
Chapter 1

CONSTRAINTS AS MOBILE SPECIFICATIONS IN
E-COMMERCE APPLICATIONS

Kit-ying Hui,
Peter M. D. Gray,
Graham J. L. Kemp,
and Alun D. Preece
Department of Computing Science

King’s College, University of Aberdeen

Aberdeen AB24 3UE

Scotland, United Kingdom�
khui � pgray � gjlk � apreece � @csd.abdn.ac.uk

Abstract We show how quantified constraints expressed in a sub-language of first-order
logic, against a shared data model that is free to evolve, provide an excellent way of
transporting domain-specific semantics along with the data. In this form it can be
processed automatically by various intelligent components, instead of requiring
human intervention, as it would do if expressed in natural language. It can also be
combined with other constraints, by algebraic transformation against a common
data model, and then passed to an appropriate solver. These techniques have been
tested in a classic e-business application scenario: configuring a product from
parts selected from e-vendors’ catalogues, whilst conforming to requirements
specific to the parts, expressed as mobile constraints.

1. Introduction
Providing technological support to the formation and operation of dynamic and open vir-

tual organisations is a central concern in business-to-business e-commerce (Preece et al., 1999;
Schein, 1994). In a virtual organisation, member companies integrate their resources to create a
more competitive whole. To support these organisations, the communication mechanisms must
cope with both the cooperative and the competitive nature of the enterprise. Further, business
processes in a virtual organisation interact like agents by exchanging information to achieve
certain tasks. Thus the communication mechanism must be powerful enough to support the
exchange of data, information and knowledge among members.

Currently, the main technologies offered to support virtual organisations are Electronic Data
Interchange (EDI) and Extranets. Unfortunately, current EDI systems are largely proprietary

semi-
configured

PC
database

hard disk
database

operating
system
database

problem
solver

user
specification

knowledge
bases

vendor
databases

of
components

user

domain
knowledge

data & with
attached

knowledge

Figure 1.1. This figure shows an application where components are put together to configure
a PC. Both data and knowledge have to be combined before a solution can be found.

and limited to the exchange of relatively simple relational data. The new XML standard is non-
proprietary and it will be good for exchanging semantics according to an agreed document type
definition (DTD), but it does not rule out using natural language comments to convey semantics.
Business data needs to be much more “self-describing” and to have attached meta-knowledge
on how the information can be used and combined with other information (Jeffery, 1998). We
present ideas on how this can be done using constraints, so that the semantics of the data are
made explicit to remote programs.

The KRAFT project1 (Gray et al., 1997) has an architecture that is suitable to support virtual
organisations in which members exchange information in the form of constraints expressed
against an object data model (Preece et al., 1999). The constraints allow member companies
to design new products from components in their individual catalogues, and also to advertise
the content of their catalogues in a way that is meaningful to remote programs and not just
to humans. Constraints are exchanged via messages expressed in an agent communication
language, supporting flexible transactions.

1.1. Motivation
KRAFT was conceived primarily to support configuration design applications among multiple

partner organisations with heterogeneous knowledge and data models. This makes it suitable
for the support of virtual organisations.

Consider the problem of configuring a computer from the set of product catalogues provided
by different vendors as databases (figure 1.1). We call these product data candidate data as they
are potential values of solutions in valid configurations.

Configuration specifications come in the form of constraints from various sources. For
example, a particular requirement can be:

“The PC must use a Pentium II processor.”

There are also constraints that govern a usable configuration. Here is one of them:

“The size of a hard disk must be big enough to accommodate the chosen operating
system.”

1KRAFT = Knowledge Reuse And Fusion/Transformation.

To arrive at a usable configuration, we may issue a distributed database query that performs a
join across multiple database tables to get the candidate components and then check the retrieved
data for compatibility and requirement. However, as problem domains become more sophisti-
cated, it is insufficient to store only data but also knowledge in order to capture the semantics of
the application domain.

Thus databases may have different semantics and hidden assumptions stored together with
data, as components stored in vendor databases may have specific instructions attached to them,
describing how the products have to be used. For example, a particular operating system may
have the following requirement attached:

“Windows NT requires a minimum memory of 64M bytes in your PC.”

Therefore, it is usually inadequate to use a distributed database query for finding a list of com-
patible parts. We must also ensure that the hidden semantic knowledge is properly utilised.

This problem originates from the fact that knowledge no longer statically resides in a resource
but becomes mobile. Like footnotes in a product catalogue, some mobile knowledge is attached
to data objects and thus they must be involved (or satisfied) whenever those data objects are used.

1.2. A Distributed Configuration Design as a Constraint
Satisfaction Problem

A configuration problem is a design activity in which an artifact is assembled from a set of
components by connecting them in certain ways. Many early configurators, like R1/XCON (Mc-
Dermott, 1982), are rule-based systems in which domain and strategic knowledge are tightly
coupled. This makes them relatively expensive to maintain, especially for large and complex
problem domains with a high rate of change of knowledge.

Our approach is to represent the configuration problem as a constraint satisfaction problem
(CSP) but to bring the constraints together into one place for solving. Constraint solving provides
a domain-independent framework for the representation of configuration problems by declarative
knowledge which is relatively cheaper to maintain (Sabin and Freuder, 1996; Mailharro, 1998).
The principle is to find values for problem variables subject to constraints that restrict which
combinations of values are allowed (Sabin and Freuder, 1996).

The configuration problem in the KRAFT environment has the following characteristics:

Candidate data, which form the initial solution space, are distributed in different re-
sources, according to different schemas.

Domain knowledge in the form of constraints come from different sources, expressed in
different but related ontologies.

Constraint knowledge is mobile. It can be attached to data objects or move freely within
the network.

Constraint knowledge can be reused by transforming it to fit another ontology. When
a piece of constraint is attached to a data object, it must be utilised whenever that data
object is used.

These characteristics have some important implications. When a resource joins the network,
it must be incorporated automatically, which includes using both the stored data and constraints.
This dynamic environment, together with mobile constraints which can attach to data objects,
make the problem specification dynamic, since it may change as different candidate data objects
become involved. Therefore, it is difficult for us to compose it into a static database query. The
problem is also data-intensive. Thus feeding all candidate data into a single problem solver may
create the problem of memory overflow, and should be avoided.

candidate data with
attached constraints

user specification
as constraints

constraint
reasoning

engine

solutions

data constraint

domain
knowledge

as constraints

vendor
database 1

vendor
database 2

vendor
database 3

solution
database

Figure 1.2. KRAFT utilises both data and constraints which are mobile in the KRAFT domain.
Constraint knowledge flow is shown as grey arrows while data flow is in black.

2. Modelling the Configuration Task in KRAFT
KRAFT uses the constraint formalism to model both user specifications and domain knowl-

edge on component compatibility, thus providing a declarative and uniform representation of
both restrictions and specifications of the problem specification. A declarative constraint (Gray
et al., 1999a) is a self-contained mobile knowledge object which can be extracted and transported
in a distributed environment. Internally, selection information in a declarative specification can
be moved within a computation. These promising features liberate KRAFT from a fixed execu-
tion plan and enable the system to explore different problem-solving strategies as problem tasks
can be transformed, delivered and processed in capable problem-solving components.

