
Pathway and Protein Interaction Data:

from XML to FDM Database

Graham J.L. Kemp and Selpi

Department of Computing Science, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

Abstract. This paper describes our experience with the first steps to-
wards integrating pathway and protein interaction data with other data
sets within the framework of a federated database system based on the
functional data model. We have made use of DTD and XML files pro-
duced by the BIND project. The DTD provides a specification for infor-
mation about biomolecular interactions, complexes and pathways, and
can be translated semi-automatically to a database schema. The load
utility uses metadata derived from this schema to help identify data
items of interest when recursively traversing a Prolog tree structure rep-
resenting the XML data. We also show how derived functions can be
used to make explicit those relationships that are present in data sets
but which are not fully described in DTD files.

1 Introduction

In recent years there has been a rapid expansion in the quantity and variety
of biological data available to researchers. These include data on protein and
genome sequences and structure, gene and protein expression, molecular inter-
actions and biological pathways. Scientists’ ability to use these data resources
effectively to explore hypotheses in silico is enhanced if it is easy to ask precise
and complex questions that span across several different kinds of data resources
in order to find the answer. In our earlier work we have built a federated system
in which queries requiring data values from distributed heterogeneous data re-
sources are processed by a prototype program called the P/FDM Mediator [8],
which is based on the P/FDM object database system [6]. Tasks performed by
the P/FDM Mediator include determining which external databases are relevant
in answering users’ queries, dividing queries into parts that will be sent to differ-
ent external databases, translating these subqueries into the language(s) of the
external databases, and combining the results for presentation.

A first step in adding a new data resource to our federation is to describe
the contents of the new data resource using the functional data model (FDM)
[10], which is an example of a semantic data model. Data resources including
SRS [5] and ACEDB [4] have been mapped in this way in earlier work. Once
this has been done code generators within the P/FDM mediator can produce
ad hoc queries in the query language used by these systems and these can be
dispatched to the remote systems for execution.

E. Rahm (Ed.): DILS 2004, LNBI 2994, pp. 212–219, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.2     Für schnelle Web-Anzeige optimieren: Ja     Piktogramme einbetten: Ja     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 600 600 ] dpi     Papierformat: [ 595 842 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 600 dpi     Downsampling für Bilder über: 900 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Bitanzahl pro Pixel: Wie Original Bit     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Untergruppen bilden unter: 100 %     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren     Methode: StandardArbeitsbereiche:     Graustufen ICC-Profil:      RGB ICC-Profil: sRGB IEC61966-2.1     CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Nein     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Nein     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Nein     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein     EPS-Info von DSC beibehalten: Nein     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: NeinANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 600 600 ]>> setpagedevice



Pathway and Protein Interaction Data: from XML to FDM Database 213

Since there wasn’t an existing pathway resource to which ad hoc queries
could be submitted we undertook to load data from XML files provided by
another project into a database management system which could ultimately
be used as a data resource within a federated system. We decided to use the
P/FDM database for storing pathway and interaction data in preference to a
database based on the relational model. This was because the XML files are “non-
relational”, for example these may contain examples of multi-valued attributes
and relationships which can be modelled directly using the FDM, but which
require a more complex mapping if using the relational model. Further, given
the graph structure of interaction networks and the hierarchical part-subpart
structure of biomolecular complexes we anticipated being able to benefit from
the ability to express recursive queries in Daplex, the FDM’s data definition
language and query language, against these naturally recursive structures in the
data.

In Section 2 we briefly describe some of the candidate pathway data resources
that we considered using in this work, and the reasons why BIND was selected.
We describe how we generated a functional data model schema from BIND’s
DTD and how XML files containing pathways, interactions and biomolecular
complexes were loaded into the P/FDM database management system in Section
3. In Section 4 we show how the resulting database is queried. Finally, we reflect
on our experience in this project, and the lessons that can be learned in designing
a data exchange format for pathway and interaction data.

2 Biological Pathway and Interaction Data Sources

Several data resources with information on biological pathways and interac-
tions are under development. These include BIND [2], KEGG [7], MIPS [9]
and BioPAX1. These differ in the quantity and variety of data available, the file
formats used for data distribution, the design of their metadata, and their state
of development.

The BIND project [2, 1] has produced a data specification for information
about biomolecular interactions, complexes and pathways. This specification was
initially defined in ASN.1 [3]. However, tools provided by NCBI have been used
to transform this description into an XML DTD2. Similarly, data files conforming
to the ASN.1 specification have been transformed systematically into XML. Both
ASN.1 and XML versions of data files are available from the BIND web site.

