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Abstract

We present a technique to combine deep and shallow embedding in the context
of compiling embedded languages in order to provide the benefits of both tech-
niques. When compiling embedded languages it is natural to use an abstract
syntax tree to represent programs. This is known as a deep embedding and
it is a rather cumbersome technique compared to other forms of embedding,
typically leading to more code and being harder to extend. In shallow embed-
dings, language constructs are mapped directly to their semantics which yields
more flexible and succinct implementations. But shallow embeddings are not
well-suited for compiling embedded languages.

Our technique uses a combination of deep and shallow embedding, which
helps keeping the deep embedding small and makes extending the embedded
language much easier. The technique also has some unexpected but welcome
secondary effects. It provides fusion of functions to remove intermediate re-
sults for free without any additional effort. It also helps to give the embedded
language a more natural programming interface.

1. Introduction

Domain specific languages (DSLs) provide an effective means of increasing
programmer productivity [25]. In order to lessen the initial cost of implementing
the DSL, many implementors choose to embed the language in a host language.
Embeddings can come in many shapes and forms [19], partly dictated by the
purpose of the language. This article focuses on DSLs which are designed to
generate code. In this situation it is natural to use an algebraic data type to
represent the abstract syntax tree (AST) of the DSL. This is known as a deep
embedding. Deep embeddings can be cumbersome: the AST definition can grow
large when each language construct has its own constructor. It is also laborious
to add new language constructs as it requires changes to the AST as well as all
functions manipulating the AST.
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In contrast, shallow embeddings don’t require an abstract syntax tree and
all the problems that come with it. Instead, language constructs are mapped
directly to their semantics. Nevertheless, there are many situations in which it
is convenient to have access to an AST – especially when we wish to transform
expressions and generate code from them.

In this paper we present a technique for combining deep and shallow em-
beddings in order to achieve many of the advantages of both styles. Concretely,
we propose to define DSLs using shallow embeddings which generate a deeply
embedded AST. This combination turns out to provide surprising but welcome
secondary effects which we explore. In particular, our technique has the follow-
ing advantages:

Simplicity. By moving functionality to shallow embeddings, our technique helps
keep the AST small without sacrificing expressiveness.

Abstraction. The shallow embeddings are based on abstract data types leading
to better programming interfaces (more like ordinary APIs than constructs of
a language). This has important additional benefits:

• The shallow interfaces can have properties not possessed by the deep em-
bedding. For example, our vector interface (Section 4.9) guarantees re-
moval of intermediate structures (see Section 5).

• The abstract types can sometimes be made instances of standard Haskell
type classes, such as Functor and Monad, even when the deep embedding
cannot (demonstrated in Sections 4.8, 4.9 and 6).

Extensibility. Our technique can be seen as a partial solution to the expression
problem [43] as it makes it easier to extend the embedded language with new
language constructs and functions.

1.1. Organization

The paper is organized as follows: In Section 2 we start by giving a more
detailed introduction to shallow and deep embeddings, including a comparison
of the two methods (Section 2.1). Section 3 gives a detailed description of our
technique. Section 4 demonstrates the technique by defining a deep embedding
and showing a number of examples of how it can be extended with new shallow
language constructs. Section 5 describes how fusion comes for free as a con-
sequence of our technique and explain in detail what guarantees it provides.
Section 6 describes how to embed arbitrary monads and shows a monad for
mutable data structures as an example. Finally, Section 7 discusses how the
presented techniques can be scaled up to a full EDSL implementation.

Throughout this paper we will use Haskell [32] and some of the extensions
provided by the Glasgow Haskell Compiler. Code from this paper be found in
the following repository: https://github.com/josefs/deep-shallow-paper.
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This article is an extended version of our paper “Combining Deep and Shal-
low Embedding for EDSL” which appeared in Trends in Functional Program-
ming 2012 [38]. New material presented here includes Sections 6 and 7 which
are completely new. Section 5 has been expanded with more examples of fus-
able data structures. The deep embedding in Section 4 has been changed in
some ways: Binding is now handled using the Lam and :$ constructors. We have
included a Syntactic instance for functions, which simplifies the definition of
smart constructors. Literals have been generalized to more closely match what
an actual implementation would look like. We have also added a function for
rendering the generated ASTs in Section 4.10. Finally, bugs have been fixed in
the evaluator in Section 4 and the description of the Option type in Section 4.8.

2. Shallow and Deep – Pros and Cons

To explain the meaning of “deep” and “shallow” we will use the following
small embedded domain specific language (EDSL) by Carlson et al. [9] as an
illustrating example.

type Region

inRegion : : Point → Region → Bool
c i r c l e : : Radius → Region
outside : : Region → Region
( ∩ ) : : Region → Region → Region
( ∪ ) : : Region → Region → Region

This piece of code defines a small language for regions, i.e. two-dimensional
areas. It only shows the interface; we will give two implementations, one deep
and one shallow.

The type Region defines the type of regions which is the domain we are con-
cerned with in this example. We can interpret regions by using inRegion , which
allows us to check whether a point is within a region or not. We will refer to
functions such as inRegion which interpret values in our domain as interpreta-
tion functions. The function inRegion takes an argument of type Point and we
will just assume there is such a type together with the expected operations on
points.

Regions can be constructed using circle which creates a region with a given
radius (again, we assume a type Radius without giving its definition). The func-
tions outside , ( ∩ ) and ( ∪ ) take the complement, intersection and union of
regions. As an example of how to use the language, we define the function
annulus which can be used to construct donut-like regions given two radii:

annulus : : Radius → Radius → Region
annulus r1 r2 = outside ( c i r c l e r1) ∩ ( c i r c l e r2)

The first implementation of our small region EDSL will use a shallow em-
bedding. The code is shown below.
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type Region = Point → Bool

p ‘ inRegion ‘ r = r p
c i r c l e r = λp → magnitude p ≤ r
outside r = λp → not ( r p)
r1 ∩ r2 = λp → r1 p && r2 p
r1 ∪ r2 = λp → r1 p | | r2 p

Our concrete implementation of the type Region is the type Point → Bool. We
will refer to the type Point → Bool as the semantic domain of the shallow em-
bedding. It is no coincidence that the semantic domain is similar to the type of
the function inRegion . The essence of shallow embeddings is this:

Definition 1. A shallow embedding represents language constructs as their se-
mantics in the host language.

In our case Region is represented exactly as a test whether a Point is within the
region or not.

The implementation of the function inRegion becomes trivial; it simply uses
the function used to represent regions. This is common for shallow embeddings;
interpretation functions like inRegion , can make direct use of the operations used
in the representation. All the other functions encode what it means for a point
to be inside the respective region.

We characterize deep embeddings as follows:

Definition 2. A deep embedding represents language constructs as construc-
tors in an abstract syntax tree.

Below is how we would represent our example language using a deep embedding.

data Region = Circle Radius | Intersect Region Region
| Outside Region | Union Region Region

c i r c l e r = Circle r
outside r = Outside r
r1 ∩ r2 = Intersect r1 r2
r1 ∪ r2 = Union r1 r2

p ‘ inRegion ‘ ( Circle r ) = magnitude p ≤ r
p ‘ inRegion ‘ (Outside r ) = not (p ‘ inRegion ‘ r )
p ‘ inRegion ‘ ( Intersect r1 r2) = p ‘ inRegion ‘ r1 && p ‘ inRegion ‘ r2
p ‘ inRegion ‘ (Union r1 r2) = p ‘ inRegion ‘ r1 | | p ‘ inRegion ‘ r2

The type Region is here represented as a data type with one constructor for each
function that can be used to construct regions.

Writing the functions for constructing new regions becomes trivial. It is
simply a matter of returning the right constructor. The hard work is instead
done in the interpretation function inRegion which has to interpret the meaning
of each constructor.
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2.1. Brief Comparison

As the above example EDSL illustrates, a shallow embedding makes it easier
to add new language constructs – as long as they can be represented in the
semantic domain. For instance, it would be easy to add a function rectangle

to our region example. On the other hand, since the semantic domain is fixed,
adding a different form of interpretation, say, computing the area of a region,
would not be possible without a complete reimplementation.

In the deep embedding, we can easily add new interpretations (just add
a new function like inRegion ), but it comes at the price of having a fixed set
of language constructs. Adding a new construct to the deep implementation
requires updating the Region type as well as all existing interpretation functions.

This comparison shows that shallow and deep embeddings are dual in the
sense that the former is extensible with regards to adding language constructs
while the latter is extensible with regards to adding interpretations. The holy
grail of embedded language implementation is to be able to combine the advan-
tages of shallow and deep in a single implementation. This is an instance of the
expression problem [43].