Figure 1.2 shows the KRAFT system from the perspective of constraint and data flow.
We store components as data instances in different vendor databases, together with their

attached knowledge in the form of constraints. These component instances define the domains
of variables in the CSP. Other constraints come from an otherwise empty solution database,
which we will discuss in section 2.1, and also the user. As different vendors may have their local
domain model, constraints from different resources may be expressed in different vocabularies
and against different schemas. As we will see in section 3, the KRAFT architecture is flexible
enough to cope with heterogeneous resources but to simplify our problem, we assume the use
of a uniform integration schema within the KRAFT domain. Constraints and data expressed
against local schemas will be transformed and mapped into the integration schema.

Mittal and Frayman (Frayman and Mittal, 1987; Mittal and Frayman, 1989) presented a
generic domain-independent model of configuration tasks where each component is described
by a set of attributes and connection ports. Sabin and Freuder (Sabin and Freuder, 1996) further
proposed the constraint-based framework of composite CSP. In a composite CSP, variables are
not restricted to take atomic values but also an entire subproblem. Thus instantiating variables
may change the CSP dynamically. Instead, we model a restricted configuration task where the
set of variables and their domains are fixed at the time of problem composition. However, we
still allow constraints to be dynamically added as the solving process proceeds.

2.1. Database Integrity Constraints as CSP Specifications
To specify a CSP by database integrity constraints, we visualise a solution database which

is empty and yet to be populated by the solutions of a CSP, after it is solved. As all integrity
constraints are satisfied in a semantically consistent database, we can restrict the combination of

data filter specified
as integrity constraints

solution
database

solutions

candidate data

Figure 1.3. Integrity constraints on the solution database act as a data filter that controls which
candidate data will become a solution.

os

name(os) -> string
size(os) -> integer

hard_disk

model(hard_disk) -> string
size(hard_disk) -> integer

model(pc) -> string
cpu(pc) -> string
memory(pc) -> integer
has_os(pc) -> os
has_disk(pc) ->> hard_disk

pc

Figure 1.4. Our example solution database schema of configured PCs.

values which can be stored and qualified as solutions to the CSP by imposing integrity constraints
against the solution database schema (figure 1.3).

Figure 1.4 shows an example solution database schema that stores all properly configured
PCs. The requirement of having only “pentium2” CPU is expressed as the following integrity
constraint:

���������
	��������	�����������������	���������� ��!
"�#%$&��')(*�

In our prototype system, we use the P/FDM database system (Embury, 1995) that is based
on Shipman’s functional data model (Shipman, 1981). P/FDM uses the constraint language
CoLan (Bassiliades and Gray, 1994) and the same constraint can be expressed as:

+,.-0/.132�465�-74�838:9;5�-<96+
1=,:>64?=@�+
93ACB�9�D
E�F 96@.-31G5�AIH0J0F

Compatibility between components can also be expressed as integrity constraints. The fol-
lowing constraint specifies that an operating system (OS) must be able to fit into one of the
installed hard disks in a properly configured PC:

���������=�����I	 � ���I����	����� � �	�3�������I	���
$�
3!����=�����3	� ���

�����������6	 � ��� � ��$������������6	����$�
3!����������6	�����������
Or in CoLan:

+,.-0/.132�465�-74�838:9 5�- 96+
4�838 , 5�-<>=4�/	�3,�/ B�9�D

/, 1I>641 /I,*H0@�� 5�-<>643/	�	�05/�� B�9�D
>64�/ /=5��=@�B��0D �IE�/�5��=@�B�,=D

Thus the solution database provides a framework for CSP specification. However, in most
cases, only the schema of the solution database exists and no value is actually being stored.
Instead, solution values are returned to the user through the user-agent.

2.2. Database Integrity Constraints as Mobile Knowledge
Database integrity constraints in P/FDM are quantified constraints that apply to a set of data

objects. When expressed against a “KRAFT domain-wide” integration schema, these constraints
are self-contained abstract objects which can be used to represent domain-specific knowledge,
partially solved solutions and intermediate results. Effectively, they carry otherwise hidden
operational semantics along with the data. This is vital for its proper use in e-commerce. When
a data object is retrieved from a database and migrated into a network, its attached constraints
must also be extracted and mobilised to retain its annotated instructions. In other words, data
objects are annotated with declarative instructions on how these objects should be used.

Suppose a manufacturer produces tailor-made OS for the “Pentium III” platform only. So
he puts a universally quantified constraint on all OS in his product database so that any PC using
this OS must use a “Pentium III”. This constraint is quantified over all OSes:

���!�6� � ���
	 � �	�3���3	����� � �"�3�����#�3	��
�������������
	 ��� � �<� ��!
"�#�$&��'%$.�

The same constraint can be expressed in Colan:

+,.-0/.132�465�-7@34�+
> , 5�-�,�/
1=, >64.?=@�+*93A B�>64�/	�I,�/	�65�-3? B�,6D3D
E�F 96@.-31G5�AIH'&�F

The function >643/ ,�/ 5�-�? is the inverse function of >64�/ ,3/ , which traverses the relationship in
the reverse direction. Inverse functions in P/FDM are discussed in (Embury, 1995).

By using an optional filter, we can selectively apply the constraint to a reduced set of data
instances instead of all objects of that class. This allows constraint knowledge to be attached as
if to an individual data object. For example, we can apply a constraint to the set of OSes with
the name of F)(�5�-+*	,�F only:

��� �=��" � ���%')	

����
�

�"�3���I	��
" � ' !=���=��" 	��

")�<����$&"��	�������� � �	�3�����#�I	��
' !*' ��
��������')	

����
� ��� ' ����

The same constraint can be expressed in Colan:

+,.-0/.132�465�-74�838 , 5�- ,3/
/*A0+
>�1I>641 -64*H0@�B%,6D*E�F)(G5�-+*",�F

1�, >64?�@ H0@*H0,2�� B�>64�/ �3,�/	�65 -�? B�,6DID �IE����
This is an example of a conditional constraint which only applies when a certain guarding

condition is true. In this example, the guarding condition is the boolean test “
" � ' !=���I	 �

��� $&"��	���
”. Once again, we use the inverse function >64�/ ,3/ 5�-�? to navigate from the class,3/ to 90+ .

Traditionally, database integrity constraints are used for validation checks on populated data
and define the acceptable states of the database which all stored data have to satisfy. In using
database integrity constraints as CSP specifications, we extend the use of integrity constraints to
include un-populated entity classes. Thus the manufacturers and designers are putting constraints
on objects which will form relationships with the components but are not yet connected! In this
way, integrity constraints specified against a solution database work on data objects which are yet
to be created, as well as existing data in the database. We call these unpopulated entity classes
empty-slots, as they represent objects which will be plugged into the configuration to form a
workable design. These empty-slots cannot be filled by just any value, instead, we restrict the
allowed values by the attached constraints. Thus an integrity constraint does not only restrict the
stored value in a database record, but also any potential value that will be found for an empty-slot.