KEGG [7] is another biochemical pathway resource. Data from this project
are available in KGML (KEGG Markup Language) format and, recently, in
XML. However, XML tags have been designed differently in BIND and KEGG.
In KEGG the focus is on the graphical presentation of pathway diagrams and
the XML tags include layout and presentation elements, whereas in BIND the
XML tags relate more directly to biological concepts. BIND and KEGG also use
different conventions for naming attributes in their XML DTDs.
1 http://www.biopax.org/
2 http://www.ncbi.nih.gov/IEB/ToolBox/XML/ncbixml.txt



214 Graham J.L. Kemp and Selpi

The MIPS Comprehensive Yeast Genome Database [9] includes detailed data
on protein-protein interactions, pathways and complexes in yeast. However, this
resource does not currently provide data in an XML format, and the project web
site does not include a description of the resource’s metadata.

The Biological Pathways Exchange project (BioPAX) aims to produce a com-
mon exchange format for biological pathway data. That project uses frame-like
structures with classes and slots for describing pathways. This relatively new
project is at the draft release stage, and no data are currently available in this
format.

We decided to use data from BIND in our work since this is available in an
XML format, and is accompanied by a description in XML DTD that defines tags
that are based on biological concepts. Further, since the DTD file is generated
in a systematic way from an ASN.1 specification, the entity and attribute names
have a consistent form.

3 Implementing an FDM Database from BIND’s DTD
and XML Files

Our implementation consists of two main software components: (i) a Perl pro-
gram that reads BIND XML DTD and produces Daplex data definition state-
ments, and (ii) an XML load utility that can load data from XML data files into
the P/FDM database.

First we shall consider the task of producing the Daplex schema. Entity types
can be recognised as those elements defined the DTD file that have names that do
not contain an underscore character and have at least one non-optional attribute.
There are two entity types in the extract from the BIND DTD in Figure 1:
BIND-Interaction and BIND-object. Scalar attributes and relationships are also
identified from the DTD file. Daplex data definition statements generated for this
DTD fragment are shown in Figure 2, and these are compiled by the P/FDM
system into metadata that are stored in the database.

A serious difficulty when trying to produce a database schema automatically
from a DTD file is that the DTD does not contain information about which
attributes constitute the keys of the entity classes. We anticipated having to
specify these manually, however for many classes a satisfactory candidate key
can be formed by taking the union of all non-optional attributes and relationships
defined on that class in the DTD. In some cases (including BIND Interaction)
this simple approach produces a super-key from which we have to remove at-
tributes and relationships to form a candidate key. For some others (including
BIND object) the set of non-optional attributes and relationships is insufficient
to uniquely identify instances of the class and so one or more optional attributes
need to be added to form a candidate key. In one case it was necessary to remove
a non-optional relationship and add one optional attribute to form a candidate
key. However, for the majority of cases this simple approach yielded a satisfac-
tory key automatically and fewer than ten keys definitions had to be adjusted
by hand.



Pathway and Protein Interaction Data: from XML to FDM Database 215

<!ELEMENT BIND-Interaction (

BIND-Interaction_iid ,

BIND-Interaction_a ,

BIND-Interaction_b ,

BIND-Interaction_priv? )>

<!ELEMENT BIND-Interaction_iid ( Interaction-id )>

<!ELEMENT BIND-Interaction_a ( BIND-object )>

<!ELEMENT BIND-Interaction_b ( BIND-object )>

<!ELEMENT BIND-Interaction_priv %BOOLEAN; >

<!ATTLIST BIND-Interaction_priv value ( true | false ) "false" >

<!ELEMENT Interaction-id ( %INTEGER; )>

<!ELEMENT BIND-object (

BIND-object_short-label ,

BIND-object_descr? ,

BIND-object_user-id? )>

<!ELEMENT BIND-object_short-label ( #PCDATA )>

<!ELEMENT BIND-object_descr ( #PCDATA )>

<!ELEMENT BIND-object_user-id ( %INTEGER; )>

Fig. 1. An extract from BIND’s DTD. Several elements have been omitted to
make the figure concise, while still illustrating features described in the text.

declare BIND_Interaction ->> entity

declare BIND_object ->> entity

declare iid(BIND_Interaction) -> integer

declare a(BIND_Interaction) -> BIND_object

declare b(BIND_Interaction) -> BIND_object

declare priv(BIND_Interaction) -> boolean

declare short_label(BIND_object) -> string

declare descr(BIND_object) -> string

declare user_id(BIND_object) -> integer

key_of BIND_Interaction is iid

key_of BIND_object is short_label, descr

Fig. 2. Daplex data definition statements generated from the DTD fragment
shown in Figure 1.