One way to work around the limitation of deep embeddings not being ex-
tensible is to use “derived constructs”. An example of a derived construct is
annulus , which we defined in terms of outside , circle and ( ∩ ). Derived con-
structs are shallow in the sense that they do not have a direct correspondence
in the underlying embedding. Shallow derived constructs of a deep embedding
are particularly interesting as they inherit most advantages of both shallow and
deep embeddings. They can be added with the same ease as constructs in a fully
shallow embedding. Yet, the interpretation functions only need to be aware of
the deep constructs, which means that we retain the freedom of interpretation
available in deep embeddings. There are, of course, limitations to how far these
advantages can be stretched. We will return to this point in the concluding
discussion (Section 9).

The use of shallow derived constructs is quite common in deeply embedded
DSLs. However, the technique presented in this paper is novel and goes beyond
“simple” derived constructs to extensions with new interface types leading to
drastically different interfaces.

One existing solution to the problem of extending deep embeddings is Data
Types à la Carte [41]. It makes it possible to define several independent data
types and combine them to a single deep embedding in a modular way. However,
regardless of this modularity, extending a deep embedding makes the language
larger and increases the number of cases that need to be handled when traversing
expressions. In contrast, our approach allows the definition of rich languages on
top of simple deep embeddings. It is often possible to extend the language with
no or minimal changes to the compiler when using our approach.

To be clear, our technique is not in competition with Data Types à la Carte.
The two techniques complement each other and can be combined just fine [2, 31].
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3. Overview of the Technique

We assume a setting where we want an EDSL that generates code. Code
generation tends to require intensional analysis of the AST, which is not di-
rectly possible with a shallow implementation. Hence, we will start with a deep
embedding as a basis. Our technique can be summarized in the following steps:

1. Implement a deeply embedded core language. The aim of the core lan-
guage is not to act as a convenient user interface, but rather to support
efficient generation of common code patterns in the target language. For
this reason, the core language should be kept as simple as possible.

2. Implement user-friendly interfaces as shallow embeddings on top of the
core language. Each interface is represented by a separate type and oper-
ations on this type.

3. Give each interface a precise meaning by giving a translation to and from
a corresponding core language program. In other words, make the deep
embedding the semantic domain of the shallow embedding. This is done
by means of type class instantiation. If such a translation is not possible,
or not efficient, extend the core language as necessary.

In the sections that follow we will demonstrate our technique by defining
a deep embedding and showing a number of examples of shallow extensions.
For the sake of concreteness we have made some superficial choices which are
orthogonal to our technique. In particular, we use a typed representation of the
deep embedding and employ higher order abstract syntax to deal with binding
constructs. Neither of these choices matter for the applicability of our technique.

4. Demo: Deep Embedding with Shallow Extensions

To demonstrate our technique we will use a small embedded language called
FunC as our running example.

4.1. Deep Embedding

The data type describing the FunC abstract syntax tree can be seen in
Figure 1. 1 FunC is a low level, pure functional language which has a straight-
forward translation into C. It is meant for embedding low level programs and
is inspired by the core language used in Feldspar [4]. We use a GADT to give
precise types to the different constructors. We have also chosen Higher Order
Abstract Syntax (HOAS) [33] for the Lam constructor.

The first two constructors, :$ and Lam correspond to application and abstrac-
tion in the lambda calculus. Then there are a number of symbols for different
language constructs: Lit introduces a literal; If introduces a function for testing
booleans; While introduces a functional while loop (explained in Section 4.3);

1We use a serif font to refer to the language FunC, and sans serif to refer to the data type
implementation FunC.
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data FunC a where
( :$) : : FunC (a → b) → FunC a → FunC b −− Application
Lam : : (FunC a → FunC b) → FunC (a → b) −− Abstraction

−− Symbols
Lit : : Show a ⇒ a → FunC a
I f : : FunC (Bool → a → a → a)
While : : FunC (( s → Bool) → (s → s) → s → s)
Pair : : FunC (a → b → (a ,b))
Fst : : FunC ((a ,b) → a)
Snd : : FunC ((a ,b) → b)
Prim : : String → a → FunC a

−− Interpretation of variables
Value : : a → FunC a −− Value of a variable
Variable : : String → FunC a −− Name of a variable

Figure 1: A deep embedding of FunC

Pair , Fst and Snd are for constructing and eliminating pairs; Prim introduces a
primitive function.

The last two constructors, Value and Variable , are not part of the language.
They are used internally for evaluation and printing respectively (see Sections 4.4
and 4.10). It would be possible to avoid these odd constructors by using a pa-
rameteric HOAS representation [10], but we have opted for a simpler represen-
tation in this paper.

Instead of letting the user write explicit applications, we can define smart
constructors corresponding to the different symbols:

ifC : : FunC Bool → FunC a → FunC a → FunC a
ifC c t f = I f :$ c :$ t :$ f

pair : : FunC a → FunC b → FunC (a ,b)
pair a b = Pair :$ a :$ b

4.2. Primitive Functions and Literals

The Prim symbol introduces a primitive function from a name (used for print-
ing and code generation) and a semantic function (used for evaluation). We can
use Prim and Lit to instantiate the Num class for FunC:

instance (Num a , Show a) ⇒ Num (FunC a) where
fromInteger = Lit . fromInteger
a + b = Prim ”(+)” (+) :$ a :$ b
a − b = Prim ”(−)” (−) :$ a :$ b
a ∗ b = Prim ”(∗)” (∗) :$ a :$ b
abs a = Prim ”abs” abs :$ a
. . .

Note that the arity of the semantic function passed to Prim determines the
number of applications needed. With the above Num instance, we can write FunC
expressions that look like ordinary Haskell; for example, 10 + 5 :: FunC Int .
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While numeric literals are conveniently introduced using the Num instance,
boolean literals are written using the following definitions:

true , fa l se : : FunC Bool
true = Lit True
fa l se = Lit False

We will also be using comparison and integral operators in FunC. For tire-
some reasons it is not possible to overload the methods of the corresponding type
classes Eq, Ord and Integral : for example, the == operator returns a Haskell Bool

and there is no way we can change that to fit the types of FunC. Instead we
will simply assume that the standard definitions of the comparison and integral
operators are hidden and we will use definitions specific to FunC.

4.3. Higher-Order Functions

The While symbol has a higher-order type: (s → Bool) → (s → s) → s → s.
Seen as an ordinary Haskell function, it is supposed to work as follows: the
first argument is a function that determines whether or not to continue based
on the current state (of type s); the second argument is the step function that
computes the next state from the current state; the third argument is the initial
state; the result is the final state. The reason for having a step function is that
FunC is pure, so the body of the loop cannot perform side-effects.

A first attempt to make a smart constructor for While might lead to the
following definition:

while : : FunC (s → Bool) → FunC (s → s) → FunC s → FunC s
while cont step i n i t = While :$ cont :$ step :$ i n i t

The problem with this function is that it expects FunC expressions of function
types as argument. Such expressions can be created using Lam or some of the
symbols of FunC. However, using symbols to construct the function expression
is generally not a good idea, because when analyzing or compiling expressions
we usually want the state of the while loop to be associated with a variable. So,
since we always want to use Lam for these arguments, it is convenient to let the
smart constructor insert Lam automatically for us:

while : : (FunC s → FunC Bool) → (FunC s → FunC s) → FunC s → FunC s
while cont step i n i t = While :$ Lam cont :$ Lam step :$ i n i t

Now the while loop starts to look like an ordinary higher-order Haskell func-
tion, and we can even write some examples with it. The following toy program
computes the smallest multiple of 2 that is greater than 100:

ex1 : : FunC Int
ex1 = while (≤ 100) (∗2) 1

Being based on the lambda calculus, FunC can represent arbitrary higher-
order expressions. This is problematic if we want to generate efficient low-level
code from FunC. In Section 7, we will discuss how to restrict the use of higher-
order expressions, so that efficient code can be generated.
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4.4. Evaluation

The exact semantics of the FunC language is given by the eval function which
maps a FunC expression to the corresponding Haskell expression:

eval : : FunC a → a
eval ( f :$ a) = eval f $! eval a
eval (Lam f ) = eval ◦ f ◦ Value
eval ( Lit l ) = l
eval I f = λc t f → i f c then t else f
eval While = λc b i → head $ dropWhile c $ iterate b i
eval Pair = ( ,)
eval Fst = f s t
eval Snd = snd
eval (Prim f ) = f
eval (Value a) = a

Evaluation of the Lam constructor uses a standard technique for folding
HOAS terms [18]. The argument f is of type FunC a → FunC b and we need
to return something of type a → b. This is done by using Value to convert a to
FunC a, apply the function f, and finally use eval to convert the resulting b to
FunC b. Our only use of the Value constructor is in eval .

There is no case for Variable in eval . This is because Variable is not part
of the FunC language, but only a technicality used for inspecting AST (see
Section 4.10).