2.3. Categorising Constraints
The easiest way to categorise distributed constraints from various sources is to classify them

according to their origin.

Small-Print Constraints

These constraints are stored in a database in association with class descriptors for data
objects, and they can be viewed as an attachment of instructions on how a data object
should be used. We call these small-print constraints (Gray et al., 1999b), representing
small-print conditions in a contract or footnotes in a catalogue. Note that constraints are
actually stored with a class descriptor but selection conditions in the constraint can be
used to make it specific to a particular object, as discussed in section 2.2.

Design Constraints

When constraints are used to represent specification knowledge in the form of design
constraints, they capture expert knowledge about feasible designs. We store such con-
straints in the solution database. Although initially empty of data, the solution database
provides a framework for specifying and integrating the problem-solving knowledge,
through its attached constraint metadata.

User Requirement Constraints

M

W

R

UA

W

M

M

M

W

W

W

W

R

R

UA

UA

R

F

F

UA

R

User
Agent

Resource

Wrapper

Facilitator

Mediator

W

M

F

Non-KRAFT
components

KRAFT
facilities

Figure 1.5. This figure shows a conceptual view of the KRAFT architecture. KRAFT compo-
nents are round in shape while non-KRAFT ones are marked as squares. The grey area represents
the KRAFT domain where a uniform language and communication protocol is respected.

Constraints can also be used to represent user specifications for the required solutions.
Like other resources in the system, the user serves as another information source, feeding
knowledge into the system in the form of constraints.

Categorising constraints according to their different sources and origins is a natural classi-
fication but it does not explain why some constraints behave differently from others. A closer
examination reveals that the difference in behaviour comes from their different scopes of appli-
cation, as they are attached to objects on different abstraction levels.

A small-print constraint forms part of the data object to which it is attached. Therefore, it
applies to all application problems and problem instances that utilise such data. In other words,
it is specific to the attached data object but generic to all application problems and problem
instances that use the data.

Design constraints capture specifications of an application problem. They can be viewed
as attached to a particular problem, and thus apply to different instances of the same problem.
When a class of problems shares some common design constraints, these constraints may be
parametrised to capture the generality, and so have to be specialised before being applied to a
specific design problem.

User requirement constraints are attached to a problem instance. As a result, they are specific
to a particular problem instance and may differ between different sessions.

This alternative classification focuses on “where a constraint applies” instead of “where a
constraint comes from”, as knowing when to satisfy a constraint is more important than knowing
its origin. As a result, we can have a constraint that comes from the user but is attached to
particular data objects, thus behaving as a small-print constraint.

3. The KRAFT Architecture
KRAFT has an agent-based architecture where knowledge processing components are re-

alised as software agents. The basic philosophy of the architecture design is to define a KRAFT
domain where certain communication protocols and languages must be respected, as shown in
figure 1.5. KRAFT facilities forming part of the KRAFT architecture must conform to these pro-

tocols and languages, and must also provide sharable and asynchronous access to the services
they provide.

Three important KRAFT facilities of distinctive roles have been identified:

Wrapper
Wrappers interface non-KRAFT components to the KRAFT network by providing trans-
lation services between the internal data formats of user agents and resources and the
data format used within the KRAFT domain. They also provide the high-level communi-
cation mechanisms needed to link the user agents and resources to the internal facilities
of the KRAFT domain.

Facilitator
Facilitators maintain directories of KRAFT facilities, their locations and what services
they provide, and also details of their availability, load and reliability. Their principal
function is to accept messages from other KRAFT facilities and route them appropriately.

Mediator
Mediators are KRAFT components that can utilise domain knowledge to transform data
in order to increase their information content. They also operate to implement particular
tasks, although a task can be highly specific to a particular application domain or it can
be domain-independent.

The architecture in figure 1.5 also shows other non-KRAFT components which are linked to
the KRAFT network via wrappers:

User Agent
Users access the services of the KRAFT domain via user agents. User agents are con-
sidered external to the KRAFT domain and are connected to the network via wrappers.

Resource
Resources include information sources such as databases, knowledge bases and also pro-
cessing engines like constraint solvers. Similar to user agents, resources are independent
of the KRAFT domain and are connected to the network via wrappers.

The design of KRAFT is consistent with several emerging agent standards, notably KQML (Finin
and et al., 1993; Finin et al., 1994) and FIPA (Chiariglione, 1998). Agents are peers; any agent
can communicate with any other agent with which it is acquainted. Agents become acquainted by
registering their identity, network location, and an advertisement of their knowledge-processing
capabilities with a facilitator.

KRAFT agents communicate by sending messages to other peer agents using a nested protocol
stack. The outermost shell of a KRAFT message is a message header that encapsulates the body
of the message with low-level time-stamp and network information. Wrapped by this header is
the body of the message which in turn consists of two nested protocols. The outer protocol is the
agent communication language CCQL (Constraint Command and Query Language) and nested
within the CCQL message is its content, expressed in the CIF language (Constraint Interchange
Format).

CCQL describes the “speech act” of the message and is defined by a set of performatives
based upon a subset of KQML (Knowledge Query and Manipulation Language) (Finin and et al.,
1993; Finin et al., 1994). A more detailed discussion of KQML performatives can be found in
(Labrou, 1996).

The CIF language is based on CoLan (Bassiliades and Gray, 1994) which is a high-level declar-
ative constraint description language for use with the object-oriented database P/FDM (Embury,
1995). CoLan has features of both first-order logic and functional programming and is based on
Daplex (Shipman, 1981) query language.

constraint
fragments

constraint
fuser

CSP

extracted
constraints query

generator

sub-CSP
CLP code
generator

database
queries

CLP
codes

data

distributed
databases

constraint
solver

packager

CLP
program

decomposer

CSP composition CSP solving

Figure 1.6. The KRAFT problem-solving process is divided into two phases: CSP composition
and CSP solving.

4. CSP Composition
Problem solving in KRAFT is divided into two stages (figure 1.6). In the first stage, distributed

constraints are fused to compose a concrete description of the overall CSP. In the second stage,
the composed CSP is analysed and decomposed into sub-queries which are solved by multiple
problem solving components in the system.

The CSP composition process can be further divided into three stages:

Constraint Extraction and Transformation

Constraint knowledge in KRAFT comes from different sources. Despite their different
origins, these constraints must be exported from their respective sources before they can
be utilised. They must also be transformed to resolve any semantic mismatch between
heterogeneous resources.

Constraint Fusion

Constraint fusion is a necessary step in solving distributed CSPs as each constraint
fragment is only a partial description of the whole problem. It is only by fusing the
constraint pieces together that the overall problem description is revealed. While a
single piece of constraint may not contain enough information to solve a CSP, we hope
that by combining constraints together, their total value is enhanced, and thus making
the problem solvable.

CSP Formation from Integrity Constraints

KRAFT constraints are expressed in the form of database integrity constraints which
are meant to restrict the combination of existing data stored in a database rather than
creating value combinations that satisfy certain requirements. Therefore, these integrity
constraints cannot be used directly as a CSP specification but have to be transformed
before they can be compiled into an executable program that searches for solutions.