216 Graham J.L. Kemp and Selpi

<BIND_Interaction>

<BIND_Interaction-iid>

<Interaction_id>118</Interaction_id>

</BIND_Interaction-iid>

<BIND_Interaction-a>

<BIND_object>

<BIND_object-short_label>EGF_EGFR complex</BIND_object-short_label>

<BIND_object-descr>Epidermal Growth Factor (EGF) bound to Epidermal

Growth Factor Receptor (EGFR)</BIND_object-descr>

<BIND_object-user_id>0</BIND_object-user_id>

</BIND_object>

</BIND_Interaction-a>

<BIND_Interaction-priv value=""false""/>

</BIND_Interaction>

Fig. 3. An extract from the BIND XML data file for interaction number 118.

The XML load utility has been implemented in Prolog — the language in
which most of the P/FDM database management system is written. Figure 3
illustrates the structure of data in a BIND XML file. An XML document can be
parsed and compiled into a nested Prolog term structure which has the same tree
structure as the original XML document. The XML load utility then recursively
traverses this tree to find data items that will be loaded into the database. This
program first identifies the type of the top-level element in the XML file (near the
root of the tree), and retrieves the metadata entry for this type from the P/FDM
database. The names of the key attributes for this type are extracted from the
metadata entry, and the Prolog program then searches through the tree to find
values for these attributes. If values can be found for all of these then a new entity
instance is created using the P/FDM update predicate newentity. The first two
arguments in the call to newentity are the entity type name and a list of values
for the key attributes. The third argument becomes instantiated to the internal
identifier of the entity instance created by the call (e.g. BIND Interaction(10) in
the first call in Figure 4).

The XML load utility then proceeds to look for values for any other attributes
and relationships defined on this type. When values are found these are added to
the database using the P/FDM update predicate addfnval (add function value),
which takes the attribute name, the internal identifier of the entity instance and
the value of the attribute as its three arguments.

When a relationship is present in the XML data file the load utility must use
addfnval giving the internal identifier of the related entity instance as the value
of the relationship function. If this entity instance is already in the database
then this function value can be added immediately. Otherwise, it is necessary
to create the related entity instance and add it to the database first, before
the relationship function is added. An example of this can be seen in Figure 4,
where the BIND object with the key components “EGF EGFR complex” and
“Epidermal Growth Factor (EGF) bound to Epidermal Growth Factor Receptor



Pathway and Protein Interaction Data: from XML to FDM Database 217

newentity(’BIND_Interaction’, [118], ’BIND_Interaction’(10)),

newentity(’BIND_object’, [’EGF_EGFR complex’,’Epidermal Growth Factor(EGF)

bound to Epidermal Growth Factor Receptor (EGFR)’], ’BIND_object’(18)),

addfnval(user_id, [’BIND_object’(18)], 0),

addfnval(a, [’BIND_Interaction’(10)], ’BIND_object’(18)),

addfnval(priv, [’BIND_Interaction’(10)], false)

Fig. 4. Instantiated Prolog update goals corresponding to the XML data in
Figure 3.

(EGFR)” has to be created before a value for relationship functiona is added to
the database.

We have loaded into P/FDM all BIND pathways that were available in an
XML format, together with all related BIND objects and BIND interactions. The
XML load utility does not attempt to load all of the data items contained in the
original XML documents. Rather, it searches only for data items corresponding
to attributes and relationships declared in the schema. Any other data items or
elements in the XML data are ignored by the load utility.

4 Querying the Database

The definitions of several derived relationship functions are shown in Figure 5.
It is useful to be able to define such functions so that implicit relationships in
the database can be made explicit. For example, the BIND Interactions that are
related to a BIND Molecular Complex are represented in the XML version as
a list of integers that correspond to interaction identifiers, implicitly defining a
multi-valued relationship between BIND Molecular Complexes and BIND Inter-
actions. The function definition for complex interactions in Figure 5 makes this
relationship explicit. Function all complex subcomplexes is a recursive function
that finds all BIND Molecular Complexes that are part of other BIND Molecular
Complexes. This function is used in the Daplex query in Figure 5.

5 Discussion and Conclusions

Providing data in an XML format, even when accompanied by a DTD, is not
sufficient to ensure that it will be easy to import these data automatically into
a database management system. To facilitate this, it is important that the XML
tags are well designed. The systematic naming of DTD elements in BIND is
very useful for this purpose. However, it would be helpful if key attributes were
declared explicitly in the DTD.