Note that application maps to strict application in Haskell, reflecting the
fact that FunC is meant to be compiled to targets without support for lazy
evaluation.

4.5. Extensible User Interfaces – the Syntactic Class

So far our presentation of FunC has been a purely deep embedding. Our
goal is to be able to add shallow embeddings on top of the deep embedding and
in order to make that possible we will make our language extensible using a type
class. This type class will encompass all the types that can be compiled into
the FunC language. We call the type class Syntactic (inspired by a less general
class of the same name in Pan [16]).

class Syntactic a where
type Internal a
toFunC : : a → FunC ( Internal a)
fromFunC : : FunC ( Internal a) → a

When making an instance of the class Syntactic for a type T one must spec-
ify how T will represented internally, in the already existing deep embedding.
This is what the associated type Internal is for. The two functions toFunC and
fromFunC translate back and forth between an element of type T and its FunC
term representation.

It is generally not the case that toFunC and fromFunC are each other’s inverses;
however, they must preserve the semantics of the expression:
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Law 1. For all types t in the Syntactic class and all expressions
a :: FunC ( Internal t ) the following must hold:

eval a == eval (toFunC (fromFunC a : : t ))

The first instance of Syntactic is simply FunC itself, and the instance is com-
pletely straightforward.

instance Syntactic (FunC a) where
type Internal (FunC a) = a
toFunC ast = ast
fromFunC ast = ast

In Section 4.1, we defined smart constructors to make it easier to construct
FunC expressions. Now that we have the Syntactic class we can give an even
nicer extensible interface to the programmer. This interface will mirror the deep
embedding and its constructors but will use the class Syntactic to overload the
functions to make them compatible with any type that we choose to make an
instance of Syntactic .

ifC : : Syntactic a ⇒ FunC Bool → a → a → a
ifC c t e = fromFunC ( I f :$ c :$ toFunC t :$ toFunC e)

c ? (t , e) = ifC c t e

while : : Syntactic s ⇒ (s → FunC Bool) → (s → s) → s → s
while c b i = fromFunC (While :$ Lam (c ◦ fromFunC)

:$ Lam (toFunC ◦ b ◦ fromFunC)
:$ toFunC i )

When specifying the types in our new interface we note that base types
are not overloaded, they are still on the form FunC Bool. The big difference
is when we have polymorphic functions. The function ifC works for any a as
long as it is an instance of Syntactic . The advantage of the type Syntactic a ⇒
FunC Bool → a → a → a over FunC Bool → FunC a → FunC a → FunC a is two-fold:
First, it is closer to the type that an ordinary Haskell function would have and
so it gives the function a more native feel, like it is less of a library and more
of a language. Secondly, it makes the language extensible. These functions can
now be used with any type that is an instance of Syntactic . We are no longer
tied to working solely on the abstract syntax tree FunC.

4.6. Embedding Pairs

We have not yet given an interface for pairs. The reason for this is that they
provide an excellent opportunity to demonstrate our technique. We simply
instantiate the Syntactic class for Haskell pairs:

instance ( Syntactic a , Syntactic b) ⇒ Syntactic (a ,b) where
type Internal (a ,b) = ( Internal a , Internal b)
toFunC (a ,b) = Pair :$ toFunC a :$ toFunC b
fromFunC p = (fromFunC (Fst :$ p) , fromFunC (Snd :$ toFunC p))
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In this instance, toFunC constructs an embedded pair from a Haskell pair, and
fromFunC eliminates an embedded pair by selecting the first and second compo-
nent and returning these as a Haskell pair.2

The usefulness of pairs comes in when we need an existing function to operate
on a compound value rather than a single value. For example, the state of the
while loop is a single value. If we want the state to consist of, say, two integers, we
use a pair. Since functions such as ifC and while are overloaded using Syntactic ,
there is no need for the user to construct compound values explicitly; this is
done automatically by the overloaded interface.

As an example of this, here is a for loop defined using the while construct
with a compound state:

forLoop : : Syntactic s ⇒ FunC Int → s → (FunC Int → s → s) → s
forLoop len i n i t step = snd $ while (λ( i , s ) → i<len )

(λ( i , s ) → ( i+1, step i s ))
(0 , i n i t )

The first argument to forLoop is the number of iterations; the second argument is
the initial state; the third argument is the step function which, given the current
loop index and current state, computes the next state. We define forLoop using
a while loop whose state is a pair of an integer and a smaller state.

Note that the above definition only uses ordinary Haskell pairs: The continue
condition and step function of the while loop pattern match on the state using
ordinary pair syntax, and the initial state is constructed as a standard Haskell
pair.

Another example of using the while loop and pairs together is the following
implementation of the greatest common divisor algorithm:

gcd : : FunC Int → FunC Int → FunC Int
gcd a b = f s t $ while (λ(a ,b) → a /= b)

(λ(a ,b) → a > b ? ( (a−b,b) , (a ,b−a) ))
(a ,b)

The state of the while loop is two integers where the smaller integer is subtracted
from the larger until they are equal.

4.7. Embedding Functions

Writing smart constructors such as ifC and while is quite a boring task, and
it would be nice to be able to automate it. Consider the While symbol and the
corresponding non-overloaded smart constructor:

While : : FunC (( s → Bool) → (s → s) → s → s)

while : : (FunC s → FunC Bool) → (FunC s → FunC s) → FunC s → FunC s
while cont step i n i t = While :$ Lam cont :$ Lam step :$ i n i t

2Note that the argument p is duplicated in the definition of fromFunC. If both components
are later used in the program, this means that the syntax tree will contain two copies of p.
For this reason, having tuples in the language usually requires some way of recovering sharing
(see Section 7.2). This issue is, however, orthogonal to the ideas presented in this paper.
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We can say that the purpose of the smart constructor is to move all function
arrows from inside the parameter of FunC to the outside. This is done because
it is more convenient for the user to deal with ordinary Haskell functions than
using explicit application and abstraction in FunC.

However, from a semantic point of view, the types (FunC a → FunC b) and
FunC (a → b) are equivalent: we can use :$ and Lam to convert between the two
without changing the meaning of the program. This correspondence can be
captured by declaring a Syntactic instance for functions:

instance ( Syntactic a , Syntactic b) ⇒ Syntactic (a → b) where
type Internal (a → b) = Internal a → Internal b
toFunC f = Lam (toFunC . f . fromFunC)
fromFunC f = λa → fromFunC ( f :$ toFunC a)

Note that a and b can be any types in the Syntactic class. Somewhat mag-
ically, the above instance lets us derive the whole implementation of the smart
constructor automatically:

while : : (FunC s → FunC Bool) → (FunC s → FunC s) → FunC s → FunC s
while = fromFunC While

Not only that; since the instance works for any a and b in Syntactic , we can also
derive the overloaded version in the same way:

while : : Syntactic s ⇒ (s → FunC Bool) → (s → s) → s → s
while = fromFunC While

To see how this works, we show a stepwise expansion of the definition:

while : : Syntactic s ⇒ (s → FunC Bool) → (s → s) → s → s
while = fromFunC While

−− Expand fromFunC
= λc →

fromFunC (While :$ toFunC c)

−− Expand fromFunC
= λc → λs →

fromFunC ((While :$ toFunC c) :$ toFunC s)

−− Expand fromFunC
= λc → λs → λ i →

fromFunC (((While :$ toFunC c) :$ toFunC s) :$ toFunC i )

−− Expand toFunC for functions
= λc → λs → λ i →

fromFunC (While :$ Lam (toFunC ◦ c ◦ fromFunC)
:$ Lam (toFunC ◦ s ◦ fromFunC)
:$ toFunC i )

−− toFunC = id for type FunC Bool
= λc → λs → λ i →

fromFunC (While :$ Lam (c ◦ fromFunC)
:$ Lam (toFunC ◦ s ◦ fromFunC)
:$ toFunC i )
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We recognize the last step as the definition we gave for while in Section 4.5.
From now on, we will only use smart constructors derived from fromFunC,

and there will be no need for explicit uses of :$ and Lam.

4.8. Embedding Option

If we want to extend our language with optional values, one may be tempted
to make a Syntactic instance for Maybe. Unfortunately, there is no way to make
this work, because fromFunC would have to decide whether to return Just or
Nothing when the Haskell program is evaluated, which is one stage earlier than
when the FunC program is evaluated. Instead, we can use the following imple-
mentation:

data Option a = Option { isSome : : FunC Bool , fromSome : : a }

instance Syntactic a ⇒ Syntactic (Option a) where
type Internal (Option a) = (Bool , Internal a)
fromFunC m = Option (fromFunC Fst m) (fromFunC Snd m)
toFunC (Option b a) = fromFunC Pair b a

We have borrowed the name Option from ML to avoid clashing with the name
of the Haskell type. The type Option is represented as a boolean and a value.3

The boolean indicates whether the value is valid or whether it should simply
be ignored, effectively interpreting it as not being there. The Syntactic instance
converts to and from the representation in FunC which is a pair of a boolean and
the value.