����������	�
�
	�����������
��� � � ��� ��� ��
�
������ ���
	���� ������ 	�� ��! �"�$#�#&%

��!�� �'
(���)� �*�
	���� �����+ 	�� ��! ���,#�#
�'�-��	.
 �
�	 �0/ ���1#32

����������	�
�
	�����������
��� � � ��� � 	 �*� �)��
 � ���1#
�'�-��	4����
 � �"��� �*� 	 � ���1#�#$2

Figure 1.7. Example rewrite rules.

4.1. Constraint Extraction and Transformation
From the viewpoint of constraint extraction, there are two main categories of constraint

knowledge in KRAFT. The first type of constraints, like user specification constraints, are actively
fed into the system and do not require any extraction. The second type of constraints are stored
in resources and have to be extracted before they become mobile and move into the network.
Examples are designer constraints stored in the solution database2 and small-print constraints
in vendor databases.

To achieve the required mobility of constraint knowledge, it is necessary for resources to
support meta-level queries that retrieve stored constraint information instead of data. A resource
which does not support constraint extraction confines constraint knowledge within its domain
and forces localised constraint utilisation, thus restraining the system from composing a global
execution plan.

Our prototype uses the P/FDM database system (Embury, 1995) which allows the retrieval
of meta data through queries on the meta-schema. P/FDM provides a uniform access interface
where meta-data in the database are retrieved like normal data by the Daplex language. To retrieve
meta-data, we simply express a query against the meta-schema instead of the data schema.

Before fusion can take place it is also necessary to ensure that the constraints to be combined
all have the same terms of reference. This can be achieved by rewriting each constraint to refer
to an integration schema. In KRAFT, this rewriting is done automatically by wrappers. Each
local database in the KRAFT network has a wrapper which can apply declarative rewrite rules to
constraints expressed against the local schema to give a transformed constraint expressed against
the integration schema.

Rewrite rules are represented internally in P/FDM as functional expressions implemented as
Prolog term structures. Rewriting is done by pattern matching to find whether the left hand side
of any rewrite rule is present as a sub-expression within the constraint. If a match is found, the
sub-expression is replaced by the right hand side of the rewrite rule with appropriate variable
substitutions. Figure 1.7 shows two examples of rewrite rules. The effect of applying these
rewrite rules to a constraint is shown in figure 1.8.

The rewrite rule is a powerful mechanism that maps constraints from one schema into another.
However, moving a constraint from the local schema into the integration schema may not be
just a simple operation of replacing sub-expressions in a constraint. When a constraint is moved

2As we saw in section 2.1, the solution database may not physically exist. In this case, designer constraints
may be readily stored as application-specific knowledge in the user-agent.

�*	*� � � � �-�'� � ������� �'���,�
� �,���������*� 	 �*� ���'
 � ���$#���� ��'���	�
�

��	4����� � � ��
�
������ ���
	���� ������ 	�� ��! �"�1#0#&%
��!�� �'
(���)� �*�
	���� �����+ 	�� ��! �"�1#�#������� 2

�*	*� � � � �-�'� � ������� �'���,�
� �,���������*� ���'
 � �"��� ��� 	 � �"�$#�#���� ����������

��	4����� �
 �
	 ��/ �"�$#������� 2

Figure 1.8. Example constraints. The first constraint is expressed against a local schema. The
second constraint shows the result of transforming this constraint to refer to the integration
schema.

from a local resource into the network, the domain of quantification changes. Thus a constraint
which is true in a local resource may not remain true when it migrates out of that resource. For
example, a specific vendor HAL may have “Linux” installed in all its PCs. So the following
constraint is universally true in its local database:

+,.-0/.132�465�-7@34�+
><9 5�- 90+
1=, >64.?=@<,�/	�*-64*H0@�B 9�D*E�F��05�-3A���F
When this constraint is extracted from the local resource, transformed and moved into the

network, it fails to remain universally true as other vendors may not have the same requirement
on their PCs. To utilise this constraint, we have to add an extra restriction to limit the set of
quantified values:

+,.-0/.132�465�-7@34�+
><9 5�- 90+
/*A0+
>�1I>641 H04.-3A���4�+.1IA�2�@2 B�9�D
E�F��� !��F

1�, >64?=@ -64*H0@�B >64�/	�3,3/ B�9�D3D
E�F��G5�-IA���F
In general, when a universally quantified constraint is moved from a local resource into the

unified space, we must add an extra condition to restrict the domain of the quantified variable so
that its set of values remains the same as it was in the local resource. In the current implementation,
wrappers provide the required knowledge and mechanism to automate this tagging process. This
is not easily scalable and will be the subject of future work.

4.2. Constraint Fusion
Declarative constraints stored as self-contained knowledge objects in a distributed system

form a shared library of building blocks which can be retrieved, transformed and combined. The
key to reusing and sharing this knowledge is the process of constraint fusion, which dynamically
combines their semantic content to compose problem specification instances. The software
mediator performing this task of constraint fusion provides a commonly used service to higher-
level applications by adding value to individual knowledge fragments. This is also a crucial
process which provides the required scalability and flexibility where new resources can join a
distributed system by bringing in new knowledge dynamically.

Semantically, constraint fusion is the logical conjunction of constraints. When quantified
constraints are conjoined together, they undergo a kind of information exchange which adds

UQC UQC

UQC EQC

EQC EQC

UQC: a universally
 quantified constraint

EQC: an existentially
 quantified constraint

Figure 1.9. This diagram summarises the behaviour when different quantifiers are fused to-
gether. The solid arrow shows the potential constraint information flow when a universally
quantified constraints is conjoined with another quantified constraint. An existentially quantified
constraint does not have this tendency. Thus fusing a UQC with an EQC results in a single-
direction arrow while fusing two EQCs have no potential information exchange, as shown by
the dotted line.

value to individual constraint fragments by enhancing the semantics of each other. The be-
haviour of conjoining two quantified constraints depends on their quantifiers. The consequence
of constraint conjunction originates from the universal quantifier which has the tendency of
imposing constraints to all potential variables, when the condition allows. The existential quan-
tifier, however, does not have this tendency. When a universally quantified constraint takes
part in a constraint fusion process, there is a potential exchange of constraint information where
the combined constraints can be enriched. Thus the presence of a universally quantifier is a
necessary condition for constraint fusion to take place. Figure 1.9 summarises the behaviour of
different quantifier combinations when two quantified constraints are conjoined together.