While we have been able to capture most of the information present in the
DTD files, we have not been able to capture it all. In particular, we do not
map those attributes whose value might be one of several different types since a
function in P/FDM must return values of a single type.



218 Graham J.L. Kemp and Selpi

Daplex function definitions:

define interaction_objects(i in BIND_Interaction)

->> BIND_object

{a(i), b(i)};

define complex_interactions(c in BIND_Molecular_Complex)

->> BIND_Interaction

i in BIND_Interaction such that iid(i) in interaction_list(c);

define complex_objects(c in BIND_Molecular_Complex)

->> BIND_object

interaction_objects(complex_interactions(c));

define complex_subcomplexes(c in BIND_Molecular_Complex)

->> BIND_Molecular_Complex

s in BIND_Molecular_Complex such that

descr(s) in short_label(complex_objects(c));

define all_complex_subcomplexes(c in BIND_Molecular_Complex)

->> BIND_Molecular_Complex

( complex_subcomplexes(c)

union

all_complex_subcomplexes(complex_subcomplexes(c)) );

Daplex query:

for each c in BIND_Molecular_Complex

for each s in all_complex_subcomplexes(c)

print(mcid(c), descr(c), mcid(s), descr(s));

Query results:

12971 (EGF EGFR) dimer complex bound toATP 12970 (EGF EGFR) dimer complex
12971 (EGF EGFR) dimer complex bound toATP 12966 EGF EGFR complex
12970 (EGF EGFR) dimer complex 12966 EGF EGFR complex

Fig. 5. Function definitions and a query.

Derived functions in the functional data model, such as those shown in Figure
5, can make explicit those relationships that are present but which are not fully
described in a DTD file. These functions make it more convenient to express
queries involving related objects.



Pathway and Protein Interaction Data: from XML to FDM Database 219

The XML load utility is general, and it should be possible to use this with
other XML data sets. The Perl program, however, is specific to the style of DTD
files produced by the NCBI tools and would have to be modified before it can
be used with other DTDs.

The work described in this paper demonstrates that a database schema can
be produced from an XML DTD file with only a little manual intervention, and
data from XML files can then be loaded into a database management system
within which it can be explored using an ad hoc query language. This represents
a useful first step towards integrating pathway and protein interaction data with
other data stored in the P/FDM database management system, or with other
data sets accessible within a federated architecture in which a P/FDM database
is a constituent data resource.

Acknowledgements

We are grateful for a scholarship from the Swedish Foundation for International
Cooperation in Research and Higher Education (S.).

References

[1] Gary D. Bader, Doron Betel, and Christopher W.V. Hogue. BIND: the Biomolec-
ular Interaction Network Database. Nucleic Acids Research, 31:248–250, 2003.

[2] Gary D. Bader and Christopher W.V. Hogue. BIND – a data specification for stor-
ing and describing biomolecular interactions, molecular complexes and pathways.
Bioinformatics, 16:465–477, 2000.

[3] O. Dubuisson. ASN.I Communication Between Heterogeneous Systems. Morgan
Kaufmann Publishers, 2000.

[4] R. Durbin and J. Thierry-Mieg. Syntactic Definitions for the ACEDB Data Base
Manager, 1992.

[5] T. Etzold and P. Argos. SRS an indexing and retrieval tool for flat file data
libraries. CABIOS, 9:49–57, 1993.

[6] P.M.D. Gray, K.G. Kulkarni, and N.W. Paton. Object-Oriented Databases: a Se-
mantic Data Model Approach. Prentice Hall Series in Computer Science. Prentice
Hall Int. Ltd., 1992.

[7] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Research, 28:27–30, 2000.

[8] G. J. L. Kemp, N. Angelopoulos, and P. M. D. Gray. Architecture of a Mediator
for a Bioinformatics Database Federation. IEEE Transactions on Information
Technology in Biomedicine, 6:116–122, 2002.

[9] H.W. Mewes, D. Frishman, U. Güldener, G. Mannhaupt, K. Mayer, M. Mokrejs,
B. Morgenstern, M. Münsterkötter, S. Rudd, and B. Weil. MIPS: a database for
genomes and protein sequences. Nucleic Acids Research, 28:31–34, 2002.

[10] D.W. Shipman. The Functional Data Model and the Data Language DAPLEX.
ACM Transactions on Database Systems, 6(1):140–173, 1981.


	Introduction
	Biological Pathway and Interaction Data Sources
	Implementing an FDM Database from BIND's DTD and XML Files
	Querying the Database
	Discussion and Conclusions