The definition of Option may seem straightforward, but when we try to create
an empty Option value, we run into problems. We need some value to put into
the second component of the pair. It is not important what value we put there,
since it is not going to be looked at anyway, but the problem is that we need
a polymorphic value, because we want to be able to create empty Option values
of arbitrary types. One alternative would be to extend FunC with a bottom
value, analogous to Haskell’s undefined , but that seems quite unsatisfactory. A
better alternative is to introduce a type class that lets us construct arbitrary
“example” values of different types:4

class Inhabited a where
example : : FunC a

instance Inhabited Bool where example = true
instance Inhabited Int where example = 0
. . .

The example method just has to produce an example value of each type. What
specific value it produces is irrelevant.

Armed with the Inhabited class, we can now provide functions for construct-
ing and eliminating optional values:

3Larger unions can be encoded using an integer instead of a boolean.
4Thanks to Phil Wadler for the idea to use a type class rather than a bottom value.
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some : : a → Option a
some a = Option true a

none : : ( Syntactic a , Inhabited ( Internal a)) ⇒ Option a
none = Option fa l se (fromFunC example)

option : : ( Syntactic a , Syntactic b) ⇒ b → (a → b) → Option a → b
option noneCase someCase opt = ifC (isSome opt)

(someCase (fromSome opt))
noneCase

The some function creates an optional value which actually contains a value
whereas none defines an empty value using the newly introduced example method.
The function option acts as a case on optional values, allowing the programmer
to test an Option value to see whether it contains something or not.

The functions above provide a nice programmer interface but the real power
of the shallow embedding of the Option type comes from the fact that we can
make it an instance of standard Haskell classes. In particular we can make it
an instance of Functor and Monad.

instance Functor Option where
fmap f (Option b a) = Option b ( f a)

instance Monad Option where
return a = some a
opt >>= k = b { isSome = isSome opt ? (isSome b, fa l se ) }

where b = k (fromSome opt)

Being able to reuse standard Haskell functions is a great advantage as it
helps to decrease the cognitive load of the programmer when learning our new
language. We can map any Haskell function on the element of an optional
value because we chose to let the element of the Option type to be completely
polymorphic, which is why these instances type check.

The advantage of reusing Haskell’s standard classes is particularly powerful
in the case of the Monad class because it has syntactic support in Haskell which
means that it can be reused for our embedded language. For example, suppose
that we have a function divF :: FunC Float → FunC Float → Option (FunC Float )

which returns nothing in the case the divisor is zero. Then we can write a
function for computing the resistance of two parallel resistors as follows:

resistance : : FunC Float → FunC Float → Option (FunC Float)
resistance r1 r2 = do rp1 ← divF 1 r1

rp2 ← divF 1 r2
divF 1 (rp1 + rp2)

4.9. Embedding Vector

Our language FunC is intended to target low level programming. In this
domain most programs deal with sequences of data, typically in the form of
arrays. In this section we will see how we can extend FunC to provide a nice
interface to array programming.
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The first thing to note is that FunC doesn’t have any support for arrays at
the moment. We will therefore have to extend FunC to accommodate this. The
addition we have chosen is one constructor which computes an array plus two
constructors for accessing the length and indexing into the array respectively:

Arr : : FunC ( Int → ( Int → a) → Array Int a)
ArrLen : : FunC (Array Int a → Int )
ArrIx : : FunC (Array Int a → Int → a)

The first argument of the Arr constructor computes the length of the array.
The second argument is a function which given an index computes the element
at that index. By repeatedly calling the function for each index we can con-
struct the whole array this way. The meaning of ArrLen and ArrIx should require
little explanation. The exact semantics of these constructors is given by the
corresponding clauses in the eval function.

eval Arr = λ l i x f → let lm1 = l − 1
in l i stArray (0 ,lm1) [ i x f i | i ← [ 0 . . lm1 ] ]

eval ArrLen = λa → (1 +) $ uncurry ( f l i p (−)) $ bounds a
eval ArrIx = (!)

We will use two convenience functions for dealing with length and indexing:
len which computes the length of the array and the infix operator (<!>) which
is used to index into the array. As usual we have overloaded (<!>) so that it
can be used with any type in the Syntactic class.

len : : FunC (Array Int a) → FunC Int
len = fromFunC ArrLen

(<!>) : : Syntactic a ⇒ FunC (Array Int ( Internal a)) → FunC Int → a
(<!>) = fromFunC ArrIx

Having extended our deep embedding to support arrays we are now ready
to provide the shallow embedding. In order to avoid confusion between the two
embeddings we will refer to the shallow embedding as vector instead of array.

data Vector a where
Indexed : : FunC Int → (FunC Int → a) → Vector a

instance Syntactic a ⇒ Syntactic (Vector a) where
type Internal (Vector a) = Array Int ( Internal a)
toFunC (Indexed l i x f ) = fromFunC Arr l i x f
fromFunC arr = Indexed ( len arr ) (λix → arr <!> ix )

The type Vector forms the shallow embedding and its constructor Indexed is
strikingly similar to the Arr construct. The only difference is that Indexed is
completely polymorphic in the element type. One of the advantages of a poly-
morphic element type is that we can have any type which is an instance of
Syntactic in vectors, not only values which are deeply embedded. Indeed we can
even have vectors of vectors which can be used as a simple (although not very
efficient) representation of matrices.

The Syntactic instance converts vectors into arrays and back. It is mostly
straightforward except that elements of vectors need not be deeply embedded
so they must in turn be converted using toFunC.
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zipWithVec : : ( Syntactic a , Syntactic b) ⇒
(a → b → c) → Vector a → Vector b → Vector c

zipWithVec f (Indexed l1 ixf1 ) (Indexed l2 ixf2 )
= Indexed (min l1 l2 ) (λix → f ( ixf1 ix ) ( ixf2 ix ))

sumVec : : ( Syntactic a , Num a) ⇒ Vector a → a
sumVec (Indexed l i x f ) = forLoop l 0 (λix s → s + i x f ix )

instance Functor Vector where
fmap f (Indexed l i x f ) = Indexed l ( f ◦ i x f )

The above code listing shows some examples of primitive functions for vectors.
The call zipWith f v1 v2 combines the two vectors v1 and v2 pointwise using the
function f. The sumVec function computes the sum of all the elements of a vector
using the for loop defined in Section 4.6. Finally, just as with the Option type in
Section 4.8 we can define an instance of the class Functor .

Many more functions can be defined for our Vector type. In particular, any
kind of function where each vector element can be computed independently
will work particularly well with the representation we have chosen. However,
functions that require sharing of previously computed results (e.g. Haskell’s
unfoldr ) will yield poor code.

scalarProd : : ( Syntactic a , Num a) ⇒ Vector a → Vector a → a
scalarProd a b = sumVec (zipWithVec (∗) a b)

An example of using the functions presented above we define the function
scalarProd which computes the scalar product of two vectors. It works by first
multiplying the two vectors pointwise using zipWithVec . The resulting vector is
then summed to yield the final answer.

4.10. Rendering the AST

Figure 2 shows the conversion from FunC to a tree (from the standard Haskell
module Data. Tree). The helper function toTreeArgs uses the State monad to be
able to generate fresh variable names, and it takes a list of children as arguments.
The purpose of the list is to accumulate applications so that all arguments of
a function expression become children to the same node. The only case where
:$ shows up in the tree is when we have a Lam that is immediately applied.
However, such expressions do not appear in the examples given in this paper.

Just like in eval , we need to pass an expression to the function in a Lam

node in order to be able to examine the body. However, in this case we pass a
Variable with a freshly generated name instead of a Value.

Figure 3 shows the tree produced from the expression toFunC scalarProd . It
has been rendered using the tree-view package5. It is interesting to see that
the generated tree is a simple expression with a single loop. In the next section
we will see how this expression is obtained from the definition of scalarProd .

5http://hackage.haskell.org/package/tree-view

16

http://hackage.haskell.org/package/tree-view


toTreeArgs : : FunC a → [ Tree String ] → State Int (Tree String )
toTreeArgs ( f :$ a) as = do

at ← toTreeArgs a [ ]
toTreeArgs f (at : as)

toTreeArgs (Lam f ) as = do
v ← get ; put (v+1)
let var = Variable ( ’v ’ : show v)
body ← toTreeArgs ( f var) [ ]
return $ case as of

[ ] → Node (”Lam v” ++ show v) [body]
→ Node (”:$”) (body: as)

toTreeArgs ( Variable v) as = return $ Node v as
toTreeArgs sym as = return $ Node (showSym sym) as

where
showSym : : FunC a → String
showSym ( Lit a) = show a
showSym I f = ” I f ”
showSym While = ”While”
. . .

toTree : : FunC a → Tree String
toTree a = evalState (toTreeArgs a [ ] ) 0

Figure 2: Conversion from FunC to a tree.

