Strictly speaking, this method
dealt with nested queries in general and not specif-
ically with quantified expressions. It was later im-
proved by Ganski and Wong [5], who also showed how
to rewrite some expressions for evaluation using aggre-
gation functions such as the COUNT operator. Further
improvements came from Muralikrishna [19] and Frey-
tag [4].

In 1983, Jarke and Koch [10] described a set of
transformations based on logical identities to evalu-
ate quantified expressions more efficiently in limited
memory. Although their work concentrated on an
algorithm for efficiently evaluating nested quantified
queries by successive operations on an intermediate
relation, their mathematical transformations are use-
ful nowadays in a distributed setting, as explained in
section 3.3.

The 1997 paper by Claulen et al. [2] is most closely
related to our work. It states “Our discussion fo-

cuses on modern data models which use set-valued
attributes to represent M:N-relationships — such as
in the object-oriented model or the object relational
model. In such o data model queries with universal
quantification can usually be formulated in a much
more natural way than in a flat relational model.”
These remarks also apply to the FDM, since it is a
modern semantic data model based on entities with
subtypes, much like objects with inheritance. The ex-
amples in this paper use a Daplex syntax adapted from
Shipman’s original and bear out the readability of
quantified queries expressed with set-valued attributes
as functions. We should also remember that Dayal’s
original optimisation work was done with heteroge-
neous distributed databases on the Multibase project
for which the FDM was designed.

Universally quantified expressions

The expressions that Claulen et al. [2] concentrate
on closely resemble the perfect nested expressions of
[10], but they restrict themselves to universal quanti-
fiers as in

{e1 ] (Ve2)p(e2) = g(el,e2)}
{el| (Ve2)p(el,e2) = g(el,e2)}

They were able to show how to evaluate them ef-
ficiently for large relations by using alternative tech-
niques including aggregation operations (as mentioned
above), division and anti-semijoin. This would com-
plement our approach, which is to use rewrite rules
to adapt queries into a form where efficient processing
techniques at a remote site can be brought to bear.

In this paper we have concentrated on existentially
quantified expressions. However, many of the results
can be adapted to use all or any quantifiers, simply by
negating the Exists quantifier in ZF expressions.

~ Exists{c | ¢ + gen(u);~ pred(c)} =

(Ve)(c « gen(u)) = pred(c)

The pragmatic difference is that Erists may suc-
ceed quite quickly with only partial evaluation of the
set expression (especially in Prolog), but looking for
the absence of a counterexample will usually need ex-
haustive enumeration. Nevertheless, the principle of
sending whole expressions for remote evaluation and
avoiding penny packet evaluation continues to be im-
portant, and it can be extended to universal as well as
existential queries by this technique.



6 Conclusions

We have discussed the role of rewrite rules in trans-
forming quantified queries for execution on heteroge-
neous databases. We advocate the use of an object-
oriented data model with a high level language includ-
ing quantifiers that does not tie us either to relational
or object storage. This was indeed the motivation
of the original Multibase project [18], which was way
ahead of its time.

Given such a model, in which we can express queries
in a referentially transparent way, we can then apply
sets of rewrite rules that adapt the query to the char-
acteristics of the remote database. These rules depend
on substitution of equivalent expressions and unifica-
tion of variables, and do not involve bottom-up pro-
duction rules with side-effects. Thus we believe this
approach to be extensible and scaleable, and we are
testing it in a mediator in use for a bioinformatics ap-
plication, which has so far worked with simpler queries
[15].

We have shown how the rewrite rules provide a
great deal of flexibility. They can implement the log-
ical rules given by Jarke and Koch [10]. They can
implement many forms of rewrites based on data se-
mantics as in King [17]. They can spot opportuni-
ties to replace iteration by indexed search, possibly
of a materialised view. They can implement flatten-
ing and unnesting transformations that save wasting
time compiling subqueries in AMOSQL. We believe
they can be similarly adapted to features of other
DBMS. Most importantly, we can perform rewrites
that change the relative workload between two proces-
sors in a distributed query. Finally, we can combine all
these rewrites, since some of them will enable others
to take place. Thus we can deal with many combina-
tions without having to foresee them and code them
individually.

We have introduced a simple but powerful rewrite
language that includes FOL quantifiers and allows a
very general form of parametrisation, which suits uni-
fication in Prolog. There is, admittedly, a trade-off
between readability and degree of abstract parametri-
sation. Rules that refer to very domain-specific sit-
uations involving specific named attributes are much
easier to read and understand, which is what we want.
One way to extend this could be to include carefully
formatted specific instances of abstract rules as com-
ments, for ease of understanding. Another problem
is that users could make rules more general than in-
tended by not putting enough checks in the where-
clause of a rule. This is a direction for future work
involving cross-checks with metadata.

We have concentrated on quantified queries because
they usually involve a lot of iteration, possibly on a re-
mote database. Rewrite rules enable us to spot cases
where the iteration can be all be done on one database,
or replaced by faster indexed searches, with greatly
improved performance. They also allow us to have
rewrites in more than one phase, with a final phase
for rules specific to a target DBMS. This leads us to
a uniform optimisation framework within which we
can cope with an expanding network of remote data
sources with different characteristics. This is essen-
tial in an Internet environment, where data sources
continue to appear, using different data management
systems [7].
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