Operationally, constraint fusion is the identification of correspondences between variables in
different constraint fragments, which allow potential constraint information flow between them.
We call these correspondences variable-links. Variables-links are identified by examining how
variables are ‘generated’, which can be easily illustrated by the following two constraints:

���3������'�� 	 �������� 	 ��' !*' ��
������� �%'�� 	 �G� '�� � $3(
���3���.��'���	����I������	 � ' !
' �
� �����*��'���	�����'��
	���3(�

By comparing the predicates on the left-hand-side of the implication, we can identify the cor-
respondences between variables

� �
-
� �

and
' �

-
' �

. The two constraints can then be combined
into one:

���3���%' 	 � �������	��
' !
' �
���������')	�� ����� ' � $3(I�

'�	���3(���
More complicated situations may arise when constraints are fused. A possible result is a

conditional constraint that applies only when a guarding condition is satisfied, as illustrated by
the following example:

���3� � � ' � 	 � �������� 	��
' !
' �
� ��� � ��' � 	 � �G� ' � � $I(

�������
� '��.����	 ��
�

������ � 	��
�����������*���
	��

� ��� ��!
"�#%$&��')(*���
' !
' ��
�������
�%'���	

� �
� ����'�� � ���

Fusing them results in a conditional constraint where an extra restriction is imposed when the
cpu of a PC is a "pentium2":

�*	*� � � � �-�'� � ������� �'���,�
��	 ����� � ���	� �"�$# � � � � �-�)����
 � �
�+� ! �)��
 � ���)� ��� 	 � ���$#0#��	 � ��������� �

�*	*� � � � �-�'� � ������� �'���,�
��	 ����� �
� ��� � ���)� �*� 	 � ���1#�# ��� � �	� � ����� ����! � ��
 �"�$#�#

�*	*� � � � �-�'� � ������� �'���,�
� �,�'� �����*� ���'
 � �"��� ��� 	 � �"�$#�#���� ����������

��	4����� �
 �
	 ��/ �"�$#�������

Figure 1.10. Three example constraints representing a user requirement, a designer constraint
and a small-print constraint.

���3���%' ���
	 � �������	��
' !
' �
���������')	�� ����� ' � $I(I�� � ���G�������%��	��

����� ��!
"�#%$&��')(*� � ��� ' � �� � ��
Once all variable-links are identified between two constraints, there are two approaches to fuse

them: implicit and explicit. The implicit constraint fusing approach just combines constraints
by maintaining the identified variable-links, which can be easily implemented by the unification
mechanism in a constraint logic programming (CLP) system. When two variables are unified
together, constraints imposed on one variable will propagate to the other variable through the CLP
system and restrict its value domain accordingly, and vice versa. The implicit fusion approach
does not transform any constraint, and so it does not suffer from any limitation of the constraint
representation language.

In an explicit constraint fusing approach, by contrast, variable-link information is used to
transform and manipulate constraint expressions to give a concrete representation of the fused
constraint. In general, this includes transforming natural language sentences, rewriting first-order
predicate calculus expressions, combining CIF expressions represented as Prolog term structures
and conjoining goals in a constraint logic program. The fused constraint is then compiled into
CLP program code and sent to the constraint solver. A major drawback in the explicit approach
is that the fused constraint is expressed in a target language and thus the power of the approach
depends on the expressiveness of the language in representing different fusing situations.

The two approaches of implicit and explicit constraint fusion are not mutually exclusive.
Instead, a hybrid approach is a more appealing solution for fusing constraints. A more detailed
discussion of constraint fusion is given in (Hui, 2000).

Figure 1.10 shows three constraints representing a user requirement, a designer constraint
and a small-print constraint. When we fuse these constraints together, we get the constraint in
figure 1.11 describing the overall restriction on the solution database.

�*	*� � � � �-�'� � ������� �'���,�
��	4����� � ���	� �"�$# � � � � �-�)����
 � �
�+� ! �)��
 � ���)� ��� 	 � ���$#0#��	 � ����� � � �
�+� ! � ��� � ���)� ��� 	 � ���$#0# � � � �	� � ����� �*��! � �
 ���,#�#
�+� ! � � ����
 � �"��� �*� 	 � ���1#�#���� ���������
�

��� � �
 �
�	 ��/ ���1#�������
�����*� � � � �

Figure 1.11. The result of fusing the three constraints in figure 1.10.

4.3. CSP Formation from Database Integrity Constraints
Fusing distributed constraints reveals a complete picture of the desired states of the solution

database. However, we cannot directly compile them into an executable program to find the
solution values, as they are meant to restrict the value combination of existing data stored in
a database, instead of creating new value combinations that satisfy certain requirements. In
particular, they contain references to unpopulated values and relationships, called empty-slots,
as discussed in section 2.1 and 2.2.

Empty-slots represent relationship instances which are to be created from the solutions after
the CSP is solved. The empty-slot problem arises because we are moving a constraint expressed
like an integrity constraint from a database where some slots are unpopulated, into the context
of the solution database, where the slots are assumed to be populated. A database integrity
constraint that references such an empty-slot always trivially succeeds or fails3 because there are
no stored instances that can satisfy the slot predicate. Similarly, a database query that tries to
retrieve any value from an empty-slot always gets nothing. Instead of compiling database integrity
constraints into an executable program, we have to transform them into a CSP, which when solved,
gives value combinations that satisfy the original integrity constraints on the solution database.

The transformation from an integrity constraint into a CSP, however, is surprisingly simple.
We will use the following integrity constraint in first-order logic form for explanatory purpose:

���3�����=��" 	 ��
�

�G�I����	���	�3���3	��� � � �	����� ���3	��
" � ' !����6��" 	

� �
� �G� "������� $&"��	�*�

Once the solution database is populated, the relation >=4�/ ,�/ B�9�
�,6D will relate a �	 to its
installed ��� . Under this situation, the stored instances of >64�/ ,�/ B�9�
�,6D in the database define
and restrict the valid combination of 9 and , .

Now if we go back to the problem of constructing a CSP to find the valid combination of 9 and, , >64�/ ,�/ B�9�
%,6D puts no restriction on 9 and , as there is no stored value. Instead, restrictions
on the ��	�	�	� combination come from constraints on other attributes. Thus >643/ ,�/ B 9�
�,6D is
actually redundant in the context of the solution database as it is subsumed by the other selection
conditions. An easy way of transforming a set of database integrity constraints into a CSP,

3A weak translation of the implication in a universally quantified constraint makes it trivially succeed or
fail, depending on whether the reference to an empty-slot is on the ‘left-hand-side’ or ‘right-hand-side’ of
the implication. An existentially quantified constraint referencing an empty-slot always fails.

therefore, is to take out all the references to empty-slots, meaning that the empty-slots no longer
put any restriction on the involved variables. In this way, we are effectively representing the value
domain of >64�/ ,3/ B�9�
�,=D by the Cartesian product of the domains of 9 and , which provides
the initial finite domains for the variables in the constraint solver. Any value combination that
satisfies these constraints with empty-slot references removed is a solution. In our example, we
get the following CSP by taking out the reference to >64�/ ,3/ B�9�
�,=D :

���������6� " 	 � �G�I����	���	�3���3	��
" � ' !����6��" 	 ����" ��<����$&"��	�.�

Any 9 , , and - in the solution database will have to satisfy this constraint. From a constraint-
solving point of view, it means: “any �� and �	� combination is valid if the name of the �	� is
not F)(�5�- ��� F ”.

The identification of empty-slots (i.e. unpopulated relationships) plays an important role
in composing a CSP from database integrity constraints. This piece of meta-knowledge is
best supplied by the KRAFT programmer who also provides the application specific design
constraints.