Lam v0
 Lam v1└╴
    Snd└╴
       While└╴
          Lam v3├╴
            (<)│ └╴
               Fst│ ├╴
                 v3│ │ └╴
               min│ └╴
                  ArrLen│ ├╴
                    v0│ │ └╴
                  ArrLen│ └╴
                     v1│ └╴
          Lam v2├╴
            Pair│ └╴
               (+)│ ├╴
                 Fst│ │ ├╴
                   v2│ │ │ └╴
                 1│ │ └╴
               (+)│ └╴
                  Snd│ ├╴
                    v2│ │ └╴
                  (*)│ └╴
                     ArrIx│ ├╴
                       v0│ │ ├╴
                       Fst│ │ └╴
                          v2│ │ └╴
                     ArrIx│ └╴
                        v1│ ├╴
                        Fst│ └╴
                           v2│ └╴
          Pair└╴
             0├╴
             0└╴

Figure 3: Abstract syntax tree of scalarProd .
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We note in passing that most other examples in this paper result in ASTs
that are too large to present in the paper. The reason is lack of sharing in
the generated expressions and lack of syntactic simplification. This problem is
solved by a combination of common sub-expression elimination and a number
of mostly trivial simplification rules. We return to this point in Section 7.

5. Fusion

Choosing to implement vectors as a shallow embedding has a very power-
ful consequence: it provides a very lightweight implementation of fusion [23].
We will demonstrate this using the function scalarProd defined in the previous
section. Upon a first glance it may seem as if this function computes an in-
termediate vector, the vector zipWithVec (∗) a b which is then consumed by the
sumVec. This intermediate vector would be quite bad for performance and space
reasons if we ever wanted to use the scalarProd function as defined.

Luckily the intermediate vector is never computed as we see in Figure 3.
To see why this is the case consider what happens when we generate code for
the expression scalarProd v1 v2, where v1 and v2 are defined as Indexed l1 ixf1

and Indexed l2 ixf2 respectively. Before generating an abstract syntax tree the
Haskell evaluation mechanism will reduce the expression as follows:

scalarProd v1 v2
= sumVec (zipWithVec (∗) v1 v2)
= sumVec (zipWithVec (∗) (Indexed l1 ixf1 ) (Indexed l2 ixf2 ))
= sumVec (Indexed (min l1 l2 ) (λix → ix f1 ix ∗ ix f2 ix )
= forLoop (min l1 l2 ) 0 (λix s → s + ix f1 ix ∗ ix f2 ix )

The intermediate vector has disappeared and the only thing left is a for loop
which computes the scalar product directly from the two argument vectors.

In the above example, fusion happened because although zipWithVec con-
structs a vector, it does not generate an array in the deep embedding. In fact,
all standard vector operations (fmap, take , reverse , etc.) can be defined in a sim-
ilar manner, without using internal storage. Whenever two such functions are
composed, the intermediate vector is guaranteed to be eliminated. This guar-
antee by far exceeds guarantees given by conventional optimizing compilers.

So far, we have only seen one example of a vector producing function that
uses internal storage: fromFunC. Thus intermediate vectors produced by fromFunC

(for example as the result of ifC or while ) will generally not be eliminated.
There are some situations when fusion is not beneficial, for instance in a

function which access an element of a vector more than once. This will cause
the elements to be recomputed. It is therefore important that the programmer
has some way of backing out of using fusion and store the vector to memory.
For this purpose we can provide the following function:

memorize : : Syntactic a ⇒ Vector a → Vector a
memorize (Indexed l i x f ) = Indexed l (λn → fromFunC Arr l i x f <!> n)

The function memorize can be inserted between two functions to make sure that
the intermediate vector is stored to memory. For example, if we wish to store
the intermediate vector in our scalarProd function we can define it as follows:
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scalarProd : : ( Syntactic a , Num a) ⇒ Vector a → Vector a → a
scalarProd a b = sumVec (memorize (zipWithVec (∗) a b))

Strong guarantees for fusion in combination with the function memorize gives the
programmer a very simple interface which still provides powerful optimizations
and fine grained control over memory usage.

5.1. Other types which benefit from fusion

The Vector type is very useful for writing array computations in a composi-
tional style. Unfortunately, not all computations are efficiently implementable
with the Vector type. One example is to compute the scan of a vector. The
following is an inefficient implementation:

scanVec : : Syntactic a ⇒ (a → b → a) → a → Vector b → Vector a
scanVec f z (Indexed l i x f ) = Indexed ( l+1) ixf ’

where ix f ’ i = forLoop ( i−1) z $ λj s →
f s ( i x f j )

This implementation will perform a lot of duplicate computations. An effi-
cient implementation would avoid recomputations by linearly iterating through
the array and use an accumulating parameter to store the intermediate results.
The Vector type does not permit such an implementation because each element
is computed and accessed independently; there is no way to impose a partic-
ular order in which the elements are traversed. We must turn to a different
representation in order to implement scan efficiently.

The type of sequential vectors imposes a linear, left-to-right traversal order
of the elements. We can construct a shallow embedding as follows:

data Seq a = ∀ s . Syntactic s ⇒ Seq s (s → (a , s )) (FunC Int )

The type Seq contains a hidden piece of state; the existentially bound type
variable s. The first argument to the constructor is an initial state. The state is
consumed by the stepper function, the second argument to Seq, which produces
a new element in the vector and a new state. The last argument is the length
of the vector.

The type Seq permits an efficient implementation of scan:

scanSeq : : Syntactic a ⇒ (a → b → a) → a → Seq b → Seq a
scanSeq f z (Seq i n i t step l ) = Seq in i t ’ step ’ ( l+1)

where in i t ’ = (z , i n i t )
step ’ (a , s ) = let (b, s ’ ) = step s

in (a ,( f a b, s ’ ))

We refrain from going into the full details about how to implement a full
library for the Seq type. In summary, we make the following observations:

• To construct a Syntactic instance for Seq requires a new constructor in the
deep embedding:

Sequential : : FunC (s → (s → (a , s )) → Int → Array Int a)
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• The type Seq provides a complementary set of operations compared to
Vector . For example, scanning is provided for Seq while random access
indexing is not.

• Operations on Seq enjoys the same kind of fusion guarantees as the oper-
ations on Vector .

• It is possible to convert from Vector to Seq while still preserving guaranteed
fusion, using the following function:

vecToSeq : : Vector a → Seq a
vecToSeq (Indexed l i x f ) = Seq 0 step l

where step i = ( i x f i , i+1)

Converting from Seq to Vector requires storing to memory (i.e. introducing
a Sequential node in the deep embedding).

There is a third kind of vector which provides yet another, complementary
set of operations; push vectors [13].

data Push a = Push ((FunC Int → a → M ()) → M ()) (FunC Int )

The the first argument to the Push constructor can be thought of as a pro-
gram which writes an array to memory. Writing to memory is an inherently
imperative operation and fits badly with the functional nature of the language
we’ve presented so far. The solution is to use monads, and the type M is a
monad for writing to memory. We return to explaining push vectors once we’ve
covered how to embed monads.

6. Monads

It is sometimes useful to include monads in a domain specific language, for
the same reason they are useful in Haskell: to isolate effectful computations
from pure computations using the type system. In Section 4.8 we saw that
the Option could be made an instance of the typeclass Monad. This monad was
constructed using building blocks already available in the deep representation of
the language. In this section we will see how to build generic support for monads
where the monadic operations are represented as new explicit constructors.

The first step in adding support for monads in our language is to enrich our
deep embedding with the constructors Return and Bind, corresponding to the two
operations in the standard Monad class.

Return : : Monad m ⇒ FunC (a → m a)
Bind : : Monad m ⇒ FunC (m a → (a → m b) → m b)

Although the types for these constructors are similar to the monad opera-
tions, they cannot be used directly as implementations in an instance for the
Monad class, since they are merely symbols. We show how to get around that
below.

Defining the semantics for Return and Bind is straightforward:
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eval Return = return
eval Bind = (>>=)

The user interface for monads consists of the type Mon, which provides a
shallow embedding which lifts an arbitrary monad in Haskell into the embedded
language, and a Monad instance for Mon.

data Mon m a = M { unM : : ∀ b . ((a → FunC (m b)) → FunC (m b)) }

instance Monad m ⇒ Monad (Mon m) where
return a = M $ λk → k a

M m>>= f = M $ λk → m (λa → unM ( f a) k)

Readers with prior knowledge about monads will recognize that Mon is similar
to the continuation passing monad. The difference is that the answer type has
been specialized to generate syntax trees.

