Pull and Push arrays, Effects and Array Fusion

Josef Svenningsson
Chalmers University of Technology

Edinburgh University 2014-11-18
Parallel Functional Array Representations
Efficiency

This talk will center around efficient array representations.

An array operation is *efficient* if it supports:

- Fusion
- No memory allocation
- Parallelizable
- No conditionals inside generated loops

Additional bonus points for:

- No use of div or mod
Pull arrays

```haskell
data Pull a = Pull (Int -> a) Int
```

- Each element is computed independently
 - The consumer decide how to schedule the computations
 - Makes it easy to parallelize

- Well known, used in many different libraries and formalisms
Pull arrays

Some example functions

map :: (a -> b) -> Pull a -> Pull b
map f (Pull ixf l) = Pull (f . ixf) l

sum :: Num a => Pull a -> a
sum (Pull ixf l)
 = forLoop l 0 (\i sum ->
 sum + ixf i
)

zipWith :: (a -> b -> c) -> Pull a -> Pull b -> Pull c
zipWith f (Pull ixfa la) (Pull ixfb lb)
 = Pull (\i -> f (ixfa i) (ixfb i))
 (min la lb)
Pull array fusion

Scalar product:

\[
\text{scProd} :: \text{Num a} \Rightarrow \text{Pull a} \rightarrow \text{Pull a} \rightarrow a
\]

\[
\text{scProd a b} = \text{sum} (\text{zipWith} (*) a b)
\]
Pull array fusion

Scalar product:

```haskell
scProd :: Num a => Pull a -> Pull a -> a
scProd a b = sum (zipWith (*) a b)
```

Fusion:

```haskell
sum (zipWith (*) (Pull ixfa la) (Pull ixfb lb)) =
sum (Pull (\i -> ixfa i * ixfb b) (min la lb)) =
forLoop (min la lb) 0 (\i sum ->
  sum + (ixfa i * ixfb b))
```
Pull arrays in depth

Representing arrays as functions from index to elements has some advantages:

- Fusion
- Compositional style of programming
- Many efficient functions
Pull concatenation

\((++): \text{Pull } a \rightarrow \text{Pull } a \rightarrow \text{Pull } a\)

\text{Pull } \text{ixf1 } l1 \quad ++ \quad \text{Pull } \text{ixf2 } l2 = \text{Pull } \text{ixf} \ (l1+l2)

\text{where } \text{ixf } i = \text{if } i < l1

\quad \quad \text{then } \text{ixf1 } i

\quad \quad \text{else } \text{ixf2 } (i - l1)

This definition is not \textit{efficient} because it contains a conditional which will be tested each iteration in the inner loop.
Problems

Not all functions are efficient:

- Concatenation
 - Results in a conditional in the inner loop
- Producing more than one element at a time
 - Impossible since each element is computed independently
Push arrays

\[
data \text{Push } a = \text{Push } ((\text{Int} \rightarrow a \rightarrow M()) \rightarrow M()) \text{ Int}
\]

- \(M \) is some monad which provides:
 - mutable updates
 - parallelism

- Intuition:
 - Push arrays are programs which write an array to memory,
 - Parameterized by how to write each element to memory

- The producer decides the scheduling order, consumers must be able to handle any order
Push arrays solve the shortcomings of Pull arrays

- Provides efficient concatenation
 \[
 \text{Push } p \ l \ +\ + \ \text{Push } q \ m = \text{Push } r \ (l+m)
 \]
 where
 \[
 r \ w = \text{do} \ p \ w
 \]
 \[
 q \ (\i \ a \rightarrow w \ (i+1) \ a)
 \]

- Can write several elements at once
 \[
 \text{dup} \ (\text{Push } p \ l) = \text{Push } q \ (2*l)
 \]
 where
 \[
 q \ w = p \ (\i \ a \rightarrow w \ (2*i) \ a >> w \ (2*i+1) \ a)
 \]

- Have the same strong fusion guarantees
Duality of Push and Pull

<table>
<thead>
<tr>
<th></th>
<th>Pull</th>
<th>Push</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permutations</td>
<td>Ok</td>
<td>Ok</td>
</tr>
<tr>
<td>Functor</td>
<td>Ok</td>
<td>Ok</td>
</tr>
<tr>
<td>Splitting</td>
<td>Ok</td>
<td>Nope</td>
</tr>
<tr>
<td>Zipping</td>
<td>Ok</td>
<td>Nope</td>
</tr>
<tr>
<td>Concatenating</td>
<td>Nope</td>
<td>Ok</td>
</tr>
<tr>
<td>Multiple writes in loop</td>
<td>Nope</td>
<td>Ok</td>
</tr>
</tbody>
</table>

Ok means operations are *efficiently* implementable.