It is also important to emphasize that the empty-slots meta-data is not discarded after the CSP
is composed but saved for later use, as we have to keep the association between variables in an
empty-slot.

5. CSP Solving
Once a CSP is composed from distributed constraints, it is analysed and decomposed into

sub-problems. The decomposition step is not a simple reverse process of constraint fusion.
Depending on the current status of the system and availability of different resources, different
execution plans are derived. Constraints are fused in the first place because we want to find the
best way to split the problem and divide labour.

In our prototype system, we chose to decompose a CSP into distributed database queries and a
reduced sub-CSP. Database queries are sent to databases to retrieve data values for the formation
of variable domains in the CSP, while the reduced sub-CSP is compiled into CLP code. We use
the ECLiPSe CLP system (ecl, b; ecl, a) as it supports flexible code generation as in LP systems
but being more efficient in execution. The generated CLP code and variable domain information
are then sent together to the constraint solver for execution, which either finds the solution(s) to
the CSP or detects a conflict.

CSP solving in KRAFT involves four stages:

Database query formation
Constraint information is extracted from the CSP specification to compose database
queries. This early filtering technique helps to reduce the amount of data that need to be
transported to form the initial solution space.

Variable domain formation
Database queries composed are used to retrieve candidate data values and form the initial
variable domains.

Constraint posting
After extracting constraint information to form database queries, the remaining CSP
specification is compiled into CLP program code, which reasons about the domain vari-
ables.

Variable labelling

The final stage of variable labelling instantiates domain variables such that all required
constraints are satisfied.

5.1. Database Query Formation from the CSP
Databases in the KRAFT environment have a limited CSP solving capability in the form of

database query answering. By extracting constraint information from the CSP specification to
compose database queries, we delegate part of the CSP solving process to the involved databases.
In other words, CSP solving is distributed. Database query formation from a CSP will promote
early data filtering, thus reducing the amount of candidate data transported from databases into
the constraint solving components.

Simply speaking, we can compose database queries by extracting constraint information
that unconditionally applies. Although their constraint reasoning capability may vary, most
databases support the use of a filter to be applied uniformly. The conversion of such filters into
a database query is straightforward, for example, by generating a � ������� clause in SQL. In the
case of a constraint that applies conditionally, like H0@*H0,2�� B�9�D �E"&�J in figure 1.11, we can use
a technique that transforms a conditional constraint into several separate database queries with
their own data filters. However, transforming a constraint with a complex guarding condition
into multiple queries will be complicated and difficult, especially when the condition may involve
nested quantifications. To solve this problem, we only compose database queries by extracting
constraint information that always applies to the solutions. Conditional constraints that remain
in the CSP will then be compiled into CLP program code and handled by the constraint solver.

To complete our discussion, an existentially quantified constraint does not give us enough
information to construct any database query, as it does not require all data to satisfy the constraint.
Now our strategy in forming database queries from a CSP specification is simple:

Every universally quantified constraint that un-conditionally applies to a set of
entity classes is composed into a database query. Other constraints remain in
the CSP specification and will be solved by constraint solvers.

5.2. Variable Domain Population
Database queries composed from the CSP are used to retrieve candidate data and form the

initial solution space.
As a CLP program reasons over CLP data structures, we have to compile the retrieved data

into CLP data structures before they can be used to populate the domains of variables in the CSP.
In the functional data model, attributes of an entity are modelled as functions on a data

object, which is identified by a unique object identifier. Scalar attributes are modelled as scalar
functions while relationships between objects are modelled as non-scalar functions that return
the object identifiers of the related data objects. We represent the relationship between the object
and each attribute by a separate constraint. The following example shows how the ,��	�3@�+.1�
3J
and �I-�?=438�
 � (meaning ‘function value’) term structures are used to represent data objects, the
single-valued attributes H0, ��@�8 , +*93A , H0@*H0,.2 � and multi-valued attribute >64�/ �65/ � of the object96+�� :

,��	�3@�+.1�B�90+
�96+��D�
�-�?=4�8 B&H0,	��@�8�
��&90+��
��&90+�����
 /.13205�-���

� � � � �
J�� � D�
�-�?=4�8 B�+*93A�
�� 90+���
�� 90+�����
�/.132G5�-���

9=@.-�1G5�AH�D�

�-�?=4�8 B&H0@*H0,2���
��&90+���
��&90+	����
 5�-31=@ �6@2�
�&�J0D�
�-�?=4�8 B >64�/	�	�65/ ��
�� 90+���
�� 90+�����
 >642��+�	�65/ ��
�65/ � �D
�-�?=4�8 B >64�/	�	�65/ ��
�� 90+���
�� 90+�����
 >642��+�	�65/ ��
�65/ �=J6D

This approach offers a uniform representation across different entity classes and attributes
by modelling the relationship between the input arguments and output value of a function.
Type information is included to make it self-describing and to discriminate between overloaded
functions. In many logic programming systems, say Prolog, these facts can only be used as
passive tests against instantiating values. That means the constraint information they contain are
only utilised by instantiated variables. Variable instantiation, however, is a strong commitment
which costs a lot to be undone when proved to be wrong. Instead of selecting a value prematurely,
ECLiPSe supports the use of such a user-defined predicate (e.g. �I-�?=438�
 �) as an active constraint
by generalised constraint propagation (Provost and Wallace, 1991), which incorporate the given
constraint information by reducing the variable domain but without instantiating it. Given the
above representation of PC objects, the following ECLiPSe goals set up the constraints between
the domain variables � + ,

� ,	�3@�8 , 9IA ,
� @
H0,2 � and � 5./ � :

,��	�3@�+.1�B�90+
 � +=D 5�-��=@2=/ H0,�/.1�

�-�?=4�8 B&H0,	��@�8�
��&90+��
�� � +��
 /.132G5 -���
 � ,	�3@�86D5 -��=@26/ H6,�/.1�

�-�?=4�8 B�+*93A�
�� 90+���
�� � +���
 /*132G5�-��
 9�A�D5 -��=@26/ H6,�/.1�

�-�?=4�8 B&H0@*H0,2���
��&90+���
�� � +���
 5�-�1�@ �=@I2�
 � @*HG,2 �GD5 -��=@26/ H6,�/.1�

�-�?=4�8 B >64�/	�	�65/ ��
�� 90+���
�� � +���
�>=42+���	�05./ ��
 � 5/ �0D5 -��=@26/ H6,�/.1�

Now the reason of applying data filters in composing the initial variable domains becomes
obvious. As data objects are mapped and stored as Prolog facts in the CLP system, a big data
set will put a high demand on the tuple space of the CLP system, whose ability lies in constraint
reasoning instead of data management.