Using the continuation monad on top of the deep embedding has a fortu-
nate side effect: it normalizes monadic expression. Certain monads suffer an
asymptotic slowdown if compositions of the >>= operator are associated to the
left: writing e.g. m >>=(λa → f a >>= n) is more costly to evaluate than writing
(m >>= f ) >>= n. Luckily, the continuation monad transformer will associate >>=

in the underlying monad to the right, ensuring efficient execution [42].

instance (Monad m, Syntactic a) ⇒ Syntactic (Mon m a) where
type Internal (Mon m a) = m ( Internal a)
toFunC (M m) = m (fromFunC Return)
fromFunC m = M $ λk → fromFunC Bind m k

It is possible to provide a Syntactic instance for Mon as shown above. This
makes monadic computations first class citizens in the DSL – a very powerful
addition. Though, depending on what kind of target code we want to generate,
we might not want to allow passing around monadic computations as that would
entail creating closures. In Section 7.4, we elaborate on how to constrain the
types of the symbols in FunC to rule out such problematic code.

The type Mon provides a generic building block for constructing particular
monads in our DSL. As a concrete example, we will implement a monad which
adds mutable arrays to our language. Haskell’s standard library for mutable
arrays will stand as a model for our extension.

NewArray : : FunC ( Int → IO (IOArray Int a))
GetArray : : FunC (IOArray Int a → Int → IO a)
PutArray : : FunC (IOArray Int a → Int → a → IO ())
LengthArray : : FunC (IOArray Int a → IO Int )
FreezeArray : : FunC (IOArray Int a → IO (Array Int a))
ThawArray : : FunC (Array Int a → IO (IOArray Int a))

eval NewArray = λ i → newArray (0 , i−1)
eval GetArray = readArray
eval PutArray = writeArray
eval LengthArray = getNumElements
eval FreezeArray = freeze
eval ThawArray = thaw
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The construct NewArray allocates a new, uninitialized array. The length is
determined by the first argument. GetArray and PutArray reads from and writes
to an array (the semantics for using an out of bounds index is undefined). The
length of an array is given by LengthArray . FreezeArray and ThawArray provides a
way to convert back and forth between mutable and immutable arrays.

Compared to previous language features, this list of constructors is a big
addition to our deep embedding. This is not surprising, given that references
and arrays are primitive types that require special primitive operations. In the
following sub-sections, we will see how these primitive operations enable the
definition of shallow high-level data structures. It turns out that these extra
primitive operations give us quite a lot in return!

The code below provides the user interface for the array constructs. We
define a new type M which captures computations with mutable arrays. The
type Marr is a convenient alias when using arrays.

type M a = Mon IO a
type MArr a = FunC (IOArray Int a)

newArray : : FunC Int → M (MArr a)
getArray : : MArr a → FunC Int → M (FunC a)
putArray : : MArr a → FunC Int → FunC a → M ()
lengthArray : : MArr a → M (FunC Int )
freezeArray : : MArr a → M (FunC (Array Int a))
thawArray : : FunC (Array Int a) → M (MArr a)

newArray = fromFunC NewArray
getArray = fromFunC GetArray
putArray = fromFunC PutArray
lengthArray = fromFunC LengthArray
freezeArray = fromFunC FreezeArray
thawArray = fromFunC ThawArray

The result type M () of putArray requires the existence of a Syntactic instance
for () , something which is trivial to define.

When working with arrays it is crucial to be able to perform loops over
them. Since we have a Monad instance for our embedded monad, it is natural
to think that we can use the standard control operators for loops provided by
the standard library in Haskell. But these control operators would be evaluated
at compile time and there would be no loops left in the generated code. For
that reason, the loops could not depend on any runtime data, which would be
overly restrictive. So we are left with using looping constructs defined in our
deep representation. The existing while loop is not directly suited to represent
monadic loops, so instead we add two new constructs.

ForM : : Monad m ⇒ FunC ( Int → ( Int → m ()) → m ())
WhileM : : Monad m ⇒ FunC (m Bool → m () → m ())

The user interface for monadic loops is as follows:

forM : : Monad m ⇒ FunC Int → FunC Int → (FunC Int → Mon m ()) → Mon m ()
forM start stop body = fromFunC ForM (stop − start ) (body ◦ (+start ))
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whileM : : Monad m ⇒ Mon m (FunC Bool) → Mon m () → Mon m ()
whileM = fromFunC WhileM

An example of how to use the mutable array interface is the following im-
plementation of in-place insertion sort (we assume the existence of mutable
references implemented similarly to mutable arrays).

insertionSort : : Ord a ⇒ FunC Int → MArr a → M ()
insertionSort l arr = do

forM 1 l $ λ i → do
value ← getArray arr i
j ← newRef ( i−1)
let cond = do jv ← readRef j

aj ← getArray arr jv
return ( jv ≥ 0 && aj > value)

whileM cond $ do
jv ← readRef j
a ← getArray arr jv
putArray arr ( jv+1) a
writeRef j ( jv−1)

jv ← readRef j
putArray arr ( jv+1) value

One might be worried about the fact that the FunC type keeps growing when-
ever we add new primitives. This problem can be alleviated by using Data Type
à la Carte [41] to divide the primitive operations into several independent types.
In fact, our earlier work on embedding monads was based on Data Type à la
Carte [31].

6.1. Push vectors

As mentioned in the previous section, there is a form of vector which uses
monads to write to memory: push vectors [13].

data Push a = Push ((FunC Int → a → M ()) → M ()) (FunC Int )

The implementation of Push contains a monadic program which writes the
array to memory. It is parameterized on a function of type FunC Int → a → M ().
This is the function that performs the actual writing, given an index and an
array element. The monadic program is responsible for iterating over all the
index-value-pairs of the array and call the writing function on each one of them.
As a first example of how to construct push vectors we give a function which
enumerates integers:

enum : : FunC Int → FunC Int → Push (FunC Int )
enum start stop = Push f (stop − start )

where f w = forM start stop $ λ i →
w i i

Push solves two problems which neither Vector nor Seq can handle: efficient
concatenation and computing several elements at once. Here’s how we can
implement concatenation of two push vectors:
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(++) : : Push a → Push a → Push a
Push f1 l1 ++ Push f2 l2 = Push f ( l1 + l2 )

where f w = do f1 w
f2 (λ i a → w ( i+l1 ) a)

Concatenation is given two push vectors, containing two monadic programs
for writing them to memory, f1 and f2. When constructing the program for the
resulting push vector, f, we first run f1 to write that vector to memory. Then
f2 is allowed to run, but the index where it writes its elements is adjusted so
that they are written after the first vector.

An observation is that the two programs f1 and f2 write to completely sepa-
rate memory locations. That means that they could be executed in parallel for
increased speed. Push vectors support several operations which can be paral-
lelized in this way [13, 1].

As an example of computing several elements at once, we use the dup function
below. It performs the same operation as concatenating a vector with itself,
but makes sure not to duplicate the computation of the elements, which can
otherwise happen.

dup : : Push a → Push a
dup (Push f l ) = Push g (2∗ l )

where g w = f (λ i a → w i a >> w ( i + l ) a)

Although dup is only meant as a pedagogical example, similar patterns hap-
pen in real life applications. For example, when scaling up an image to cover
more pixels, several pixels are produced at every iteration in the computation.

store : : Push (FunC a) → M (FunC (Array Int a))
store (Push f l ) = do

arr ← newArray l
f (putArray arr )
freezeArray arr

Storing a push vector means allocating a mutable array in memory, then
make the push vector program write to that array by feeding it a function
which performs the write. Finally, the mutable array is frozen and the result
is an immutable array. The whole computation lives in the M monad, since
there is no way to escape it. It is possible to provide an embedding like the
ST monad, which can encapsulate imperative algorithms in a purely functional
interface [29]. Such an embedding would enable a purely functional interface to
store , and would enable a Syntactic instance.

In summary, push vectors provide yet another useful abstraction for array
processing. Their implementation is particularly convenient thanks to the em-
bedding of monads, it’s almost as writing normal Haskell.