Nope means I’m fairly sure there are no *efficient* implementations.
Combining Pull and Push

- It is efficient to convert from Pull arrays to Push arrays. It means coming up with a schedule for the Push array.

 \[
 \text{pullToPush} :: \text{Pull } a \rightarrow \text{Push } a
 \]
 \[
 \text{pullToPush} (\text{Pull } \text{ixf } l) = \text{Push } f l
 \]
 \[
 \text{where } f k = \text{parM } l \times \{ i \rightarrow k (\text{ixf } i) i \}
 \]

- Converting from Push array to Pull arrays requires memory. Goes from a completely scheduled representation to a random access representation.

 \[
 \text{force} :: \text{Push } a \rightarrow \text{M } (\text{Pull } a)
 \]
 \[
 \text{force} (\text{Push } f l) =
 \]
 \[
 \text{do } marr \leftarrow \text{newArray} (0, l-1)
 \]
 \[
 f (\{ a \rightarrow \text{writeArray } marr i a \})
 \]
 \[
 \text{arr} \leftarrow \text{freeze } marr
 \]
 \[
 \text{return } (\text{Pull } (\{ i \rightarrow \text{arr}!i \}) l)
 \]
Array transformations

It’s cheap to convert Pull \rightarrow Push but expensive to convert Push \rightarrow Pull

This suggests a way to structure array computations.

- Start with Pull. Compute, compute, compute.
- Stop when we encounter an operation which cannot be done efficiently with Pull
- Convert to Push. Compute, compute, compute.
- At some point, we can’t keep it as Push any longer and store to memory.
Array transformations
Array transformations

```haskell
type ArrTrans a b = Pull a -> Push b
```

- Guarantee: All array transformations are *efficient* when built from operations on Pull and Push arrays.
- Composing transformations seem to require storing to memory
Example: Stencil computations

Previously, stencil computations has been modelled by Pull arrays.

- Repa has a very intricate version of pull arrays to accommodate efficient stencil computations. However, not all stencil computations can be efficiently implemented using Repa. Only *gather* stencils can be implemented.

- Efficient stencil computations are implemented like this:
 - Divide up input array in sections, perform stencil computations, concatenate all sections.
 - Corresponds very well to array transformations: Start with Pull arrays which can be efficiently split. End with Push arrays which can be efficiently concatenated.
Stencil computations

Stencil example (gather stencil):

- Each element of the new array is computed from four elements of the old array
Stencil computations: boundary

Stencil boundary
Stencil computations: split

Using different computations for different regions allows for computing the large center region without testing for the edge cases.

Splitting arrays for efficiency
Stencil computations: split

Splitting arrays fits array transformations perfectly

- Splitting is efficiently done using Pull arrays
- Reading the individual elements is done from a Pull array
- Caching previous reads can be achieved using Push arrays
- Reassembling the array corresponds to concatenation, which is done efficiently using Push arrays
Accommodating scatter stencils is easy

- Push arrays can be used to write several array elements at once.
Combining gather and scatter

Array transformations can even deal with combined gather and scatter stencils

- Example: image scaling
Stencil computations functionally

Stencil computations have been thoroughly explored using Pull arrays.

- Repa
- Ypnos

Two downsides of these approaches

- Only deals with *gather* stencils.
- Efficient implementations needs much more complicated version of Pull arrays

An advantage array transformations is that they can handle both *gather* and *scatter*.

Scatter stencils are important when the size of the array change.
Summary: Pull and Push

- Pull and Push are two complementary array representations
 - Parallelizeable
 - Supports fusion

- Array transformations
 - type ArrTrans a b = Pull a -> Push b
 - Very general and useful notion of array computations
 - Stencil
 - FFT
 - Composing array transformations means allocating memory because we’re going from Push to Pull
Arrays as (co)monads
Pull arrays are comonads

class Comonad c where
 counit :: c a -> a
 cobind :: (c a -> b) -> c a -> c b

instance Comonad Pull where
 counit (Pull ixf l) = ixf 0
 cobind f vec@(Pull _ l) = Pull (\ix -> f (rotateL ix vec)) l

rotateL :: Int -> Pull a -> Pull a
rotateL i (Pull ixf l) = Pull (\ix -> ixf ((ix + i) `mod` l)) l

Definition is Efficient.
Cobind

1 2 3 4

is transformed into

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
A more efficient Pull array comonad

data Pull a = Pull (Int -> a) Int Int

The extra Int is a cursor pointing into the array.

instance Comonad Pull where
 counit (Pull ixf _ focus) = ixf focus
 cobind f (Pull ixf l focus)
 = Pull (\ix -> f (Pull ixf l ix)) l focus