5.3. Constraint Solving
With the support of the runtime library, our CLP code generator systematically compiles

CIF constraints into ECLiPSe code. The generated program has a top level predicate /I,�8.?=@�
 �
calling three other subgoals, which resemble the three stages of variable declaration, constraint
posting and variable labelling in CLP (Frühwirth et al., 1993; Wallace, 1998). Information is
communicated by a shared variable:

/,�8.?=@�B � >642=@ �0D�� ���@�+I8I42=@"�.?=426/ B � >642=@ �0D
96,�/*1���+I,.-6/.132=465 -�16/ B � >642=@	�6D
8I4��=@�8	�?=4.26/ B � >=42=@	�0D
Figure 1.12 shows the structure of the generated ECLiPSe program. The 96,�/*1 +I,.-0/*132=465�-316/�
 �

clause is the entrance to constraint posting, which calls a conjunction of 9=,�/.1 +I,*-0/.132=4=5�-�1�
3J

solve/1

declare_vars/1

post_constraints/1

label_vars/1

post_constraint/2
.
.
.

post_constraint/2

Figure 1.12. The structure of our generated ECLiPSe program.

goals, where each of them is a result of a single quantified constraint in the original CIF expres-
sions.

Posting constraint alone usually cannot obtain a solution to the CSP but removes invalid
values from the variable domains. Labelling is the final stage of CSP solving where variables
are instantiated to values in their respective domains to reach a consistent constraint network.

We use the ECLiPSe 5�-���,*H6465�-	
 � predicate to instantiate a list of finite domain variables.
When variables are gradually instantiated, delayed constraints are awakened and backtracking
may occur. Once enough information is available for the evaluation of their guarding condi-
tions, Their guarding conditions can now be evaluated to determine whether the constraints are
applicable.

6. Related Work
KRAFT employs an agent-based architecture which is proving to be an effective approach to

developing distributed information systems, as it provides the required extensibility and adapt-
ability by supporting rich knowledge representations, meta-level reasoning about the content of
online resources, and an open environment in which resources can join or leave a network dynam-
ically. Early projects like PACT (Cutkosky et al., 1993) and SHADE (Kuokka et al., 1994) have
already shown that agent technology can the support exchange of rich business information using
the Knowledge Interchange Format (KIF) (Genesereth and Fikes, 1992). The ADEPT project
further shows the flexibility of an agent-based system in supporting agile organisations, with
an emphasis on the dynamic management of workflow between partner organisations (Jennings
et al., 1996). Service agreements are negotiated, formed, and re-formed over time, supporting
both competitive and collaborative interactions, albeit with rather limited forms of information
exchange.

The KRAFT architecture shares similarities with other agent-based distributed information
systems, in particular, the InfoSleuth project (Bayardo et al., 1997; Nodine et al., 1998). Archi-
tecturally, both systems comprise a network of cooperating agents. Scalability is provided by
match-making agents, like broker-agents or facilitator, which associates agents with resources at
runtime. The roles identified for KRAFT agents are also similar to those in InfoSleuth. However,
the major difference lies in KRAFT’s emphasis on the use of both constraints and data, while
InfoSleuth is primarily concerned with data retrieval. In its emphasis on constraints, KRAFT is
similar to the Xerox Constraint Based Brokers project (Andreoli et al., 1995). However, KRAFT
recognises the need to transform constraints when they are extracted from local resources.

KRAFT also builds upon the work of the Knowledge Sharing Effort (KSE) (Fikes et al.,
1991; Neches et al., 1991; Patil et al., 1992), in that some of the facilitation and brokerage
methods are employed, along with a subset of the 1997 KQML specification (Labrou, 1996).
However, unlike the KSE work which attempted to support agents communicating many diverse
forms of knowledge, KRAFT takes the view that constraints are a good compromise between
expressivity and tractability.

The Smart Clients project (Arnal and Faltings, 1999) is related to KRAFT in the way they
conduct problem-solving on a CSP dynamically specified by the customer, using data extracted
from remote databases. Their approach differs from KRAFT in that only data is extracted from
the remote databases, no small-print constraints come attached to the data; also, all the problem-
solving is done on the client, rather than by mediator agents. No constraints are therefore
transmitted across the network; conversely, it is the constraint solver that is transmitted to the
client’s computer, to work with the constraints specified locally by the customer.

Finally, ongoing work at IBM (Reeves et al., 1999) is similar in concept to KRAFT’s use of
small-print constraints. The difference is that this work uses a rule-based formalism to specify
contractual fine print in the form of business rules. Logic program techniques are then used to
reason with the rules.

7. Conclusions
A crucial insight in KRAFT is that quantified constraints, expressed in a sub-language of

first-order logic against a shared data model that is free to evolve, provide an excellent way
of transporting semantics along with data. Thus we recognise the fact that constraints have
evolved from database states restrictors to a kind of portable knowledge that can be exported
and processed. We use constraints to capture domain knowledge, which is distributed among
different resources. These distributed knowledge fragments are combined to give added value
by a process called knowledge fusion.

Once we have the semantic knowledge in this form, remote programs can reuse it very
flexibly. We have developed an extensible problem solving approach that dynamically composes
a problem specification by fusing reusable blocks of constraint knowledge. Our constraint fusion
algorithm puts no restriction on the constraints, except that they must be expressible in the CIF
language.

Our idea of decomposing the fused CSP into sub-problems is an open and flexible approach
that allows different problem solving methods to be used. We fuse constraints in order to
determine a better way to solve them by combining different problem solving paradigms. The
decomposition process is based on a simple heuristic of minimising retrieved data sets and
it adapts to problem instances by analysing the CSP at runtime. The current database query
formation algorithm is a simple one but more sophisticated strategies can be used. Similarly,
database queries and CLP code are generated at runtime for greater flexibility.

KRAFT employs an agent architecture which makes it very suitable to support virtual organ-
isations. The use of this open architecture is an important feature that allows problem solving
knowledge, strategies, heuristics, partial results and problem solutions to be communicated
within the KRAFT domain for the purpose of distributed problem solving.

The KRAFT architecture has been applied to the design of data service networks for telecom-
munication (Fiddian et al., 1999). Future work will focus upon testing and evaluating the KRAFT
architecture in a broader range of business-to-business e-commerce scenarios.

Acknowledgments
This work was initially funded by EPSRC and BT. The research is continuing with funding

from EPSRC to explore applications to Knowledge Reuse under the Advanced Knowledge
Technologies (AKT) project 4 at Aberdeen; this funds the work of Kit Hui.

4URL: ���������	����
�
�
��� ���!�"� �������

References

ECLiPSe Library Manual. ECRC and IC-Parc.
ECLiPSe User Manual. ECRC and IC-Parc.
Andreoli, J.-M., Borghoff, U. M., and Pareschi, R. (1995). Constraint agents for the information

age. Journal of Universal Computer Science, 1:762–789.
Arnal, M. T. i. and Faltings, B. (1999). Smart clients: Constraint satisfaction as a paradigm

for scaleable intelligent information systems. In Finin, T. and Grosof, B., editors, Artificial
Intelligence for Electronic Commerce, pages 10–15. AAAI Press.

Bassiliades, N. and Gray, P. (1994). CoLan: a Functional Constraint Language and Its Imple-
mentation. Data and Knowledge Engineering, 14:203–249.