6.2. Mutable data structures

The data structures we’ve seen so far, such as pairs, Option, Vector , Seq,
and even Push, have had purely functional interfaces (with the exception of
the store function). The introduction of monads in the language opens up for
the possibility of creating mutable data structures. When writing streaming
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applications it is common to use a mutable cyclic buffer. We can implement
such a buffer in our language as a shallow embedding:

data Buffer a = Buffer
{ indexBuf : : FunC Int → M a
, putBuf : : a → M ()
}

The implementation of this buffer is reminicent of how classes are imple-
mented in object oriented languages. The data type contains the public meth-
ods exposed to the programmer using the buffer. The hidden members and data
are stored in the closure created when the buffer is constructed. The following
function constructs a buffer:

in itBuffer : : ∀ a . Syntactic a ⇒ Vector a → M (Buffer a)
initBuffer vec = do

buf ← thawArray (toFunC vec)
l ← lengthArray buf
i r ← newRef 0
let get j = do

i ← readRef i r
fmap fromFunC $ getArray buf $ calcIndex l i j

put a = do
i ← readRef i r
writeRef i r (( i+1) ‘mod‘ l )
putArray buf i $ toFunC a

return (Buffer get put)
where

calcIndex l i j = ( l+i−j−1) ‘mod‘ l

Constructing a Buffer begins with allocating a mutable array which will
contain the payload, and a reference for keeping track of where the first element
in the buffer is located in the array. The two functions get and put read and
write to the appropriate locations in the mutable array using the reference.

As an example of how to use the circular buffer, the following program
computes the nth fibonacci number.

f ib : : FunC Int → M (FunC Int )
f ib n = do

let twoOnes = Indexed 2 $ λ → 1 −− I n i t i a l buffer [1 ,1]
buf ← in itBuffer twoOnes
forM 1 n $ λ → do

a ← indexBuf buf 0
b ← indexBuf buf 1
putBuf buf (a+b)

indexBuf buf 0

7. Scaling up to a full implementation

In this paper we have used a simple implementation to be able to focus
on the basic ideas. In order to scale up the method to a full-blown EDSL
implementation such as Feldspar [4], there are a few things that need to be
taken care of:
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• The front end needs to be extended with more primitive functions. For
example, in Feldspar we have reimplemented many of Haskell’s Prelude
functions, including most methods of classes such as Eq, Ord, Integral ,
Floating , etc.

• In order to avoid duplication of code and run-time computation, there has
to be a way to discover and represent shared sub-expressions.

• Despite high-level optimizations in the shallow embedding (such as fusion;
see Section 5), there are often opportunities to simplify the generated
ASTs in order to generate more efficient code.

• We need a translator from expressions to C code (or similar). This requires
making some changes to FunC to rule out higher-order terms that are not
easily compiled to a low-level target.

The following sub-sections discuss the above points in a bit more detail.

7.1. AST representation

The three latter points in the above list involve traversing and transforming
FunC expressions in various ways. This turns out to be very inconvenient when
using higher-order abstract syntax (HOAS), as in this paper. Instead a first-
order representation is generally preferred when the AST needs to be examined.
At the same time, HOAS comes with some definite advantages:

• It makes it easy to define higher-order front end functions (such as the
while loop in this paper).

• It makes evaluation both easy to define and very efficient due to the fact
that substitution is performed directly by the function embedded in the
AST.

One way to get the best of both worlds is to have two versions of the AST:
a higher-order one and a first-order one with a function converting from the
former to the latter. The higher-order one is used in the front end and possibly
for evaluation, while the first-order one is used in the rest of the implementation.
The disadvantage of this approach is that it requires two separate but very
similar data types as representations of the same AST. Conversion from a higher-
order to a first-order AST can be done using the same method as the rendering
in Section 4.10.

Two EDSLs that use a combination of higher-order and first-order ASTs are
Feldspar (until version 0.7) [4] and Accelerate [30].

In order to avoid having two separate representations of the same AST, it is
possible to make a higher-order front end directly for a first-order AST by using
a technique based on circular programming [3]. We plan to use this technique
to get rid of the HOAS representation in future versions of Feldspar.
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7.2. Handling Sharing

It is easy to write EDSL programs that result in duplicated sub-expressions.
For example, the expression let a = bigExpr in a+a results in an AST that con-
tains two copies of bigExpr . This is because Haskell bindings are inlined as part
of Haskell’s evaluation when generating an AST. This loss of sharing is prob-
lematic for two reasons: (1) it makes the AST larger which can slow down
the compiler and lead to larger generated code, and (2) it leads to duplicated
computations in the generated code which can increase its run time.

The problem with large ASTs is more severe than it may seem at first. An
expression with nested duplications – for example

let a = . . . in let b = x + x in let c = b + b in . . .

– generates an AST which is exponentially larger than the corresponding Haskell
expression.

Such expressions do actually occur in practice. The following innocent-
looking function from Feldspar’s source uses bit manipulation to compute the
number of leading zeros in a machine word:

nlz x = bitCount $ complement
$ fo ld l go x $ takeWhile (P.< bitSize ’ x)
$ P.map (2 P.ˆ) [(0 : : Integer ) . . ]

where
go b s = b . | . (b .>>. value s)

Here, foldl is the normal left fold for Haskell lists, which means that nlz builds
up an unrolled expression by repeatedly applying the go function. The problem
with this is that the b parameter is used twice in the body of go which means
that the size of the resulting expression is O(2n), where n is the number of
calls to go. (The function has now been fixed by inserting an explicit sharing
construct for b.)

Several techniques can be used to handle sharing in EDSLs:

Implicit sharing. Standard common sub-expression elimination (CSE) can be
employed to remove duplications in the generated code. However, it does not fix
the problem with large ASTs slowing down the compiler. This is because CSE
has to traverse the whole expression in order to know which sub-expressions to
share.

Observable sharing. By observing how the AST is stored in the heap, it is possi-
ble to recreate the sharing structure of the Haskell expression that generated the
AST [12, 21]. The problem with observable sharing is that it is somewhat frag-
ile: a Haskell compiler is free to store data structures as it likes, and the amount
of sharing may very well depend on the implementation at hand, optimization
flags, etc.

Explicit sharing. A different approach is to be completely explicit about sharing.
In FunC, we could represent explicit sharing by the following construct:

Share : : FunC ((a → b) → a → b)
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These three techniques can be combined in various ways. Kiselyov proposes
using a combination of explicit and implicit sharing [28]. Hash-consing is used
to introduce sharing of equal sub-expressions, and an explicit sharing construct
can be used to manage the size of the expression. Similarly, it is possible to
use observable sharing to speed up implicit sharing. This approach is taken
by Elliott et al. in the Pan EDSL [16], and it has the advantage of not being
sensitive to the unpredictable behavior of observable sharing.

There is a slight complication when using observable sharing together with
HOAS: sharing has to be detected while converting the HOAS to a first-order
representation [30]. It cannot be done before the conversion because a HOAS
data structure is not easily inspectable, and it cannot be done after the conver-
sion because by then the conversion has destroyed all sharing.

7.3. Simplification

Despite high-level optimizations in the shallow embedding (such as fusion,
see Section 5), there are often opportunities to simplify the generated ASTs in
order to generate more efficient code.

Many simplification rules can be performed directly in the front end using
“smart constructors” [16]. For example, the following definitions of (+) and
(<!>) can return simpler expressions depending on the form of the arguments:

(+) : : FunC Int → FunC Int → FunC Int
a + Lit 0 = a
Lit 0 + b = b
a + b = fromFunC (Prim ”(+)” (+)) a b

(<!>) : : FunC (Array Int a) → FunC Int → FunC a
(Arr :$ l :$ Lam f ) <!> i = f i
arr <!> i = fromFunC ArrIx arr i

The disadvantage of simplification in the front end is that it is limited to
context-free rules. More sophisticated optimizations must therefore be done as
separate passes on the generated AST (after conversion to a first-order repre-
sentation in the case of HOAS).

Elliott et al. [16] and McDonnel et al. [30] give more information on opti-
mization of EDSL programs.

7.4. Code Generation

If we want to generate efficient low-level code from FunC we are faced with
a problem: since FunC is based on the lambda calculus, we may need to com-
pile arbitrary higher-order terms which generally do not map well to efficient
low-level code. However, none of the examples in this paper involves such prob-
lematic terms. In particular, the only sub-expressions of higher-order type (i.e.
of the form (( t1 → t2 ) → t3 )) are higher-order symbols like While and Sequential .

Generating code for the higher-order symbols is unproblematic. For example,
the expression While :$ Lam cont :$ Lam body :$ init can be handled as follows:

• Generate a fresh name s.
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• Recursively generate code for the sub-expressions cont ( Variable s) and
body ( Variable s).

• Put the resulting pieces of code together in a loop.

Here we see that the code generator does not view the function arguments
of While as functions, but rather as expressions with one extra free variable –
and this variable is the state of the loop. We can generate code for all the other
higher-order symbols in a similar way.

7.4.1. Enforcing First-Order Target Code

We have seen that restricting programs so that higher-order types only ap-
pear for expressions that the code generator knows how to handle ensures that
we can generate first-order code from FunC. This restriction can be enforced by
constraining the type of Lam:

Lam : : Type a ⇒ (FunC a → FunC b) → FunC (a → b)

The Type class captures simple types that can be stored in variables in the
target language (e.g. Int , Bool, Float , Array Int Int , etc.). This is a class without
methods, and it is only used to restrict the set of expressions we can construct.