▶ The focus is only relevant for the Comonad instance
▶ Other operations just ignore the focus (or pass it along).
Push arrays are monads

```
instance Monad Push where
    return a = Push (\k -> k a 0) 1
    p >>= f = bindP p f

bindP :: Push a -> (a -> Push b) -> Push b
bindP (Push ixf l) k = Push ixf' l'
    where ixf' k' = do r <- newIORef 0
                      ixf (\ a i ->
                          do n <- readIORef r
                            let (Push ixf'' l'') = k a
                            ixf'' (\b j -> k' b (j+n))
                            modifyIORef r (+l'')
                          )
                      l' = unsafePerformIO $ 
                      do r <- newIORef 0
                         ixf (\ a _ ->
                          do let (Push _ l'') = k a
                              modifyIORef r (+l'')
                          )
                         readIORef r
```

Push arrays are monads

The definition of \(\text{bindP} \) is only semi-efficient.

- In order to parallelize it, requires a parallel prefix sum
- Requires allocating an intermediate array, the size of the outer array.

Can be made efficient by using static sizes.

- Requires indexed monads and comonads

Nesting:

- It requires nested parallel loops - problematic on some target architectures (e.g. GPU)
People have previously noted the relationship between:

<table>
<thead>
<tr>
<th>Comonads</th>
<th>Gather stencils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monads</td>
<td>Scatter stencils</td>
</tr>
</tbody>
</table>
Composing array transformations
What Would Category Theorists Do?

We know that Pull arrays are Comonads and Push arrays are Monads.

Can we use these facts somehow?
Combining Monads and Comonads

Category

\[(\cdot) :: (c \ b \to m \ d) \to (c \ a \to m \ b) \to (c \ a \to m \ d)\]

Can this operator be implemented \textit{efficiently}?

It would be a way to compose array transformations.
Combining Monads and Comonads

How category theorists implement composition

\[(\cdot) :: (\text{Monad } m, \text{Comonad } c) \Rightarrow (c \, b \rightarrow m \, d) \rightarrow (c \, a \rightarrow m \, b) \rightarrow (c \, a \rightarrow m \, d)\]

\[f \cdot g = \text{join} \cdot \text{fmap} \, f \cdot \text{distribute} \cdot \text{fmap} \, g \cdot \text{cojoin}\]

The crucial bit is the distribute function.

\[\text{distribute} :: \text{Pull} \,(\text{Push} \, a) \rightarrow \text{Push} \,(\text{Pull} \, a)\]

Can we implement this function?
Distribute

Two lines of attack for implementing distribute.

\[
\text{distPull :: C1 m \Rightarrow Pull (m a) \rightarrow m (Pull a)}
\]

\[
\text{distPush :: C2 c \Rightarrow c (Push a) \rightarrow Push (c a)}
\]
Distribute II

distPull :: ParM m => Pull (m a) -> m (Pull a)
distPull (Pull ixf l) = parM l $ \i -> do
 a <- ixf i
 return (Pull (\ix -> a) 1)

This definition is efficient.

Gives rise to nested parallel loops.
Distribute laws

Power and Watanabe list the following laws for distribute.

1. \(\text{distribute} \ . \ \text{fmap} \ \text{join} = \text{join} \ . \ \text{fmap} \ \text{distribute} \ . \ \text{distribute} \)
2. \(\text{distribute} \ . \ \text{fmap} \ \text{return} = \text{return} \)
3. \(\text{distribute} \ . \ \text{fmap} \ \text{distribute} \ . \ \text{cojoin} = \text{fmap} \ \text{cojoin} \ . \ \text{distribute} \)
4. \(\text{counit} = \text{fmap} \ \text{counit} \ . \ \text{distribute} \)

- The laws hold if we flatten nested arrays and compare them element wise
- Different parallelization choices
Given that Pull and Push distribute we can compose array transformations \((\text{semi-}) \text{ efficiently} \).

\[
(\cdot) :: \text{ArrTrans}\;b\;c \rightarrow \text{ArrTrans}\;a\;b \rightarrow \text{ArrTrans}\;a\;c
\]

- Stencil fusion!
Conclusions

- Push and Pull are dual; Monads and Comonads
- Push and Pull distribute
- Array transformations Pull a \(\rightarrow\) Push b are efficient
- Array transformations can be (semi-) efficiently composed

Future work:

- Explore the full consequence of distributivity
- Pull and Push arrays generalize to multi-dimensional arrays. How do array transformations and distribution handle higher dimensions?
- Proofs
Thanks

Some pictures from Wikipedia, CC-BY-SA 3.0