Bayardo, Jr., R. J., Bohrer, B., Brice, R. S., Cichocki, A., Fowler, J., Helal, A., Kashyap, V.,
Ksiezyk, T., Martin, G., Nodine, M. H., Rashid, M., Rusinkiewicz, M., Shea, R., Unnikrishnan,
C., Unruh, A., and Woelk, D. (1997). Infosleuth: Semantic integration of information in
open and dynamic environments (experience paper). In Peckham, J., editor, SIGMOD 1997,
Proceedings ACM SIGMOD International Conference on Management of Data, May 13-15,
1997, Tucson, Arizona, USA, pages 195–206. ACM Press.

Chiariglione, L. (1998). FIPA – agent technologies achieve maturity. Agent Link Newsletter,
pages 2–4.

Cutkosky, M., Engelmore, R., Fikes, R., Genesereth, M., Gruber, T., Mark, W., Tenenbaum, J.,
and Weber, J. (1993). PACT: an experiment in integrating concurrent engineering systems.
IEEE Computer, 26(1):8–27.

Embury, S. (1995). User Manual for P/FDM V.9.1. Technical report, Dept. of Computing Sc.,
University of Aberdeen. URL: >�131I9 �
�
 ("("(�+3/ � �4����- �4�+ A+��
�� 9��+�.H .

Fiddian, N. J., Marti, P., Pazzaglia, J.-C., Hui, K., Preece, A., Jones, D. M., and Cui, Z. (1999).
A knowledge processing system for data service network design. BT Technical Journal,
17(4):117–130.

Fikes, R., Cutkosky, M., Gruber, T., and Van Baalen, J. (1991). Knowledge Sharing Technology:
Project Overview. Technical Report KSL 91-71, Knowledge Systems Laboratory, University
of Stanford.

Finin, T. and et al., J. W. (1993). Draft Specification of the KQML Agent Communication
Language. The ARPA Knowledge Sharing Initiative, External Interfaces Working Group.

Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994). KQML as an Agent Communication
Language. In Proceedings of Third International Conference on Information and Knowledge
Management (CIKM’94). ACM Press.

Frayman, F. and Mittal, S. (1987). COSSACK: A constraints-based expert system for config-
uration tasks. In Sriram, D. and Adey, R. A., editors, Knowledge Based Expert Systems in
Engineering: Planning and Design, pages 143–165. Computational Mechanics Publications.

Frühwirth, T., Herold, A., Küchenhoff, V., Provost, T. L., Lim, P., Monfroy, E., and Wallace, M.
(1993). Constraint logic programming – an informal introduction. Technical Report ECRC-
93-5, ECRC.

Genesereth, M. and Fikes, R. (1992). Knowledge Interchange Format, Version 3.0, Reference
Manual. Technical Report Report Logic-92-1, Logic Group, Computer Science Department,
Stanford University.

Gray, P., Preece, A., Fiddian, N., Gray, W., Bench-Capon, T., Shave, M., Azarmi, N., Wiegand,
M., Ashwell, M., Beer, M., Cui, Z., Diaz, B., S.M.Embury, K.Hui, A.C.Jones, D.M.Jones,
G.J.L.Kemp, E.W.Lawson, K.Lunn, P.Marti, J.Shao, and P.R.S.Visser (1997). KRAFT: Knowl-
edge Fusion from Distributed Databases and Knowledge Bases. In Wagner, R., editor, Pro-
ceedings of the Eighth International Workshop on Database and Expert Systems Applications,
pages 682–691, Toulouse, France. IEEE Computer Society Press.

Gray, P. M. D., Embury, S. M., Hui, K., and Kemp, G. J. L. (1999a). The evolving role of
constraints in the functional data model. Journal of Intelligent Information Systems, 12:113–
137.

Gray, P. M. D., Hui, K., and Preece, A. D. (1999b). Finding and moving constraints in cyberspace.
In Intelligent Agents in Cyberspace, pages 121–127. AAAI Press. Papers from the 1999 AAAI
Pring Symposium Technical Report SS-99-03.

Hui, K. (2000). Knowledge Fusion and Constraint Solving in a Distributed Environment. PhD
thesis, University of Aberdeen.

Jeffery, K. (1998). Metadata: an overview and some issues. ERCIM News, (35).
Jennings, N., Faratin, P., Johnson, M., Norman, T., O’Brien, P., and Wiegand, M. (1996). Agent-

based business process management. International Journal of Cooperative Information Sys-
tems, (5):105–130.

Kuokka, D., McGuire, J., Weber, J., Tenenbaum, J., Gruber, T., and Olson, G. (1994). SHADE:
Knowledge based technology for the re-engineering problem.

Labrou, Y. (1996). Semantics for an Agent Communication Language. PhD thesis, University of
Maryland, Baltimore MD, USA.

Mailharro, D. (1998). A classification and constraint-based framework for configuration. Artifi-
cial Intelligence for Engineering Design, Analysis and Manufacturing, 12:383–397.

McDermott, J. (1982). A rule-based configurer of computer systems. Artificial Intelligence,
19:39–88.

Mittal, S. and Frayman, F. (1989). Towards a generic model of configuration tasks. In Proceedings
of The 11th International Joint Conference on Artificial Intelligence, pages 1395–1401. AAAI
Press.

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senatir, T., and Swartout, W. (1991).
Enabling Technology for Knowledge Sharing. AI Magazine, 12(3):36–56.

Nodine, M., Perry, B., and Unruh, A. (1998). Experience with the infosleuth agent architecture.
In Proceedings of AAAI 98 Workshop on Software Tools for Developing Agents.

Patil, R., Fikes, R., Patel-Schneider, P., McKay, D., Finin, T., Gruber, T., and Neches, R. (1992).
The DARPA Knowledge Sharing Effort: Progress Report. In Nebel, B. and Swartout, W., ed-
itors, Proceedings of the Third International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’92), pages 777–788, Cambridge, MA, USA. Morgan Kauffman
Publishers.

Preece, A. D., Hui, K., and Gray, P. M. D. (1999). KRAFT: Supporting virtual organisations
through knowledge fusion. In Finin, T. and Grosof, B., editors, Artificial Intelligence for
Electronic Commerce, pages 33–38. AAAI Press.

Provost, T. L. and Wallace, M. (1991). Generalised constraint propagation over the CLP scheme.
Technical Report ECRC-91-1, ECRC. Also appears in Journal of Logic Programming, 16(3):319–
359, 1993.

Reeves, D. M., Grosof, B. N., Wellman, M. P., and Chan, H. Y. (1999). Toward a declarative
language for negotiating executable contracts. In Finin, T. and Grosof, B., editors, Artificial
Intelligence for Electronic Commerce, pages 39–45. AAAI Press.

Sabin, D. and Freuder, E. C. (1996). Configuration as composite constraint satisfaction. In Work-
shop Notes of AAAI Fall Symposium on Configuration, pages 28–36, Menlo Park, California.
AAAI Press.

Schein, E. (1994). Innovative cultures and organisations. pages 125–146.
Shipman, D. (1981). The Functional Data Model and the Data Language DAPLEX. ACM Trans-

actions on Database Systems, 6(1):140–173.
Wallace, M. (1998). Constraint programming. In Jay, L., editor, The Handbook of Applied Expert

Systems. CRC Press.