We will now argue for why the restricted type of Lam rules out arbitrary
higher-order types.

Definition 3. A higher-order type is a type of the form (( t1 → t2 ) → t3 ).

Definition 4. A compiler-known expression is a FunC symbol applied to zero
or more arguments. We assume that the compiler knows how to translate a
compiler-known expression, even if it has a higher-order type.

Proposition 1. For all expressions e :: FunC a, if a is a higher-order type, then
e is a compiler-known expression.

Proof. All symbols are trivially compiler-known. Lam cannot result in a higher-
order expression due to the Type constraint. The only form of expression left
to examine is e = ( f :$ a) :: b, where f :: FunC (a → b) and a :: FunC a. By
induction, f is either a compiler-known expression, or a → b is a first-order
type. Hence, either e is a compiler-known expression, or b is a first-order type.

The reasoning so far assumes that FunC has been designed so that all sym-
bols can be handled by the code generator. For this to be the case, we also
need to constrain the types of certain symbols. For example, Lit needs a Type

constraint to ensure that we can only create literals of simple representable
types:

Lit : : (Show a , Type a) ⇒ a → FunC a

As mentioned in Section 6, we may need to rule out code that entails repre-
senting monadic actions as values in the host language. Again, we can do this
by placing a Type constraint on polymorphic symbols like If and While:
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I f : : Type a ⇒ FunC (Bool → a → a → a)
While : : Type s ⇒ FunC (( s → Bool) → (s → s) → s → s)

Note that the above constraints will also show up in the user interface. For
example, ifC will get the type:

ifC : : ( Syntactic a , Type ( Internal a)) ⇒ FunC Bool → a → a → a

8. Related Work

The Feldspar EDSL [5] makes use of the techniques described in this paper.
We have found that Feldspar’s design with a simple core language extended with
shallow high-level libraries makes it easy to explore new ideas without investing
a lot of implementation effort.

The Lightweight Modular Staging framework [35] for Scala enables the im-
plementation of deeply embedded DSLs and offers significant infrastructure for
optimization and code generation. Rompf et al. note the benefit of implement-
ing parts of an EDSL as shallow embeddings that expand to a simpler core
language – something which they call “deep linguistic reuse” [34].

Gibbons and Wu [20] give an insightful overview of deep and shallow em-
beddings and discuss their relation in depth. Inspired by our work, they also
consider “intermediate embeddings”, where a deeply embedded core language
is extended using shallow embeddings.

A practical example of the combination of deep and shallow embedding is the
embedded DSL Hydra which targets Functional Hybrid Modelling [24]. Hydra
has a shallow embedding of signal relations on top of a deep embedding of equa-
tions. However, it does not have anything corresponding to our Syntactic class.
Furthermore, it does not seem to take advantage of any fusion-like properties of
the embedding nor make any instances of standard Haskell classes.

The work by Elliott et al. on compiling embedded languages [16] has been a
great source of inspiration for us. In particular, they use a type class Syntactic

whose name gave inspiration to our type class. However, their class is only used
for overloading if expressions and not as a general mechanism for extending
the embedded language. Just like Elliott et al., we note that deeply embedded
compilation relates strongly to partial evaluation. The shallow embeddings we
describe can be seen as a compositional and predictable way to describe partial
evaluation.

The implementation of Kansas Lava [17] uses a combination of shallow and
deep embedding. However, this implementation is quite different from what
we are proposing. In our case, we use a nested embedding, where the deep
embedding is used as the semantic domain of the shallow embedding. In Kansas
Lava, the two embeddings exist in parallel – the shallow embedding is used for
evaluation and the deep embedding for compilation. It appears that this design
is not intended for extensibility: adding new interpretations is difficult due to
the shallow embedding, and adding new constructs is difficult due to the deep
embedding.
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At the same time, Kansas Lava contains a type class Pack [22] that has some
similarities to our Syntactic class. Indeed, using Pack, Kansas Lava implements
support for optional values by mapping them to a pair of a boolean and a value.
However, it is not clear from the publications to what extent Pack can be used
to develop high-level language extensions and optimizations.

Deep embeddings have the disadvantage of leaking some implementation de-
tails to the user (e.g. a deeply embedded integer expression has type FunC Int

while a Haskell integer is just an Int ). In the Yin-Yang system, Jovanović et al. [26]
use Scala macros to translate shallow EDSL programs to the corresponding deep
EDSL programs. This allows the user to work in a friendlier shallow embedding
while still reaping the benefits of the deep embedding (i.e. higher performance)
when needed. Yin-Yang also simplifies EDSL development by automatically
generating deep embeddings from shallow ones. In a similar line of work, Scherr
and Chiba [36] propose a technique called implicit staging for Java which hides
the implementation details of the deep embedding from the user.

While our work has focused on making shallow extensions of deep embed-
dings, it is also possible to have the extensions as deep embeddings. This ap-
proach was used by Claessen and Pace [11] to implement a simple language
for behavioral hardware description. The behavioral language is defined as a
simple recursive data type whose meaning is given as a function mapping these
descriptions into structural hardware descriptions in the EDSL Lava [6].

Our focus in this paper has been on deep and shallow embeddings. But
these are not the only techniques for embedding a language into a host language.
Another popular method is the Finally Tagless technique [8]. The essence of
Finally Tagless is to have an interface which abstracts over all interpretations
of the language. In Haskell this is realized by a typeclass where each method
corresponds to one language construct. Concrete interpretations are realized by
creating a data type and making it an instance of the type class. For example,
creating an abstract syntax tree would correspond to one interpretation and
would have its own data type, evaluation would be another one. Since new
interpretations and constructs can be added modularly (corresponds to adding
new interpretation types and new interface classes respectively), Finally Tagless
can be said to be a solution to the expression problem.

Our technique can be made to work with Finally Tagless as well. Creating
a new embedding on top of an existing embedding simply amounts to creating
a subclass of the type class capturing the existing embedding. However, care
has to be taken if one would like to emulate a shallow embedding on top of
a deep embedding and provide the kind of guarantees that we have shown in
this paper. This will require an interpretation which maps some types to their
abstract syntax tree representation and some types to their corresponding shal-
low embedding. Also, it is not possible to define general instances for standard
Haskell classes for languages using the Finally Tagless technique. Instances can
only be provided by particular interpretations.

As discussed in Section 2.1, Data Types à la Carte is a technique that en-
ables modular definition of deep embeddings [41, 14]. It is complementary to
the technique presented in this paper, and the two techniques can be usefully
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combined [2, 31].
The way we provide fusion for vectors was first used in the implementation

of Feldspar [15]. The same technique was used in the language Obsidian [40]
but it has never been documented that Obsidian actually supports fusion. The
programming interface is very closely related to that provided by the Repa
library [27], including the idea of guaranteeing fusion and providing program-
mer control for avoiding fusion. Although similar, the ideas were developed
completely independently. It should also be noted that our implementation of
fusion is vastly simpler than the one employed in Repa.

Section 6 presents a solution for the monad reification problem, i.e. observ-
ing the structure of monadic computations and converting them to a first order
representation. Strictly speaking we don’t solve the full problem here since we
don’t generate first order terms, but it is an easy step to add. The version pre-
sented here is a simplified and extended presentation of our previous work [31].
Other solutions include the so called ”Björn and Benny” method [39], which
has a particularly simple implementation but where the types become some-
what more contrived, and the normalization method of Sculthorpe et al. [37],
which has applications beyond the monadic reification problem. Compiled ED-
SLs which feature a Monad instance include Feldspar [31], Obsidian [40] and
Sunroof [7].

9. Conclusion

The technique described in this paper is a simple, yet powerful, method
that gives a partial solution to the expression problem. By having a deep core
language, we can add new interpretations without problem. And by means of
the Syntactic class, we can add new language types and constructs with minimal
effort.

The method offers an advantageous power-to-weight ratio: each construct
in the deep embedding typically enables several new functions in the shallow
embedding. For example, the three constructs related to immutable arrays
(Section 4.9) enables us to define wide range of operations for the Vector type
(only a few of which are shown in the paper).

Shallow embeddings allows for utilizing evaluation in the host language for
optimization purposes. For example, pairs can be removed statically, operations
on Vector can be fused automatically and monadic computations are normalized.
These advantages come simply due to the fact that we use shallow embeddings,
we do not have to make any extra effort to enable these optimizations.

We have presented a diverse selection of language extensions to demonstrate
the idea of combining deep and shallow embeddings. The technique has been
used with great success by the Feldspar team during the implementation of
Feldspar.
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